Elham Kashefi
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Curriculum Vitae
Curriculum Vitae PERSONAL INFORMATION Name: Borivoje Dakić Date of birth: 30.10.1980 Nationality: Serbian URL: https://dakic.univie.ac.at/ EDUCATION 2011 PhD in Physics, Faculty of Physics, University of Vienna, Austria. PhD Supervisor: Prof. Časlav Brukner 2007 M.Sc. in Physics, Faculty of Physics, University of Belgrade, Serbia. M.Sc. Supervisor: Prof. Ivanka Milošević 2004 B.Sc. in Physics, Faculty of Physics, University of Belgrade, Serbia. M.Sc. Supervisor: Prof. Milan Damnjanović CURRENT POSITION 2019 – Assistant professor, Faculty of Physics, University of Vienna. PREVIOUS POSITIONS 2014 – 2018 Senior Postdoc, Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Vienna, Austria., 2013 – 2014 Academic Visitor, Department of Physics, University of Oxford, UK, 2013 – 2014 Research Fellow, Centre for Quantum Technologies, National University of Singapore, 2012 – 2013 Postdoctoral Researcher, Faculty of Physics, University of Vienna, Austria. FELLOWSHIPS 2013 – 2014 Wolfson College Visiting Scholar, University of Oxford, UK (Visiting Scholars are standardly selected from senior academics – normally those who have reached the equivalent of professor, associate professor or UK University Lecturer level), 2010 Harvard University Fellow, CoQuS Secondment Program supported by FWF (Austrian Science Foundation), 2007 – 2011 FWF Fellow (CoQuS Doctoral Program). SUPERVISION OF GRADUATE STUDENTS AND POSTDOCTORAL FELLOWS 2019 – Joshua Morris, PhD Student (University of Vienna, Austria), 2018 – Flavio del Santo, PhD Student (co-supervised, University of Vienna, Austria), 2019 – Sebastian Horvat, Master student (University of Zagreb, Croatia), 2015 – Aleksandra Dimić, PhD Student (University of Belgrade, Serbia), 2015 – 2017 Milan Radonjić, Postdoc (University of Vienna, Austria), 2015 – 2017 Flavio del Santo, Master student (IQOQI, Vienna, Austria). 1 TEACHING ACTIVITIES 2017 – Lecturer, Faculty of Physics, University of Vienna, Austria, 2016 – Visiting lecturer, Faculty of Physics, University of Belgrade, Serbia. -
Curriculum Vitae
Curriculum Vitae Vedran Dunjko [email protected] EDUCATION PhD in Physics 2010 { 2012 Heriot-Watt University, Edinburgh, UK. Supervisor: Prof. Dr. E. Andersson, Prof. Dr. G. S. Buller and Dr. E. Kashefi Postgraduate studies in Mathematics 2007 { 2010 University of Zagreb, Zagreb, Croatia Undergraduate and Master studies 1999 { 20071 in Mathematics and Computer Science University of Zagreb, Zagreb, Croatia ACADEMIC DEGREES PhD in Physics awarded 16 Nov 2012 Heriot-Watt University, Edinburgh, UK Master in Mathematics and Computer Science awarded 13 Sept 2007 University of Zagreb, Zagreb, Croatia (Dipl. -Ing. degree) Highest grade (5) achieved Final Exam and Graduation Dissertation EMPLOYMENT Assistant Professor (tenure track), LIACS & LION Leiden University 2018 { present Leiden, Netherlands Post-doctoral position at Max Planck Institute of Quantum Optics 2017 { 2018 Garching, Germany (Group Cirac) Post-doctoral position at Institute for Theoretical Physics 2013 { 2017 University of Innsbruck, Austria (Group Briegel) Research associate at the School of Informatics, 2012 { 2013 University of Edinburgh, UK Research assistant at the Division of Molecular Biology 2008 { 2015 Rud¯er Boˇskovi´cInstitute, Zagreb, Croatia 1My studies were protracted during the period of 1999-2008 as I had a second focus. I was a competing track and field athlete (multiple national finalist, 6-10 training sessions/week and co- coach for the horizontal and vertical jumps). In 2006 I also completed mandatory military service. My physics studies began in 2010. 1 FUNDING, FELLOWSHIPS, GRANTS NWO/NWA project \Quantum Inspire" Dec 2020 Google unrestricted Gift Jun 2020 Project \HybridQML" SurfSARA project funding Mar 2020 Project \Quantum Computing for Quantum Chemistry" EC H2020 project \NEASQC " Sept 2020 WP lead for machine learning and optimization Funding for two PhD students, 4 years Jul 2019 External industrial funding from Total Funding for post-doctoral researcher, 1 year Jul 2018 Quantum Software Consortium, internal call. -
Quantum Biology: Current Status and Opportunities
An international interdisciplinary workshop Quantum Biology: Current Status and Opportunities 17-18 September 2012 University of Surrey, UK Programme Our Sponsors BBSRC The Biotechnology and Biological Sciences Research Council (BBSRC) Is the UK’s principal public founder of basic and strategic research across the biosciences. Part of the BBSRC’s mission Is to promote public awareness and discussion about issues surrounding how bioscience research is conducted in the applications of research outcomes. www.bbsrc.ac.uk The Institute of Advanced Studies The Institute of Advanced Studies at the University of Surrey hosts small-scale, scientific and scholarly meetings of leading academics from all over the world to discuss specialist topics away from the pressure of everyday work. The events are multidisciplinary, bringing together scholars from different disciplines to share alternative perspectives on common problems. www.ias.surrey.ac.uk MILES (Models and Mathematics in Life and Social Sciences), University of Surrey MILES is a programme of events and funding opportunities to stimulate Surrey’s interdisciplinary research. MILES initiates and fosters projects that bring together academics from mathematics, engineering, computing and physical sciences with those from the life sciences, social sciences, arts, humanities and beyond. www.miles.surrey.ac.uk Quantum Biology: Current Status and Opportunities Introduction Sixty years ago, Erwin Schrödinger, one of the founding fathers of quantum mechanics, puzzled over one of deepest mysteries: what makes genes so durable that they can be passed down through hundreds of generations virtually unchanged? To provide an answer, Schrödinger looked towards the science that he helped to build. In his book, “What is Life?” (first published in 1944), he suggested that life was unique in that some of its properties are generated, not by the familiar statistical laws of classical science, but by the strange and counterintuitive rules of quantum mechanics. -
Blindness and Verification of Quantum Computation with One Pure Qubit
Blindness and Verification of Quantum Computation with One Pure Qubit Theodoros Kapourniotis1, Elham Kashefi1, and Animesh Datta2 1 School of Informatics, University of Edinburgh 10 Crichton Street, Edinburgh EH8 9AB, UK [email protected], [email protected] 2 Clarendon Laboratory, Department of Physics, University of Oxford, OX1 3PU, United Kingdom [email protected] Abstract While building a universal quantum computer remains challenging, devices of restricted power such as the so-called one pure qubit model have attracted considerable attention. An important step in the construction of these limited quantum computational devices is the understanding of whether the verification of the computation within these models could be also performed in the restricted scheme. Encoding via blindness (a cryptographic protocol for delegated computing) has proven successful for the verification of universal quantum computation with a restricted verifier. In this paper, we present the adaptation of this approach to the one pure qubit model, and present the first feasible scheme for the verification of delegated one pure qubit model of quantum computing. 1998 ACM Subject Classification Quantum computation theory, Cryptography, Model verifica- tion and validation Keywords and phrases Delegated Computing, Verification, Measurement-based Model Digital Object Identifier 10.4230/LIPIcs.TQC.2014.176 1 Introduction The physical realisation of quantum information processing requires the fulfilment of the five criteria collated by DiVincenzo [13]. While enormous progress had been made in realising them since, we are still some way from constructing a universal quantum computer. This raises the question whether quantum advantages in computation are possible without fulfilling one or more of DiVincenzo’s criteria. -
Annual Report 2019
Annual Report 2019 ANNUAL REPORT 2019 A synthetic diamond on a microwave transmission line illuminated by a green laser. Atom-sized crystal defects inside the diamond are used as microscopic heat machines to explore thermodynamics in the quantum regime/Jonas Becker Front cover: A micro-machined enclosure for a superconducting circuit for quantum computing, designed for scalability/Peter Spring CONTENTS Contents Foreword ................................................................................ 3 Applications & Software ................................................25 Secure Network Applications.......................................25 Introduction ......................................................................... 4 Quantum Enabled Applications ..................................25 Programme Structure ..................................................... 5 Quantum/Classical Emulation and Interfacing .......26 Achievements ................................................................... 6 NQIT Consortium ............................................................. 7 Wider Engagement ...........................................................29 UK Partners Map .............................................................. 8 Public Engagement .......................................................29 Industry and Strategic Partners ................................... 9 Responsible Research and Innovation ......................29 People .............................................................................. 10 Inter-Hub -
Quantum Correlations in Space-Time: Foundations and Applications
Quantum Correlations in Space-Time: Foundations and Applications Tian Zhang Somerville College University of Oxford A thesis submitted for the degree of Doctor of Philosophy Revised Version, 2020 Abstract The absolute/relative debate on the nature of space and time is ongoing for thousands of years. Here we attempt to investigate space and time from the information theoretic point of view to understand spatial and temporal correlations under the relative assumption. Correlations, as a measure of relationship between two quantities, do not distinguish space and time in classical probability theory; quantum correlations in space are well-studied but temporal correlations are not well understood. The thesis investigates quantum correlations in space-time, by treating temporal correlations equally in form as spatial correlations and unifying quantum correlations in space and time. In particular, we follow the pseudo- density matrix formalism in which quantum states in spacetime are properly defined by correlations from measurements. We first review classical correlations, quantum correlations in space and time, to motivate the pseudo-density matrix formalism in finite dimensions. Next we generalise the pseudo-density matrix formulation to continuous variables and general measurements. Specifically, we define Gaussian spacetime states by the first two statistical moments, and for general continuous variables spacetime states are defined via the Wigner function representation. We also define spacetime quantum states in position measurements and weak measurements for general measurement processes. Then we compare the pseudo-density matrix formalism with other spacetime formulations: indefinite causal structures, consistent his- tories, generalised non-local games, out-of-time-order correlation functions, and path integrals. -
4 December 2014 • No 5080 • Vol 145 Gazette
ThursdaY 4 december 2014 • No 5080 • Vol 145 Gazette Council and Main Lectures 180 Committees 172 Council of the University: Examinations and Boards 180 Changes in Regulations (a) University Sports Strategic Examinations for the Degree of Doctor of Subcommittee of the Education Philosophy Committee Examinations for the Degree of Master of (b) Regulations for Procedures Philosophy Concerning Fitness to Teach During the Course of the PGCE Examinations for the Degree of Master of Programme Science (c) Changes to regulations for the Professorship of Poetry Changes to Examination Regulations: Social Sciences Board Council of the University: Register of Congregation Colleges, Halls and Societies 182 Notices 175 obituaries: Keble consultative Notices: Merton Congregation Discussion on possible changes to Statute XII Review of Estates Services Advertisements 183 General Notices: Gazette distribution arrangements Notifications of Prizes, Teaching Excellence Awards 2014 Grants and Funding 185 Museum of the History of Science: Change to opening times Scholarships for study in Germany Appointments: bodleian libraries: colin Franklin Prize Humanities for book collecting mathematical, Physical and life Sciences bodleian libraries: Gordon duff Prize Medical Sciences Visiting Professorships: Notifications of Vacancies 186 mathematical, Physical and life Sciences university of oxford Musical and other Events: Colleges, Halls and Societies Botanic Garden external Vacancies Gazette distribution is changing: see notice on p176 for details (and how to secure -
Quantum Music Conference Programme.Pages
Међународна International интердисциплинарна Interdisciplinary конференција Conference КВАНТНА МУЗИКА QUANTUM MUSIC (И ИЗВАН ЊЕ) (AND BEYOND) МУЗИКА И НОВЕ ТЕХНОЛОГИЈЕ MUSIC AND NEW TECHNOLOGIES У 21. ВЕКУ IN THE 21st CENTURY Ministry of Culture and Information of the Republic of Serbia Ministry of Education, Science and Technological Development of the Republic of Serbia Међународна интердисциплинарна конференција КВАНТНА МУЗИКА (И ИЗВАН ЊЕ) МУЗИКА И НОВЕ ТЕХНОЛОГИЈЕ У 21. ВЕКУ Организатори: Музиколошки институт САНУ, Београд Центар за промоцију науке, Београд 21–22. март 2018. Српска академија наука и уметности, Београд International Interdisciplinary Conference QUANTUM MUSIC (AND BEYOND) MUSIC AND NEW TECHNOLOGIES IN THE 21st CENTURY Organisers: Institute of Musicology SASA, Belgrade Center for the Promotion of Science, Belgrade 21–22 March 2018 Serbian Academy of Sciences and Arts, Belgrade QUANTUM MUSIC Програмски одбор Председница Програмског одбора ИВАНА МЕДИЋ (Музиколошки институт САНУ, Београд) АЛЕКСАНДАР БРКИЋ (Институт за креативно и културно предузетништво, Голдсмитс, Универзитет у Лондону, Уједињено Краљевство) ВЛАТКО ВЕДРАЛ (Универзитет у Оксфорду, Уједињено Краљевство) ДРАГАН НОВКОВИЋ (Висока школа електротехнике и рачунарства струковних студија, Београд) ЕНДРУ ГАРНЕР (Центар за квантне технологије, Национални универзитет у Сингапуру) КАТАРИНА ТОМАШЕВИЋ (Музиколошки институт САНУ, Београд) КИМ ХЕЛВЕГ (Данска национална школа за извођачке уметности) КЈАРА МАРЛЕТО (Универзитет у Оксфорду, Уједињено Краљевство) КЛАУС МОЛМЕР -
Challenges for Quantum Computer Science & Simulation Workshop Report 1 October 2017
Challenges for Quantum Computer Science & Simulation Workshop Report 1 October 2017 Summary As developments in quantum computing hardware continue to gather pace worldwide, many research groups are focussing on the ultimate goal of engineering a universal large-scale quantum computer. Keeping pace with these developments and understanding the capabilities of quantum computers will require fundamentally rethinking ‘classical’ computer science, requiring research into new algorithms, programming languages and methodologies for error detection and correction. Recommendation 6 of the ‘Quantum Age’ report 2016 (Government Office for Science) states that: “The National Quantum Technologies Programme should work with the Alan Turing Institute, the Heilbronn Institute for Mathematical Research and wider academia to identify a set of example challenges which, if solved by a quantum computer or quantum simulator, would have important benefits to government, business and citizens.” In response to this, EPSRC held a workshop on “Challenges for Quantum Computer Science and Simulation” bringing together wider academia to discuss the role of quantum computing and simulation in addressing future opportunities and challenges in ICT. Background Steady improvements in information and communication technologies have been a fundamental driver of economic and social change since the 1950s. However, this assumption is now threated by a slowdown in the previously exponential growth in the computing capability (associated with ‘Moore’s law’) together with an exponential growth in data. Quantum computing provides a fundamentally different approach to processing information and has the potential to surpass conventional computers in searching large datasets, factoring large numbers and simulating chemical and biological systems. This raises the prospect of improvements to data analytics, drug development, logistics and materials design; new insight into biological systems; and wide-ranging security implications as common cryptographic approaches are made obsolete. -
Proquest Dissertations
Universite de Montreal Quantum nonlocality, cryptography and complexity par Anne Lise Broadbent Departement d'informatique et de recherche operationnelle Faculte des arts et des sciences These presentee a la faculte des etudes superieures et postdoctorales en vue de l'obtention du grade de Philosophic Doctor (Ph. D.) en informatique ^es^Cs Js „ sld s mars 2008 S^o, Oct>c. % ,"^K^ Gradei~»,f °s?<cs~* ( 3 3 *• m (c) Anne Lise Broadbent, 2008. Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington OttawaONK1A0N4 OttawaONK1A0N4 Canada Canada Your We Votre reference ISBN: 978-0-494-57756-1 Our file Notre reference ISBN: 978-0-494-57756-1 NOTICE: AVIS: The author has granted a non L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis Neither the thesis nor la these ni des extra its substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation. -
Visitor Notes: Jacob Biamonte
Visitor Notes: Jacob Biamonte Categorical Models of Quantum Information in the Simulation of Many-Body Systems CQT attracts both long and short term visitors from all over the world. Jacob Biamonte, a Research Fellow at the Uni- versity of Oxford and Lecturer in Physics at St Peter's College, explains the results of his two collaborative visits with several members of CQT staff, including Stephen Clark. Their work involved using higher mathematics to create a new theory of tensor network states and has numerous practical applications in the simulation of physical systems. It was quite the honour to be asked to contribute to CQT's physical systems by a connected network of components annual report by outlining my experience as a visitor. I called tensors. This approach has proven useful in at- agreed instantly and after a bit of thought, I came to real- tempts to simulate quantum systems for many reasons: ise that my CQT visits and a lot of what's happened since the most elementary perhaps being that many tensor are traced back to a single instant. networks require little memory storage. It struck me that the range of expressiveness of the existing mathemati- That instant: occurred when I was signing up for coffee in cal theory of tensor network states and the associated the common room of Wolfson College at the University graphical language would be broadened by elevating the of Oxford. A large part of the Oxford accounting system theory to a rigorous tool. At the same time, this ended up requires no electricity, and many of those spending time allowing us to expose hosts of internal algebraic struc- here sign for small expenditures often enough to see ture. -
Annual Report 2018
Annual Report 2018 The NQIT Entangler, developed by the University of Southampton / Paul Gow & Paolo Mennea Contributors Andru Gheorghiu Animesh Datta Chris Wade David Nadlinger Dominic O’Brien Evert Geurtsen Ezra Kassa Frances Sweeney Hannah Rowlands Ian Walmsley Iris Choi Jaewoo Joo Jason Smith Jonas Becker Nathan Walk Niel de Beaudrap Peter Leek Petros Wallden Philip Inglesant Rishi Deshmukh Rupesh Srivastava Simon Benjamin Weida Zhang Winfried Hensinger Xiao Yuan Editors Frances Sweeney Hannah Rowlands Rupesh Srivastava Design and Print Hunts Core Engineering Capabilities . 30 Contents Architecture Progress . 31 Qubits: quality vs . quantity . 33 Applications & Software . 34 Foreword . 1 Applications Introduction . 34 Introduction . 3 Secure Network Applications . 35 Year Three Achievements . 5 Networked Quantum Sensors . 35 Programme Structure . 6 Quantum Enabled Discovery . 36 The NQIT Consortium . 7 Quantum/Classical Emulation and Interfacing . 36 UK Partners Map . 8 Development of Quantum Applications . 38 Industry and Strategic Partners . 9 Quantum Optimisation and People . 10 Machine Learning . 39 NQIT Ecosystem . 12 How does quantum computing intersect Quantum Computing in a Global Context . 13 with machine learning? . 40 Science and Innovation Audit for Oxfordshire . 15 Wider Engagement . 41 Industry Engagement . 16 Responsible Research and Innovation . 41 NQIT Industry Day 2017 . 17 Public Engagement . 42 National Quantum An Evening of Quantum Discovery . 43 Technologies Showcase 2017 . 18 Quantum Photography Competition . 44 IBM Q Collaboration . 19 Walk-in Quantum Computer Installation . 45 Wireless Radio Frequency Inter-Hub Collaboration . 45 Feedthrough for Ion Traps with ColdQuanta . 20 Skills and Training . 46 Spinout Companies . 21 Oxford Quantum Circuits . 22 Future Plans . 47 Innovate UK: Commercialisation of Beecroft Building . 48 Quantum Technologies .