The David Rockefeller Graduate Program 2011-2012 the David Rockefeller Graduate Program 2011-2012
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Looking at Earth: an Astronaut's Journey Induction Ceremony 2017
american academy of arts & sciences winter 2018 www.amacad.org Bulletin vol. lxxi, no. 2 Induction Ceremony 2017 Class Speakers: Jane Mayer, Ursula Burns, James P. Allison, Heather K. Gerken, and Gerald Chan Annual David M. Rubenstein Lecture Looking at Earth: An Astronaut’s Journey David M. Rubenstein and Kathryn D. Sullivan ALSO: How Are Humans Different from Other Great Apes?–Ajit Varki, Pascal Gagneux, and Fred H. Gage Advancing Higher Education in America–Monica Lozano, Robert J. Birgeneau, Bob Jacobsen, and Michael S. McPherson Redistricting and Representation–Patti B. Saris, Gary King, Jamal Greene, and Moon Duchin noteworthy Select Prizes and Andrea Bertozzi (University of James R. Downing (St. Jude Chil- Barbara Grosz (Harvard Univer- California, Los Angeles) was se- dren’s Research Hospital) was sity) is the recipient of the Life- Awards to Members lected as a 2017 Simons Investi- awarded the 2017 E. Donnall time Achievement Award of the gator by the Simons Foundation. Thomas Lecture and Prize by the Association for Computational American Society of Hematology. Linguistics. Nobel Prize in Chemistry, Clara D. Bloomfield (Ohio State 2017 University) is the recipient of the Carol Dweck (Stanford Univer- Christopher Hacon (University 2017 Robert A. Kyle Award for sity) was awarded the inaugural of Utah) was awarded the Break- Joachim Frank (Columbia Univer- Outstanding Clinician-Scientist, Yidan Prize. through Prize in Mathematics. sity) presented by the Mayo Clinic Di- vision of Hematology. Felton Earls (Harvard Univer- Naomi Halas (Rice University) sity) is the recipient of the 2018 was awarded the 2018 Julius Ed- Nobel Prize in Economic Emmanuel J. -
2011 Annual Report
Memorial Sloan-Kettering Cancer Center 2011 Annual Report 10 steps closer 10 steps closer Letter from the Chairman and the President 1 1 | First effective treatments for advanced melanoma 5 2 Genomic analysis offers clues to most common | type of ovarian cancer 7 3 Breast cancer surgery: practice-changing | findings for some patients 9 4 New drugs offer survival benefit for men | with metastatic prostate cancer 11 5 | Insights into DNA damage and repair 13 6 Novel stem cell technique shows promise | in treating disease 15 7 Combination therapy may prevent spread | of nasopharyngeal tumors 17 8 Algorithm can predict shape of proteins, | speeding basic cancer research 19 9 Two of 2011’s top five advances in cancer | research led by MSKCC physician-scientists 21 10 | The Josie Robertson Surgery Center 23 The Campaign for Memorial Sloan-Kettering 25 Statistical Profile 27 Financial Summary 29 Boards of Overseers and Managers 31 www.mskcc.org/annualreport Letter from the Chairman and the President The year 2011 was a strong one at Memorial Sloan-Kettering. We continued to lead across “Our success as an institution is due in the spectrum of patient care, research, and training, and laid the groundwork for important progress in the years ahead. great measure to our remarkable staff… We want to begin by saying that our success as an institution is due in great measure to our remarkable staff. On a daily basis, we are inspired by their dedication and compassion, and We are inspired by their dedication Douglas A. Warner III are grateful for the work they do in the service of our patients and our mission. -
Faster Growth with Shorter Antigens Explains a VSG Hierarchy During African Trypanosome Infections: a Feint Attack by Parasites
bioRxiv preprint doi: https://doi.org/10.1101/131029; this version posted April 26, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Faster growth with shorter antigens explains a VSG hierarchy during African trypanosome infections: a feint attack by parasites Dianbo Liu1, Luca Albergante1,2, David Horn1,*, Timothy Newman1,* 1School of Life Sciences, University of Dundee, Dundee, UK 2U900, Institut Curie, 75005, France *These authors contributed equally Correspondence to [email protected] and [email protected] Abstract The parasitic African trypanosome, Trypanosoma brucei, evades the adaptive host immune response by a process of antigenic variation that involves the clonal switching of variant surface glycoproteins (VSGs). The VSGs that periodically come to dominate in vivo display a hierarchy, but how this hierarchy arises is not well-understood. Combining publicly available genetic data with mathematical modelling, we report a VSG-length-dependent hierarchical timing of clonal VSG dominance in a mouse model, revealing an inverse correlation between VSG length and trypanosome growth-rate. Our analysis indicates that, among parasites switching to new VSGs, those expressing shorter VSGs preferentially accumulate to a detectable level that is sufficient to trigger an effective immune response. Subsequent elimination of faster-growing parasites then allows slower parasites with longer VSGs to accumulate. This interaction between the host and parasite is able by itself to explain the temporal distribution of VSGs observed in vivo. -
Resubmission JBC Frescas and De Lange
Cell Biology: Binding of TPP1 Protein to TIN2 Protein Is Required for POT1a,b Protein-mediated Telomere Protection David Frescas and Titia de Lange J. Biol. Chem. 2014, 289:24180-24187. doi: 10.1074/jbc.M114.592592 originally published online July 23, 2014 Downloaded from Access the most updated version of this article at doi: 10.1074/jbc.M114.592592 http://www.jbc.org/ Find articles, minireviews, Reflections and Classics on similar topics on the JBC Affinity Sites. Alerts: • When this article is cited • When a correction for this article is posted at Rockefeller University Library on August 31, 2014 Click here to choose from all of JBC's e-mail alerts This article cites 29 references, 13 of which can be accessed free at http://www.jbc.org/content/289/35/24180.full.html#ref-list-1 THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 289, NO. 35, pp. 24180–24187, August 29, 2014 © 2014 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A. Binding of TPP1 Protein to TIN2 Protein Is Required for POT1a,b Protein-mediated Telomere Protection* Received for publication, June 30, 2014, and in revised form, July 22, 2014 Published, JBC Papers in Press, July 23, 2014, DOI 10.1074/jbc.M114.592592 David Frescas and Titia de Lange1 From the Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10065 Background: Chromosome ends require the TPP1/POT1 heterodimers for protection. Results: A TIN2 mutant that fails to bind TPP1 resulted in phenotypes associated with TPP1/POT1 deletion. -
Analysis of Activation Induced Cytidine Deaminase Using Atomic Force Microscopy by C David J
Analysis of Activation Induced Cytidine Deaminase using Atomic Force Microscopy by c David J. G. Gale A dissertation submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Master of Science Department of Chemistry Memorial University of Newfoundland April 2021 St. John’s Newfoundland Abstract Activation induced cytidine deaminase (AID) plays a large part within the pathway of immunoresponse. It does so by inserting mutations, during DNA replication, in B cells (immune system cells). This results in a more diverse set of antibodies in each subsequent generation. However, mutations that cause infinite replication with no cellular apoptosis, can lead to cancer. AID has been implicated in cancers which appear independent of the expected environmental causes, such as smoking or UV exposure. The method for AID mutations involves binding to single-strand DNA. Using Atomic Force Microscopy (AFM) we obtained both the geometry or topology, as well as the nanomechanical information about this mutation process and AID. In this thesis, I present the first AFM images of AID, showing direct structural information about the protein. Although the measurements are done in vitro, physiological con- ditions have been approximated in order to get an accurate analysis of the protein system. To allow imaging in buffer, suitable substrates were tested and identified which would bind the protein sufficiently in this high ionic strength environment. Optimized plating and scan conditions for AID in both wet and dry conditions are described, which allow high resolution imaging to be performed that is not often seen in biological systems. Through the many scans and procedural changes it was estab- lished that although difficult it is possible to gain an image of AID through the use ii of AFM. -
Schedule of C Ourses
2020–2021 Schedule of Courses Schedule The David Rockefeller Graduate Program offers a multiple sclerosis); perception, cognition, and memory (autism, schizophrenia, and Alzheimer’s disease); consciousness (coma selection of courses, many of which students can and persistent vegetative state); mood (depression and anxiety); choose based on their interests and area of thesis motivation (addiction); sensation (pain); motor control (Parkinson’s research. Organized by Rockefeller faculty, and taught disease and ataxia); and trauma (brain or spinal cord injury and stroke). by scientists at the top of their fields, both from within Class length and frequency: Two-hour session, once weekly and outside of the university, these courses provide a Method of evaluation: Attendance, participation in the discussions, stimulating and dynamic curriculum that students can student presentations, and a final speculative paper relating a tailor to fit their personal goals, in consultation with disordered trait to a specific brain circuit the dean of graduate studies. Cell Biology SANFORD M. SIMON and SHAI SHAHAM Biochemical and Biophysical Methods, I & II This advanced course covering major topics in modern cell biology is GREGORY M. ALUSHIN, SETH A. DARST, SHIXIN LIU, and MICHAEL P. ROUT taught by faculty and visitors who are specialists in various disciplines. This course presents the fundamental principles of biochemistry Class length and frequency: Three-hour lecture, once weekly; and biophysics, with an emphasis on methodologies. In addition, two-hour discussion, twice weekly case studies are discussed, examining how physical and chemical methods have been used to establish the molecular mechanisms Prerequisite(s): Good knowledge of textbook cell biology of fundamental biological processes. -
2020– 2024 Strategic Plan
2020-2024 STRATEGIC PLAN Amy Shyer, head of the Laboratory of Morphogenesis, studies the mechanical forces and molecular A new plan is intended to cues that guide tissue formation maximize the university’s in a developing embryo. She was scientific impact over the recruited to Rockefeller in 2018. next five years A five-year strategic plan for the university, developed in 2019, sets Investing in the most audacious and a course for new investments in faculty recruitment, technological original scientists in the world acquisitions, translational efforts, and other priorities between 2020 and 2024. The plan, titled “The Convergence of Science and Medicine,” The plan calls for maintaining the open-search process that has was approved by the Board of Trustees at its November 6 meeting. driven tenure-track faculty recruitment over the past decade. A The plan’s development was overseen by President Richard P. Lifton, second key goal is the appointment of new mid-career faculty in two who led a committee of faculty members and administrators through areas: computational biology and neurodegenerative disease. The a review of Rockefeller’s strengths, operations, and aspirations. The pace of hiring will be consistent with past practice: one to two new convergence of basic science, clinical medicine, and therapeutic heads of laboratory per year, maintaining the number of heads of discovery has set the stage for exceptional advances, says Lifton, laboratory at around 75. The plan also underscores the university’s and the plan will build on the technological breakthroughs of the last continued commitment to the recruitment of exceptional graduate decade to lead a new revolution in the development of novel medicine. -
A Model for Interclonal Competition in the Germinal Center: Dynamic Selection Processes By-Pass the Affinity Dead-End of Low Affinity Anti-NP Specific B Cells
A model for interclonal competition in the germinal center: Dynamic selection processes by-pass the affinity dead-end of low affinity anti-NP specific B cells Der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades Dr. rer nat. vorgelegt von Andreas Acs aus Timisoara Als Dissertation genehmigt von der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: 15. Februar 2019 Vorsitzender des Promotionsorgans: Prof. Dr. Georg Kreimer Gutachter/in: Prof. Dr. Thomas Winkler PD Dr. rer. nat. Dr. habil. med. Dirk Mielenz Table of contents Table of contents 1 Zusammenfassung ............................................................................................................ 1 1 Summary ............................................................................................................................ 2 2 Introduction ....................................................................................................................... 3 2.1 B cell development ........................................................................................................ 3 2.1.1 Stages of B cell development are defined by recombination events of the B cell receptor in the bone marrow ........................................................................................... 3 2.12 GOD – Generation of diversity ................................................................................ 4 2.1.3 Migration of B -
A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family
Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2018 A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family Linda Molla Follow this and additional works at: https://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy by Linda Molla June 2018 © Copyright by Linda Molla 2018 A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY Linda Molla, Ph.D. The Rockefeller University 2018 APOBEC2 is a member of the AID/APOBEC cytidine deaminase family of proteins. Unlike most of AID/APOBEC, however, APOBEC2’s function remains elusive. Previous research has implicated APOBEC2 in diverse organisms and cellular processes such as muscle biology (in Mus musculus), regeneration (in Danio rerio), and development (in Xenopus laevis). APOBEC2 has also been implicated in cancer. However the enzymatic activity, substrate or physiological target(s) of APOBEC2 are unknown. For this thesis, I have combined Next Generation Sequencing (NGS) techniques with state-of-the-art molecular biology to determine the physiological targets of APOBEC2. Using a cell culture muscle differentiation system, and RNA sequencing (RNA-Seq) by polyA capture, I demonstrated that unlike the AID/APOBEC family member APOBEC1, APOBEC2 is not an RNA editor. Using the same system combined with enhanced Reduced Representation Bisulfite Sequencing (eRRBS) analyses I showed that, unlike the AID/APOBEC family member AID, APOBEC2 does not act as a 5-methyl-C deaminase. -
TELOMERE EXTENSION USING MODIFIED TERT Mrna TO
TELOMERE EXTENSION USING MODIFIED TERT mRNA TO LENGTHEN HEALTHSPAN A DISSERTATION SUBMITTED TO THE NEUROSCIENCES PROGRAM AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY John Ramunas May 2014 © 2014 by John Ramunas. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/vb798wq6556 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Helen Blau, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Michael Longaker I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Juan Santiago I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Robert Sapolsky Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost for Graduate Education This signature page was generated electronically upon submission of this dissertation in electronic format. An original signed hard copy of the signature page is on file in University Archives. -
Dissertation Published Version
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2018 Biochemical and regulatory aspects of DNA double-strand break repair Godau, Julia Eileen Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-170542 Dissertation Published Version Originally published at: Godau, Julia Eileen. Biochemical and regulatory aspects of DNA double-strand break repair. 2018, University of Zurich, Faculty of Science. Biochemical and Regulatory Aspects of DNA Double-Strand Break Repair Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Julia Eileen Godau aus Deutschland Promotionskommission Prof. Dr. Alessandro A. Sartori (Vorsitz und Leitung der Dissertation) Prof. Dr. Joao Matos PD. Dr. Pavel Janscak Prof. Dr. Matthias Altmeyer Zürich, 2018 Contents Abbreviations v Summary vii Zusammenfassung ix 1 Introduction 1 1.1 Genome instability - A hallmark of cancer . 1 1.2 DNA damage response . 2 1.3 DNA repair . 3 1.3.1 DSB repair . 4 1.3.2 Meiotic recombination . 6 1.3.3 Fanconi anemia pathway of ICL repair . 7 1.4 Post-translational modifications . 10 1.5 CtIP . 11 1.5.1 Sae2/Ctp1/CtIP protein family . 11 1.5.2 CtIP promotes DNA-end resection . 13 1.5.3 Regulation of CtIP by PTMs . 15 1.5.4 CtIP and its connection to cancer development and therapy . 18 1.6 SLX4 - A nuclease scaffold . 19 1.7 PIN1 . 22 1.7.1 PIN1 - A molecular switch regulating diverse pathways . -
GEOFFREY BEENE CANCER RESEARCH CENTER 10 Year Report, 2007–2017
GEOFFREY BEENE CANCER RESEARCH CENTER 10 Year Report, 2007–2017 10 YEAR REPORT | 2007–2017 2 COVER IMAGES, CLOCKWISE FROM TOP LEFT: Tumor- and stromal cell-derived cathepsin S expression in primary breast cancer. Shown here is an immunofluorescence image of a human breast cancer specimen stained for the cysteine protease cathepsin S in red, and tumor cells in green. Cathepsin S expression, which is typically associated with immune cells such as macrophages, is expressed in a subset of breast carcinoma cells, and may endow them with the ability to metastasize to the brain The Iacobuzio lab and Kellan Lutz, an ambassador for the Geoffrey Beene Foundation Epifluorescent imaging of transparent casper zebrafish transplanted with the human-derived PC3 prostate cancer cell line exhibits dissemination solely to the spinal column Epifluorescent imaging of transparent casper zebrafish transplanted with the zebrafish- derived ZMEL1 melanoma cell line exhibits widely disseminated tumors to the skin, eyes, muscles, and brain. Image by Isabella Kim of the White lab Ping Chi and lab members Confocal microscopy shows that the nucleolar structure of hematopoietic stem cells is altered with Stag2 loss of function. Image by Aaron Viny of the Levine lab Scott Lowe and lab member 3 GEOFFREY BEENE CANCER RESEARCH CENTER CONTENTS Welcome . .2 Supporting Innovation through the Years . 5. Milestones . 6 Highlights of Breakthrough Projects . 8 Retreats and Special Conferences . 14. Supporting Novel Research . .16 Faculty . 18. Graduate Students . .19 Q&A with Barry Taylor . .19 Financial Statistics . 20 Research Grants . 21 Publications . 38 Shown are intestinal organoids derived from transgenic shRen mice in which renilla luciferase is suppressed by doxycycline .