Annual Report 2019

Total Page:16

File Type:pdf, Size:1020Kb

Annual Report 2019 Annual Report 2019 ANNUAL REPORT 2019 A synthetic diamond on a microwave transmission line illuminated by a green laser. Atom-sized crystal defects inside the diamond are used as microscopic heat machines to explore thermodynamics in the quantum regime/Jonas Becker Front cover: A micro-machined enclosure for a superconducting circuit for quantum computing, designed for scalability/Peter Spring CONTENTS Contents Foreword ................................................................................ 3 Applications & Software ................................................25 Secure Network Applications.......................................25 Introduction ......................................................................... 4 Quantum Enabled Applications ..................................25 Programme Structure ..................................................... 5 Quantum/Classical Emulation and Interfacing .......26 Achievements ................................................................... 6 NQIT Consortium ............................................................. 7 Wider Engagement ...........................................................29 UK Partners Map .............................................................. 8 Public Engagement .......................................................29 Industry and Strategic Partners ................................... 9 Responsible Research and Innovation ......................29 People .............................................................................. 10 Inter-Hub Collaboration ................................................30 Quantum Computing in a Global Context ................. 13 Skills & Training ................................................................33 Industry Engagement ..................................................... 15 Future Plans........................................................................35 Collaboration................................................................... 15 Impact and Industry Achievements .......................... 15 Outputs.................................................................................36 Industrial Engagement ................................................ 16 Publications ....................................................................36 Quantum Readiness and IBM Q Partnership............ 16 Talks ..................................................................................39 Other Engagements ...................................................... 17 Engagement Activities ................................................. 41 NQIT in the News ...........................................................43 Hardware & Engineering ................................................ 19 Ion Trap Node Engineering .......................................... 19 Resources ............................................................................44 Photonic Network Engineering ...................................20 Alternative Qubits ..........................................................20 Atom-photon Interfaces ............................................... 21 Core Engineering Capabilities ..................................... 21 Architecture Progress ...................................................22 1 ANNUAL REPORT 2019 2 Photo credit: Imperial College London FOREWORD Foreword In its fourth year, NQIT continues to lead the UK’s efforts in quantum computing, having made significant progress in its hardware programme of developing quantum networks for computing and simulation, in its software and application programme developing algorithms and protocols for using such machines and in building a larger user community for current and future quantum computing devices. We have achieved some key milestones in device design, performance and fabrication that put the UK at the forefront of several platforms internationally. Our work takes in all aspects of the emerging The recently announced UK government quantum information technology economy in the commitment to continuing the UK Quantum UK – from collaborations with the supply chain Technologies Programme for a further 5-year to engaging with the emerging software sector programme – together with a new world-first National through to growing a base of skills and awareness. Quantum Computing Centre (NQCC) – will accelerate Responsible research and innovation initiatives and the progress towards a quantum computer, and continued engagement through broader community will keep the UK at the forefront of this global race. and public outreach activities are designed to ensure Increased leadership from the emerging industry the widest positive impact of quantum computing so sector, harnessing the Industrial Strategy Challenge that the UK becomes a fully quantum-literate nation. Fund, has enabled new and stronger partnerships between universities and businesses, helping to Significant benchmarks have been achieved in establish the sector and supply chain. the underpinning hardware and core technologies necessary for a quantum network, reaching The results of the first phase of the UK Programme world-beating performance levels in trapped were also considered in detail in 2018 by the House ion logic gates, developing new approaches to of Commons Science & Technology Committee’s superconducting circuits and photonic network Quantum Technologies enquiry, to which we provided components, as well as delivering new science written and oral evidence. The Committee’s report, arising from the precise control and manipulation of endorsed by the Government, urges that quantum quantum systems. On the software and applications technologies offer the potential for significant side, the emulator project is already expanding the economic growth and improved capabilities across range of possible users by enabling them to assess multiple industry sectors. whether their core business applications can be enhanced by running on a quantum computer. The More than three quarters of the way through NQIT’s emulation work is supported by software engineering five-year programme, it is heartening to see NQIT’s that provides a “front door” for new users. vision becoming a reality, positioning the UK to be a leader in delivering the next information revolution. R&D collaborations in industry-led projects have contributed to understanding more about market forces and the potential use for quantum computing technology by established and new ventures. We have seen growth in the number of collaborations via our user projects, which continue to rise. We have also seen a sharp increase in the number of events, meetings and presentations to industry about future applications and the potential impact of quantum computing. A successful engagement with the space sector, has explored the potential for quantum Professor Ian Walmsley FRS computing in addressing emerging challenges. Director of NQIT We have defined key areas for further exploration at Provost & Chair in Experimental Physics, a quantum computing hackathon that will be a first Imperial College London for NQIT. 3 ANNUAL REPORT 2019 Introduction The Networked Quantum Information Technologies Hub (NQIT) is the largest of the four Hubs in the UK National Quantum Technologies Programme, a £270 million investment over four years (2014 – 2019) by the UK government to establish a quantum technology industry in the UK. Aim Technology overview Since the commencement of NQIT in 2014 we have Our goal, in collaboration with government, industry significantly progressed our ion trap engineering. and the wider community, is to develop the first We have connected our ion trap ‘processors’, and truly scalable universal quantum computing the engineering required to control these systems machine. The architectures that NQIT is developing is well-advanced. Significant progress has been have the highest performance of any current qubit made in emerging qubit technologies, including new system, and we are advancing on the path to create approaches for controlling superconducting qubits such a machine. We are building a new industry and new methods for preparing qubits in diamonds, sector around quantum information technology, where a new process to write qubits is yielding from the supply chain, through the build and promising results. We have also demonstrated operation, to programming and use of quantum enabling technologies such as wavelength computers. Our vision is for the UK to become the conversion, and these technologies may become centre of a global quantum information processing future products and components in the supply chain industry, with a rich mixture of research, innovation for quantum and other industries. We are developing and commercialisation. the software systems to program and operate our quantum computing machine and are working on our own quantum computing emulator platform for high Objectives performance computers, which will enable scientists Our key objectives are to: in research and industry to develop algorithms and applications for the emerging hardware. Demonstrate a scalable quantum computing architecture based on ion qubits and photonic Wider Engagement networks We have expanded our programme of public Advance promising emerging and enabling engagement activities and continue to work closely quantum information processing technologies with the other Quantum Technology Hubs to deliver Seed and develop the commercialisation of these on Responsible Innovation, public engagement and technologies
Recommended publications
  • Curriculum Vitae
    Curriculum Vitae Vedran Dunjko [email protected] EDUCATION PhD in Physics 2010 { 2012 Heriot-Watt University, Edinburgh, UK. Supervisor: Prof. Dr. E. Andersson, Prof. Dr. G. S. Buller and Dr. E. Kashefi Postgraduate studies in Mathematics 2007 { 2010 University of Zagreb, Zagreb, Croatia Undergraduate and Master studies 1999 { 20071 in Mathematics and Computer Science University of Zagreb, Zagreb, Croatia ACADEMIC DEGREES PhD in Physics awarded 16 Nov 2012 Heriot-Watt University, Edinburgh, UK Master in Mathematics and Computer Science awarded 13 Sept 2007 University of Zagreb, Zagreb, Croatia (Dipl. -Ing. degree) Highest grade (5) achieved Final Exam and Graduation Dissertation EMPLOYMENT Assistant Professor (tenure track), LIACS & LION Leiden University 2018 { present Leiden, Netherlands Post-doctoral position at Max Planck Institute of Quantum Optics 2017 { 2018 Garching, Germany (Group Cirac) Post-doctoral position at Institute for Theoretical Physics 2013 { 2017 University of Innsbruck, Austria (Group Briegel) Research associate at the School of Informatics, 2012 { 2013 University of Edinburgh, UK Research assistant at the Division of Molecular Biology 2008 { 2015 Rud¯er Boˇskovi´cInstitute, Zagreb, Croatia 1My studies were protracted during the period of 1999-2008 as I had a second focus. I was a competing track and field athlete (multiple national finalist, 6-10 training sessions/week and co- coach for the horizontal and vertical jumps). In 2006 I also completed mandatory military service. My physics studies began in 2010. 1 FUNDING, FELLOWSHIPS, GRANTS NWO/NWA project \Quantum Inspire" Dec 2020 Google unrestricted Gift Jun 2020 Project \HybridQML" SurfSARA project funding Mar 2020 Project \Quantum Computing for Quantum Chemistry" EC H2020 project \NEASQC " Sept 2020 WP lead for machine learning and optimization Funding for two PhD students, 4 years Jul 2019 External industrial funding from Total Funding for post-doctoral researcher, 1 year Jul 2018 Quantum Software Consortium, internal call.
    [Show full text]
  • Blindness and Verification of Quantum Computation with One Pure Qubit
    Blindness and Verification of Quantum Computation with One Pure Qubit Theodoros Kapourniotis1, Elham Kashefi1, and Animesh Datta2 1 School of Informatics, University of Edinburgh 10 Crichton Street, Edinburgh EH8 9AB, UK [email protected], [email protected] 2 Clarendon Laboratory, Department of Physics, University of Oxford, OX1 3PU, United Kingdom [email protected] Abstract While building a universal quantum computer remains challenging, devices of restricted power such as the so-called one pure qubit model have attracted considerable attention. An important step in the construction of these limited quantum computational devices is the understanding of whether the verification of the computation within these models could be also performed in the restricted scheme. Encoding via blindness (a cryptographic protocol for delegated computing) has proven successful for the verification of universal quantum computation with a restricted verifier. In this paper, we present the adaptation of this approach to the one pure qubit model, and present the first feasible scheme for the verification of delegated one pure qubit model of quantum computing. 1998 ACM Subject Classification Quantum computation theory, Cryptography, Model verifica- tion and validation Keywords and phrases Delegated Computing, Verification, Measurement-based Model Digital Object Identifier 10.4230/LIPIcs.TQC.2014.176 1 Introduction The physical realisation of quantum information processing requires the fulfilment of the five criteria collated by DiVincenzo [13]. While enormous progress had been made in realising them since, we are still some way from constructing a universal quantum computer. This raises the question whether quantum advantages in computation are possible without fulfilling one or more of DiVincenzo’s criteria.
    [Show full text]
  • Challenges for Quantum Computer Science & Simulation Workshop Report 1 October 2017
    Challenges for Quantum Computer Science & Simulation Workshop Report 1 October 2017 Summary As developments in quantum computing hardware continue to gather pace worldwide, many research groups are focussing on the ultimate goal of engineering a universal large-scale quantum computer. Keeping pace with these developments and understanding the capabilities of quantum computers will require fundamentally rethinking ‘classical’ computer science, requiring research into new algorithms, programming languages and methodologies for error detection and correction. Recommendation 6 of the ‘Quantum Age’ report 2016 (Government Office for Science) states that: “The National Quantum Technologies Programme should work with the Alan Turing Institute, the Heilbronn Institute for Mathematical Research and wider academia to identify a set of example challenges which, if solved by a quantum computer or quantum simulator, would have important benefits to government, business and citizens.” In response to this, EPSRC held a workshop on “Challenges for Quantum Computer Science and Simulation” bringing together wider academia to discuss the role of quantum computing and simulation in addressing future opportunities and challenges in ICT. Background Steady improvements in information and communication technologies have been a fundamental driver of economic and social change since the 1950s. However, this assumption is now threated by a slowdown in the previously exponential growth in the computing capability (associated with ‘Moore’s law’) together with an exponential growth in data. Quantum computing provides a fundamentally different approach to processing information and has the potential to surpass conventional computers in searching large datasets, factoring large numbers and simulating chemical and biological systems. This raises the prospect of improvements to data analytics, drug development, logistics and materials design; new insight into biological systems; and wide-ranging security implications as common cryptographic approaches are made obsolete.
    [Show full text]
  • Proquest Dissertations
    Universite de Montreal Quantum nonlocality, cryptography and complexity par Anne Lise Broadbent Departement d'informatique et de recherche operationnelle Faculte des arts et des sciences These presentee a la faculte des etudes superieures et postdoctorales en vue de l'obtention du grade de Philosophic Doctor (Ph. D.) en informatique ^es^Cs Js „ sld s mars 2008 S^o, Oct>c. % ,"^K^ Gradei~»,f °s?<cs~* ( 3 3 *• m (c) Anne Lise Broadbent, 2008. Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington OttawaONK1A0N4 OttawaONK1A0N4 Canada Canada Your We Votre reference ISBN: 978-0-494-57756-1 Our file Notre reference ISBN: 978-0-494-57756-1 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis Neither the thesis nor la these ni des extra its substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation.
    [Show full text]
  • First NQIT Annual Report
    Networked Quantum Information Technologies Annual Report 2016 Networked Quantum Information Technologies For more information about NQIT, please visit our website: http://www.nqit.ox.ac.uk Or send us an email: Or get in touch email: [email protected] @NQIT_QTHub Annual Report 2016 Getting Involved NQIT has set aside substantial funding to support promising quantum Contents technology projects that have early commercialisation potential. These are divided into User Projects, which have immediate applications, and Partnership Projects, which have a longer technology maturity timeline but substantial industrial interest. If you have an idea for a project that aligns with the aims of the NQIT Hub, would help speed up NQIT deliverables and uses NQIT scientists with commercial partners to advance quantum technology, please do get in touch with our User Engagement team. Foreword 1 Introduction 2 Programme Structure 6 Objectives 11 Year One Achievements and Progress 12 The Q20:20 Quantum Computer Demonstrator 14 Hardware 19 Applications 24 Architecture 27 Industry and Public Engagement 28 Looking ahead 36 Programme Outputs 39 Front Cover Award-winning image of microwave ion-trap chip for quantum computation / Diana Prado Lopes Aude Craik & Norbert Linke This page Single photon detector for Superconducting qubit in a 3D microwave photonic networking / Stuart Bebb cavity / Dan Tsantilis, EPSRC Foreword The Networked Quantum Information Technologies Hub (NQIT) is the largest of the four Hubs in the UK National Quantum Technology Programme, a £270 million investment by the UK government to establish a quantum technology industry in the UK. The realisation of a practical quantum computer will be one of the biggest scientific and engineering achievements in this century.
    [Show full text]
  • Annual Report 2018
    Annual Report 2018 The NQIT Entangler, developed by the University of Southampton / Paul Gow & Paolo Mennea Contributors Andru Gheorghiu Animesh Datta Chris Wade David Nadlinger Dominic O’Brien Evert Geurtsen Ezra Kassa Frances Sweeney Hannah Rowlands Ian Walmsley Iris Choi Jaewoo Joo Jason Smith Jonas Becker Nathan Walk Niel de Beaudrap Peter Leek Petros Wallden Philip Inglesant Rishi Deshmukh Rupesh Srivastava Simon Benjamin Weida Zhang Winfried Hensinger Xiao Yuan Editors Frances Sweeney Hannah Rowlands Rupesh Srivastava Design and Print Hunts Core Engineering Capabilities . 30 Contents Architecture Progress . 31 Qubits: quality vs . quantity . 33 Applications & Software . 34 Foreword . 1 Applications Introduction . 34 Introduction . 3 Secure Network Applications . 35 Year Three Achievements . 5 Networked Quantum Sensors . 35 Programme Structure . 6 Quantum Enabled Discovery . 36 The NQIT Consortium . 7 Quantum/Classical Emulation and Interfacing . 36 UK Partners Map . 8 Development of Quantum Applications . 38 Industry and Strategic Partners . 9 Quantum Optimisation and People . 10 Machine Learning . 39 NQIT Ecosystem . 12 How does quantum computing intersect Quantum Computing in a Global Context . 13 with machine learning? . 40 Science and Innovation Audit for Oxfordshire . 15 Wider Engagement . 41 Industry Engagement . 16 Responsible Research and Innovation . 41 NQIT Industry Day 2017 . 17 Public Engagement . 42 National Quantum An Evening of Quantum Discovery . 43 Technologies Showcase 2017 . 18 Quantum Photography Competition . 44 IBM Q Collaboration . 19 Walk-in Quantum Computer Installation . 45 Wireless Radio Frequency Inter-Hub Collaboration . 45 Feedthrough for Ion Traps with ColdQuanta . 20 Skills and Training . 46 Spinout Companies . 21 Oxford Quantum Circuits . 22 Future Plans . 47 Innovate UK: Commercialisation of Beecroft Building . 48 Quantum Technologies .
    [Show full text]
  • Complexity-Theoretic Limitations on Blind Delegated Quantum Computation
    Edinburgh Research Explorer Complexity-Theoretic Limitations on Blind Delegated Quantum Computation Citation for published version: Aaronson, S, Cojocaru, A, Gheorghiu, A & Kashefi, E 2019, Complexity-Theoretic Limitations on Blind Delegated Quantum Computation. in C Baier, I Chatzigiannakis, P Flocchini & S Leonardi (eds), 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)., 6, Leibniz International Proceedings in Informatics (LIPIcs), vol. 132, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, Dagstuhl, Germany, pp. 6:1-6:13, 46th International Colloquium on Automata, Languages and Programming, Patras, Greece, 8/07/19. https://doi.org/10.4230/LIPIcs.ICALP.2019.6 Digital Object Identifier (DOI): 10.4230/LIPIcs.ICALP.2019.6 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019) General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected]
    [Show full text]
  • Complexity-Theoretic Limitations on Blind Delegated Quantum
    Complexity-Theoretic Limitations on Blind Delegated Quantum Computation Scott Aaronson Department of Computer Science, University of Texas at Austin, USA [email protected] Alexandru Cojocaru School of Informatics, University of Edinburgh, UK [email protected] Alexandru Gheorghiu1 Department of Computing and Mathematical Sciences, California Institute of Technology, USA School of Informatics, University of Edinburgh, UK [email protected] Elham Kashefi School of Informatics, University of Edinburgh, UK CNRS LIP6, Université Pierre et Marie Curie, Paris, France ekashefi@inf.ed.ac.uk Abstract Blind delegation protocols allow a client to delegate a computation to a server so that the server learns nothing about the input to the computation apart from its size. For the specific case of quantum computation we know, from work over the past decade, that blind delegation protocols can achieve information-theoretic security (provided the client and the server exchange some amount of quantum information). In this paper we prove, provided certain complexity-theoretic conjectures are true, that the power of information-theoretically secure blind delegation protocols for quantum computation (ITS-BQC protocols) is in a number of ways constrained. In the first part of our paper we provide some indication that ITS-BQC protocols for delegating polynomial-time quantum computations in which the client and the server interact only classically are unlikely to exist. We first show that having such a protocol in which the client and the server exchange O(nd) bits of communication, implies that BQP ⊂ MA/O(nd). We conjecture that this containment is unlikely by proving that there exists an oracle relative to which BQP 6⊂ MA/O(nd).
    [Show full text]
  • Spécialité Informatique Quantum Proofs, the Local Hamiltonian
    UNIVERSITÉ SORBONNE PARIS CITÉ UNIVERSITÉ PARIS DIDEROT -PARIS 7 Institut de Recherche en Informatique Fondamentale THÈSE DE DOCTORAT spécialité Informatique à l’ÉCOLE DOCTORALE DE SCIENCES MATHÉMATIQUES DE PARIS CENTRE Quantum proofs, the Local Hamiltonian problem and applications Par : Alex BREDARIOL GRILO Dirigé par Iordanis KERENIDIS Soutenue publiquement le 27 avril 2018 devant le jury constitué de : Scott AARONSON, PR University of Austin Rapporteur Fernando G.S.L. BRANDÃO, PR California Insitute of Technology Rapporteur Elham KASHEFI, CR Université Pierre et Marie Curie, Présidente PR University of Edinburgh Iordanis KERENIDIS, DR Université Paris Diderot Directeur de thèse Anthony LEVERRIER, CR INRIA Examinateur Simon PERDRIX, CR Université de Lorraine Examinateur Abstract In QMA, the quantum generalization of the complexity class NP, a quantum state is provided as a proof of a mathematical statement, and this quantum proof can be verified by a quantum algorithm. This complexity class has a very natural complete problem, the Local Hamiltonian problem. Inspired by Condensed Matters Physics, this problem concerns the groundstate en- ergy of quantum systems. In this thesis, we study some problems related to QMA and to the Local Hamiltonian problem. First, we study the difference of power when classical or quantum proofs are provided to quantum verification algorithms. We propose an intermediate setting where the proof is a “simpler” quantum state, and we manage to prove that these simpler states are enough to solve all problems in QMA. From this result, we are able to present a new QMA-complete problem and we also study the one-sided error version of our new complexity class.
    [Show full text]
  • ICTS Programme on Quantum Information Processing 5 December 2007 to 4 January 2008
    Report on the ICTS Programme on Quantum Information Processing 5 December 2007 to 4 January 2008 Name of the programme: Quantum Information Processing Organisers: Jaikumar Radhakrishnan, School of Technology and Computer Science, TIFR, [email protected] Pranab Sen, School of Technology and Computer Science, TIFR, [email protected]. Duration: 5 December 2007 to 4 January 2008. Preamble: Quantum information processing is a thriving area of research that at- tempts to recast information processing in the quantum mechanical framework. Several remarkable recent works in this area have challenged our understand- ing of computation and shaken the foundations of well-established areas such as algorithms, complexity theory, and cryptography. Over the last decade, fol- lowing Peter Shor’s efficient quantum factoring algorithm (1994) and Grover’s quantum search algorithm (1996), several works have consolidated and gener- alised the insights obtained in these early works. In parallel, fundamental issues have been addressed in the area of quantum information theory, entanglement, quantum communication complexity, quantum cryptography etc. In 2002, TIFR organised a very successful successful event on a similar subject under the title Quantum Physics and Information Processing. Several developments have taken place in the area Quantum Information Pro- cessing in recent years. The purpose of the present program was to get the re- searchers in India, and TIFR in particular, acquainted with these developments. Structure of the program: The program was split between two locations: TIFR, Mum- bai, and India International Centre, New Delhi. We invited (to TIFR) experts who had made significant recent contributions, especially in areas where there is strong interest in TIFR, e.g.
    [Show full text]
  • Proceedings of Spie
    PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie Taking quantum entanglement out of the lab Paul C. Gow, James C. Gates, Rex H. S. Bannerman, Joshua Nunn, Matthew T. Posner, et al. Paul C. Gow, James C. Gates, Rex H. S. Bannerman, Joshua Nunn, Matthew T. Posner, Paolo L. Mennea, Peter G. R. Smith, "Taking quantum entanglement out of the lab," Proc. SPIE 10741, Optics Education and Outreach V, 107410M (14 September 2018); doi: 10.1117/12.2321079 Event: SPIE Optical Engineering + Applications, 2018, San Diego, California, United States Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 10/30/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use Taking quantum entanglement out of the lab Paul C. Gow*a, James C. Gatesa, Rex H.S. Bannermana, Joshua Nunnb, Matthew T. Posnera, Paolo L. Menneaa, and Peter G.R. Smitha aOptoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK bDepartment of Physics, University of Bath, Bath BA2 7AY , UK ABSTRACT The Networked Quantum Information Technologies hub (NQIT) is one of the quantum hubs of the UK's flagship scheme, bringing together academia, industry and government. The Optical Engineering and Quantum Pho- tonics group at the University of Southampton's Optoelectronics Research Centre have developed an interactive demonstrator of a key device within NQIT to bring quantum photonics technologies to a wider audience. The system was exhibited at the 2017 UK Quantum Showcase in London to an audience of industry and government. It also featured as part of the Quantum City stand at the 2018 Cheltenham science festival, one of the UK's leading annual science events.
    [Show full text]
  • The Commercial Prospects for Quantum Computing Issue 1, December 2016 Rupesh Srivastava, Iris Choi, Tim Cook NQIT User Engagement Team
    The Commercial Prospects for Quantum Computing Issue 1, December 2016 Rupesh Srivastava, Iris Choi, Tim Cook NQIT User Engagement Team Networked Quantum Information Technologies NQIT (Networked Quantum Information Technologies) is funded by the Engineering and Physical Sciences Research Council and is a part of the UK National Quantum Technologies Programme Authors: Rupesh Srivastava, Iris Choi, Tim Cook NQIT User Engagement Team Design & layout: Hannah Rowlands, based on a design by Hunts If you have relevant information that should be added to this report, or suggested corrections to its content, please contact the authors so we can include them in future editions: [email protected] 2 Table of Contents 1: Overview of Quantum Computing 4 1.1 Quantum Computing – from the unthinkable to the inevitable 4 2: Current Commercial Activity 6 2.1 Commercial Investment 6 2.2 Open Source Activity 12 2.3 Patent Activity 14 3: Market Status 17 3.1 Introduction 17 3.2 Established Firms in the Quantum Computing Space 19 3.3 Strategic Partnerships and Initiatives 19 3.4 The Road Ahead 20 4: Research Status 21 5: Public Perceptions 25 5.1 Quantum Confusion 25 5.2 Unrealistic Expectations about Quantum Computing 26 5.3 Breaking Encryption 26 5.4 Responsible Innovation 27 6: Potential Market Segments 28 6.1 Health 28 6.2 Finance 30 6.3 Machine Learning 31 6.4 Simulation 32 6.5 Logistics 34 6.6 Software Verification & Validation 35 Appendix 36 Commercial Investment Timeline 36 Open Source Software 40 References 41 3 1: Overview of Quantum Computing 1.1 Quantum Computing – from the unthinkable to the inevitable With the promise of performing previously impossible computing tasks, quantum computing has gained substantial research momentum over the last decade in the race to realise the world’s first universal quantum computing machine.
    [Show full text]