Download Introduction to LISP and Symbol Manipulation, Sharam
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bringing GNU Emacs to Native Code
Bringing GNU Emacs to Native Code Andrea Corallo Luca Nassi Nicola Manca [email protected] [email protected] [email protected] CNR-SPIN Genoa, Italy ABSTRACT such a long-standing project. Although this makes it didactic, some Emacs Lisp (Elisp) is the Lisp dialect used by the Emacs text editor limitations prevent the current implementation of Emacs Lisp to family. GNU Emacs can currently execute Elisp code either inter- be appealing for broader use. In this context, performance issues preted or byte-interpreted after it has been compiled to byte-code. represent the main bottleneck, which can be broken down in three In this work we discuss the implementation of an optimizing com- main sub-problems: piler approach for Elisp targeting native code. The native compiler • lack of true multi-threading support, employs the byte-compiler’s internal representation as input and • garbage collection speed, exploits libgccjit to achieve code generation using the GNU Com- • code execution speed. piler Collection (GCC) infrastructure. Generated executables are From now on we will focus on the last of these issues, which con- stored as binary files and can be loaded and unloaded dynamically. stitutes the topic of this work. Most of the functionality of the compiler is written in Elisp itself, The current implementation traditionally approaches the prob- including several optimization passes, paired with a C back-end lem of code execution speed in two ways: to interface with the GNU Emacs core and libgccjit. Though still a work in progress, our implementation is able to bootstrap a func- • Implementing a large number of performance-sensitive prim- tional Emacs and compile all lexically scoped Elisp files, including itive functions (also known as subr) in C. -
An Evaluation of Go and Clojure
An evaluation of Go and Clojure A thesis submitted in partial satisfaction of the requirements for the degree Bachelors of Science in Computer Science Fall 2010 Robert Stimpfling Department of Computer Science University of Colorado, Boulder Advisor: Kenneth M. Anderson, PhD Department of Computer Science University of Colorado, Boulder 1. Introduction Concurrent programming languages are not new, but they have been getting a lot of attention more recently due to their potential with multiple processors. Processors have gone from growing exponentially in terms of speed, to growing in terms of quantity. This means processes that are completely serial in execution will soon be seeing a plateau in performance gains since they can only rely on one processor. A popular approach to using these extra processors is to make programs multi-threaded. The threads can execute in parallel and use shared memory to speed up execution times. These multithreaded processes can significantly speed up performance, as long as the number of dependencies remains low. Amdahl‘s law states that these performance gains can only be relative to the amount of processing that can be parallelized [1]. However, the performance gains are significant enough to be looked into. These gains not only come from the processing being divvied up into sections that run in parallel, but from the inherent gains from sharing memory and data structures. Passing new threads a copy of a data structure can be demanding on the processor because it requires the processor to delve into memory and make an exact copy in a new location in memory. Indeed some studies have shown that the problem with optimizing concurrent threads is not in utilizing the processors optimally, but in the need for technical improvements in memory performance [2]. -
Programming with GNU Emacs Lisp
Programming with GNU Emacs Lisp William H. Mitchell (whm) Mitchell Software Engineering (.com) GNU Emacs Lisp Programming Slide 1 Copyright © 2001-2008 by William H. Mitchell GNU Emacs Lisp Programming Slide 2 Copyright © 2001-2008 by William H. Mitchell Emacs Lisp Introduction A little history GNU Emacs Lisp Programming Slide 3 Copyright © 2001-2008 by William H. Mitchell Introduction GNU Emacs is a full-featured text editor that contains a complete Lisp system. Emacs Lisp is used for a variety of things: • Complete applications such as mail and news readers, IM clients, calendars, games, and browsers of various sorts. • Improved interfaces for applications such as make, diff, FTP, shells, and debuggers. • Language-specific editing support. • Management of interaction with version control systems such as CVS, Perforce, SourceSafe, and StarTeam. • Implementation of Emacs itself—a substantial amount of Emacs is written in Emacs Lisp. And more... GNU Emacs Lisp Programming Slide 4 Copyright © 2001-2008 by William H. Mitchell A little history1 Lisp: John McCarthy is the father of Lisp. The name Lisp comes from LISt Processing Language. Initial ideas for Lisp were formulated in 1956-1958; some were implemented in FLPL (FORTRAN-based List Processing Language). The first Lisp implementation, for application to AI problems, took place 1958-1962 at MIT. There are many dialects of Lisp. Perhaps the most commonly used dialect is Common Lisp, which includes CLOS, the Common Lisp Object System. See http://www-formal.stanford.edu/jmc/history/lisp/lisp.html for some interesting details on the early history of Lisp. 1 Don't quote me! GNU Emacs Lisp Programming Slide 5 Copyright © 2001-2008 by William H. -
The Evolution of Lisp
1 The Evolution of Lisp Guy L. Steele Jr. Richard P. Gabriel Thinking Machines Corporation Lucid, Inc. 245 First Street 707 Laurel Street Cambridge, Massachusetts 02142 Menlo Park, California 94025 Phone: (617) 234-2860 Phone: (415) 329-8400 FAX: (617) 243-4444 FAX: (415) 329-8480 E-mail: [email protected] E-mail: [email protected] Abstract Lisp is the world’s greatest programming language—or so its proponents think. The structure of Lisp makes it easy to extend the language or even to implement entirely new dialects without starting from scratch. Overall, the evolution of Lisp has been guided more by institutional rivalry, one-upsmanship, and the glee born of technical cleverness that is characteristic of the “hacker culture” than by sober assessments of technical requirements. Nevertheless this process has eventually produced both an industrial- strength programming language, messy but powerful, and a technically pure dialect, small but powerful, that is suitable for use by programming-language theoreticians. We pick up where McCarthy’s paper in the first HOPL conference left off. We trace the development chronologically from the era of the PDP-6, through the heyday of Interlisp and MacLisp, past the ascension and decline of special purpose Lisp machines, to the present era of standardization activities. We then examine the technical evolution of a few representative language features, including both some notable successes and some notable failures, that illuminate design issues that distinguish Lisp from other programming languages. We also discuss the use of Lisp as a laboratory for designing other programming languages. We conclude with some reflections on the forces that have driven the evolution of Lisp. -
Allegro CL User Guide
Allegro CL User Guide Volume 1 (of 2) version 4.3 March, 1996 Copyright and other notices: This is revision 6 of this manual. This manual has Franz Inc. document number D-U-00-000-01-60320-1-6. Copyright 1985-1996 by Franz Inc. All rights reserved. No part of this pub- lication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means electronic, mechanical, by photocopying or recording, or otherwise, without the prior and explicit written permission of Franz incorpo- rated. Restricted rights legend: Use, duplication, and disclosure by the United States Government are subject to Restricted Rights for Commercial Software devel- oped at private expense as specified in DOD FAR 52.227-7013 (c) (1) (ii). Allegro CL and Allegro Composer are registered trademarks of Franz Inc. Allegro Common Windows, Allegro Presto, Allegro Runtime, and Allegro Matrix are trademarks of Franz inc. Unix is a trademark of AT&T. The Allegro CL software as provided may contain material copyright Xerox Corp. and the Open Systems Foundation. All such material is used and distrib- uted with permission. Other, uncopyrighted material originally developed at MIT and at CMU is also included. Appendix B is a reproduction of chapters 5 and 6 of The Art of the Metaobject Protocol by G. Kiczales, J. des Rivieres, and D. Bobrow. All this material is used with permission and we thank the authors and their publishers for letting us reproduce their material. Contents Volume 1 Preface 1 Introduction 1.1 The language 1-1 1.2 History 1-1 1.3 Format -
Remote Debugging and Reflection in Resource Constrained Devices Nikolaos Papoulias
Remote Debugging and Reflection in Resource Constrained Devices Nikolaos Papoulias To cite this version: Nikolaos Papoulias. Remote Debugging and Reflection in Resource Constrained Devices. Program- ming Languages [cs.PL]. Université des Sciences et Technologie de Lille - Lille I, 2013. English. tel-00932796 HAL Id: tel-00932796 https://tel.archives-ouvertes.fr/tel-00932796 Submitted on 17 Jan 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N° d’ordre : 41342 THESE présentée en vue d’obtenir le grade de DOCTEUR en Spécialité : informatique par Nikolaos Papoulias DOCTORAT DELIVRE CONJOINTEMENT PAR MINES DOUAI ET L’UNIVERSITE DE LILLE 1 Titre de la thèse : Remote Debugging and Reflection in Resource Constrained Devices Soutenue le 19/12/2013 à 10h devant le jury d’examen : Président Roel WUYTS (Professeur – Université de Leuven) Directeur de thèse Stéphane DUCASSE (Directeur de recherche – INRIA Lille) Rapporteur Marianne HUCHARD (Professeur – Université Montpellier 2) Rapporteur Alain PLANTEC (Maître-Conf-HDR – Université de Bretagne Occ.) Examinateur Serge STINCKWICH (Maître-Conf – Université de Caen) co-Encadrant Noury BOURAQADI (Maître-Assistant – Mines de Douai) co-Encadrant Marcus DENKER (Chargé de recherche – INRIA Lille) co-Encadrant Luc FABRESSE (Maître-Assistant – Mines de Douai) Laboratoire(s) d’accueil : Dépt. -
Lexical Scope and Function Closures +Closures.Rkt
CS 251 SpringFall 2019 2020 Principles of of Programming Programming Languages Languages λ Ben Wood Lexical Scope and Function Closures +closures.rkt https://cs.wellesley.edu/~cs251/s20/ Lexical Scope and Function Closures 1 Topics • Lexical vs dynamic scope • Closures implement lexical scope. • Design considerations: why lexical scope? • Relevant design dimensions Lexical Scope and Function Closures 2 A question of scope (warmup) (define x 1) (define f (lambda (y) (+ x y))) (define z (let ([x 2] [y 3]) (f (+ x y)))) What is the argument value passed to this function application? Lexical Scope and Function Closures 3 A question of scope (define x 1) (define f (lambda (y) (+ x y))) (define z (let ([x 2] [y 3]) (f (+ x y)))) What is the value of x when this function body is evaluated for this function application? Lexical Scope and Function Closures 4 A question of free variables A variable, x, is free in an expression, e, if x is referenced in e outside the scope of any binding of x within e. x is a free variable (define x 1) of the lambda expression. (define f (lambda (y) (+ x y))) (define z (let ([x 2] [y 3]) (f (+ x y)))) To what bindings do free variables of a function refer when the function is applied? Lexical Scope and Function Closures 5 Answer 1: lexical (static) scope A variable, x, is free in an expression, e, if x is referenced in e outside the scope of any binding of x within e. x is a free variable (define x 1) of the lambda expression. -
A Python Implementation for Racket
PyonR: A Python Implementation for Racket Pedro Alexandre Henriques Palma Ramos Thesis to obtain the Master of Science Degree in Information Systems and Computer Engineering Supervisor: António Paulo Teles de Menezes Correia Leitão Examination Committee Chairperson: Prof. Dr. José Manuel da Costa Alves Marques Supervisor: Prof. Dr. António Paulo Teles de Menezes Correia Leitão Member of the Committee: Prof. Dr. João Coelho Garcia October 2014 ii Agradecimentos Agradec¸o... Em primeiro lugar ao Prof. Antonio´ Leitao,˜ por me ter dado a oportunidade de participar no projecto Rosetta com esta tese de mestrado, por todos os sabios´ conselhos e pelos momentos de discussao˜ e elucidac¸ao˜ que se proporcionaram ao longo deste trabalho. Aos meus pais excepcionais e a` minha mana preferida, por me terem aturado e suportado ao longo destes quase 23 anos e sobretudo pelo incondicional apoio durante estes 5 anos de formac¸ao˜ superior. Ao pessoal do Grupo de Arquitectura e Computac¸ao˜ (Hugo Correia, Sara Proenc¸a, Francisco Freire, Pedro Alfaiate, Bruno Ferreira, Guilherme Ferreira, Inesˆ Caetano e Carmo Cardoso), por todas as sug- estoes˜ e pelo inestimavel´ feedback em artigos e apresentac¸oes.˜ Aos amigos em Tomar (Rodrigo Carrao,˜ Hugo Matos, Andre´ Marques e Rui Santos) e em Lisboa (Diogo da Silva, Nuno Silva, Pedro Engana, Kaguedes, Clara Paiva e Odemira), por terem estado pre- sentes, duma forma ou doutra, nos essenciais momentos de lazer. A` Fundac¸ao˜ para a Cienciaˆ e Tecnologia (FCT) e ao INESC-ID pelo financiamento e acolhimento atraves´ da atribuic¸ao˜ de uma bolsa de investigac¸ao˜ no ambitoˆ dos contratos Pest-OE/EEI/LA0021/2013 e PTDC/ATP-AQI/5224/2012. -
An Extensible Constraint-Enabled Window Manager
Scwm: An Extensible Constraint-Enabled Window Manager Greg J. Badros Jeffrey Nichols Alan Borning gjb,jwnichls,borning @cs.washington.edu f Dept. of Computer Scienceg and Engineering University of Washington, Box 352350 Seattle, WA 98195-2350, USA Abstract powerful, and satisfying. We desired a platform for researching advanced Using C to implement a highly-interactive applica- window layout paradigms including the use of con- tion also complicates extensibility and customiz- straints. Typical window management systems ability. To add a new feature, the user likely must are written entirely in C or C++, complicating write C code, recompile, relink, and restart the extensibility and programmability. Because no ex- application before changes are finally available for isting window manager was well-suited to our goal, testing and use. This development cycle is es- we developed the Scwm window manager. In pecially problematic for software such as a win- Scwm, only the core window-management primi- dow manager that generally is expected to run for tives are written in C while the rest of the pack- weeks at a time. Additionally, maintaining all the age is implemented in its Guile/Scheme exten- features that any user desires would result in ter- sion language. This architecture, first seen in rible code bloat. Emacs, enables programming substantial new fea- tures in Scheme and provides a solid infrastructure An increasingly popular solution to these prob- for constraint-based window layout research and lems is the use of a scripting language on top of other advanced capabilities such as voice recogni- a core system that defines new domain-specific tion. -
Basic Lisp Techniques
Basic Lisp Techniques David J. Cooper, Jr. February 14, 2011 ii 0Copyright c 2011, Franz Inc. and David J. Cooper, Jr. Foreword1 Computers, and the software applications that power them, permeate every facet of our daily lives. From groceries to airline reservations to dental appointments, our reliance on technology is all-encompassing. And, it’s not enough. Every day, our expectations of technology and software increase: • smart appliances that can be controlled via the internet • better search engines that generate information we actually want • voice-activated laptops • cars that know exactly where to go The list is endless. Unfortunately, there is not an endless supply of programmers and developers to satisfy our insatiable appetites for new features and gadgets. Every day, hundreds of magazine and on-line articles focus on the time and people resources needed to support future technological expectations. Further, the days of unlimited funding are over. Investors want to see results, fast. Common Lisp (CL) is one of the few languages and development options that can meet these challenges. Powerful, flexible, changeable on the fly — increasingly, CL is playing a leading role in areas with complex problem-solving demands. Engineers in the fields of bioinformatics, scheduling, data mining, document management, B2B, and E-commerce have all turned to CL to complete their applications on time and within budget. CL, however, no longer just appropriate for the most complex problems. Applications of modest complexity, but with demanding needs for fast development cycles and customization, are also ideal candidates for CL. Other languages have tried to mimic CL, with limited success. -
CLX — Common LISP X Interface
CLX Common LISP X Interface 1988, 1989 Texas Instruments Incorporated Permission is granted to any individual or institution to use, copy, modify and distribute this document, provided that this complete copyright and permission notice is maintained, intact, in all copies and supporting documentation. Texas Instruments Incorporated makes no representations about the suitability of this document or the software described herein for any purpose. It is provided ”as is” without express or implied warranty. CLX Programmer’s Reference i ACKNOWLEDGMENTS Primary Interface Author: Robert W. Scheifler MIT Laboratory for Computer Science 545 Technology Square, Room 418 Cambridge, MA 02139 [email protected] Primary Implementation Author: LaMott Oren Texas Instruments PO Box 655474, MS 238 Dallas, TX 75265 [email protected] Design Contributors: Dan Cerys, BBN Scott Fahlman, CMU Kerry Kimbrough, Texas Instruments Chris Lindblad, MIT Rob MacLachlan, CMU Mike McMahon, Symbolics David Moon, Symbolics LaMott Oren, Texas Instruments Daniel Weinreb, Symbolics John Wroclawski, MIT Richard Zippel, Symbolics Documentation Contributors: Keith Cessna, Texas Instruments Kerry Kimbrough, Texas Instruments Mike Myjak LaMott Oren, Texas Instruments Dan Stenger, Texas Instruments The X Window System is a trademark of MIT. UNIX is a trademark of AT&T Bell Laboratories. ULTRIX, ULTRIX–32, ULTRIX–32m, ULTRIX–32w, and VAX/VMS are trademarks of Digital Equipment Corporation. ii CLX Programmer’s Reference CONTENTS Section Title 1 INTRODUCTION TO CLX 2 DISPLAYS 3 SCREENS 4 WINDOWS AND PIXMAPS 5 GRAPHICS CONTEXTS 6 GRAPHIC OPERATIONS 7 IMAGES 8 FONTS AND CHARACTERS 9 COLORS 10 CURSORS 11 ATOMS, PROPERTIES, AND SELECTIONS 12 EVENTS AND INPUT 13 RESOURCES 14 CONTROL FUNCTIONS 15 EXTENSIONS 16 ERRORS A PROTOCOL VS. -
Sexual Abuse at St. George's School and the School's Response: 1970 to 2015
Sexual Abuse at St. George’s School and the School’s Response: 1970 to 2015 REPORT OF INDEPENDENT INVESTIGATOR MARTIN F. MURPHY, FOLEY HOAG LLP September 1, 2016 REPORT OF INDEPENDENT INVESTIGATOR MARTIN F. MURPHY, FOLEY HOAG LLP TABLE OF CONTENTS Preface ..................................................................................................................................... 1 Summary of Findings ................................................................................................................ 3 Two St. George’s ..................................................................................................................................... 3 Faculty and Staff Abusers in the 1970s and 1980s: A Brief Summary ........................................................ 4 William Lydgate............................................................................................................................................. 4 Timothy Tefft ................................................................................................................................................. 4 Rev. Howard White........................................................................................................................................ 4 Alphonse “Al” Gibbs ...................................................................................................................................... 5 Franklin Coleman .........................................................................................................................................