Oribatida, Cosmochthoniidae), with a New Subgenus and Species of Cosmochthonius and One New Species of Phyllozetes J

Total Page:16

File Type:pdf, Size:1020Kb

Oribatida, Cosmochthoniidae), with a New Subgenus and Species of Cosmochthonius and One New Species of Phyllozetes J Two new arthronotic mites from the South of Spain (Oribatida, Cosmochthoniidae), with a new subgenus and species of Cosmochthonius and one new species of Phyllozetes J. Jorrin To cite this version: J. Jorrin. Two new arthronotic mites from the South of Spain (Oribatida, Cosmochthoniidae), with a new subgenus and species of Cosmochthonius and one new species of Phyllozetes. Acarologia, Acarologia, 2014, 54 (2), pp.183-191. 10.1051/acarologia/20142126. hal-01565276 HAL Id: hal-01565276 https://hal.archives-ouvertes.fr/hal-01565276 Submitted on 19 Jul 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License ACAROLOGIA A quarterly journal of acarology, since 1959 Publishing on all aspects of the Acari All information: http://www1.montpellier.inra.fr/CBGP/acarologia/ [email protected] Acarologia is proudly non-profit, with no page charges and free open access Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari. Subscriptions: Year 2017 (Volume 57): 380 € http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php Previous volumes (2010-2015): 250 € / year (4 issues) Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01) Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited. Acarologia 54(2): 183–191 (2014) DOI: 10.1051/acarologia/20142126 TWO NEW ARTHRONOTIC MITES FROM THE SOUTH OF SPAIN (ORIBATIDA, COSMOCHTHONIIDAE), WITH A NEW SUBGENUS AND SPECIES OF COSMOCHTHONIUS AND ONE NEW SPECIES OF PHYLLOZETES Juan JORRIN (Received 06 November 2013; accepted 08 January 2014; published online 30 June 2014) Entomology Laboratory, IFAPA Center Alameda del Obispo; Avda. Menéndez Pidal s/n, 14080-Córdoba, Spain. [email protected] ABSTRACT — This work describes two new species of cosmochthoniids, including a new subgenus, originating from an olive grove in the South of the Iberian Peninsula: Cosmochthonius (Nortonchthonius) oblongisetosus n. subgen. and n. sp. and Phyllozetes subiasi n. sp. Within the genus Cosmochthonius, the original and substantial modification of some posterior hysterosomal setae characterizes the new subgenus C. (Nortonchthonius). Within Phyllozetes, the erectile setae with strong dorsal and marginal spines are the specific character of P. subiasi n. sp. KEYWORDS — Oribatida; Cosmochthoniidae; new subgenus; new species; Iberian Peninsula INTRODUCTION (Sellnick, 1928; Van der Hammen, 1959; Wallwork, 1960; Gordeeva, 1980; Lee, 1982; Ayyildiz and Lux- Michael (1885, p. 396, figure 11) described ton, 1990), and with two pairs of setae linked to Hypochthonius lanatus as follows: "the segments are the first notogastral furrow (Willmann, 1931: Fig- capable of a certain amount of telescopic extension ure 28) and with four setae in segment, accord- and retraction, and in connection with this, it has ing with the dorsonotal chaetotaxy of the family a power of erecting the spines on its back (which (Grandjean, 1947). Grandjean (1947: p. 224, fig- are usually horizontal) as a porcupine does". Pre- ure 1C) includes within the family the oribatids of viously he remarks on "the division of the noto- his major group Enarthronota, with four notogas- gaster into four segments". Michael represents the tral segments and with type-E scissures like in Hap- habitus as monodactyl, and with four pairs of se- lochthonius Willmann, or the more differentiated tae on the second abdominal row. Subsequently, type-S with intercalary sclerites that carry the erec- Michael defines the generic dactylism: "The claws tile setae like in Cosmochthonius plus Heterochthonius are monodactyl in all known species (Michael, 1888: (Berlese 1910). In 1953, Grandjean considering the p. 532)". In 1910, Berlese (p. 221) created Cos- heterogeneity of the family, separated Heterochtho- mochthonius from Michael’s type and includes in nius and subsequently, Van der Hammen (1959) had the subgenus C. (Cosmochthonius) his new species excluded the species with the Haplochthonius type. Cosmochthonius plumatus and Cosmochthonius em- Hammer (1961) creates Trichthonius type species mae. The genus is recognized as polydactylous http://www1.montpellier.inra.fr/CBGP/acarologia/ 183 ISSN 0044-586-X (print). ISSN 2107-7207 (electronic) Jorrin J. Cosmochthonius pulcherrimus, that exhibits the first Spain there are 14/33 of the total species of Cos- weak and incomplete notogastral furrow, distinct mochthonius with 5 endemics, 3/8 from Phyllozetes from the original type of Grandjean. Gordeeva and 1/2 from Krivolutskiella. (1980) includes in the family the genera Trichthonius, This descriptive work is part of a study begun Phyllozetes Gordeeva, 1978 type species Phyllozetes in 2012 on the oribatids diversity associated with emmae (Berlese, 1910) and the new genera Krivo- the olive grove in a middle mountain habitat, in a lutskiella, Nipponiella and Gozmanyina Balogh and transitional zone between the Subbetic Mountains Mahunka, 1983 (sin. Marshallia Gordeeva, 1980). In and the Guadalquivir River Valley (Southern of the Gordeeva’s key, the family was divided into two Iberian Peninsule). morphological groups: i) the Cosmochthonius type polydactyl group with Phyllozetes and Krivolutskiella and ii) the monodactyl group with three Trichtho- MATERIALS AND METHODS nius type notogastral segments with Nipponiella and The samples were taken on May 23rd 2012, from Gozmanyina. This author also indicates that the scle- a limo-calcareous soil with xeric humidity lev- rotization and the ventral chaetotaxy are homoge- els, typic Xerorthent (Soil Survey Staff, 2010), at neous features between Cosmochthonius and Phyl- a depth of 0-7.5 cm, below olive trees Olea eu- lozetes. ropaea L., ’la Mina’ agricultural land, IFAPA Cen- In accordance with the meaning of the family ter in Cabra (Córdoba, Spain; N 37º30.250’, W composition of Van der Hammen (op. cit.), Lee 4º26.261’; altitude 547 m.). The mites were ex- (1982) separates the monodactyl group in his Co- tracted using the Berlese Tullgren-method, collected hort Retrofissurae, keeping the Profissurae poly- in ethanol PG solution (Ethanol-Propylene glycol dactyl group with the type family category within (1.2-Propanediol)-AD, 80-10-10), they were rinsed the Cosmochthonioidea Grandjean, 1947. In the off and, described and drawn from lactic prepara- same previous meaning, Norton et al. (1983), based tions for microscopic examination. All the material on the Cosmochthonius reticulatus type fenestrated is deposited into vials with a PG solution in the En- rostrum (Grandjean, 1962: Figure 3A) and the ab- tomology Lab, IFAPA center in Alameda del Obispo sence of other synapomorphies, gives to the poly- in Córdoba, Spain. dactyl group the same ancestral family status sepa- The nomenclature and abbreviations of the hys- rated within the superfamily. terosomal segments, the notogastral plaques, and The cosmochthoniids sensu Lee and Norton et the hysterosomal chaetotaxy follow the terminol- al. (op. cit.) live in warm and dry environments. ogy of Grandjean (1939: Figure 4; 1947: Figure 1). Cosmochthonius and Phyllozetes can be found in the hot upper layers of the soil beneath xerophytic veg- New Species of Cosmochthoniidae Grandjean, etation (Gordeeva, 1980). This latter author also in- 1947 dicates that under these conditions, the adaptive mechanisms are the small body dimensions and Genus Cosmochthonius Berlese, 1910 that in the case of Phyllozetes, the large and foliar Diagnosis — Oribatid mites, archoribatids, notochaetae could reduce the loss of water through arthronotics, and holoids sensu Balogh and the body’s surface. Mahunka (1979); belonging to Enarthronota Consulting the catalogs of oribatids, Global (Grandjean, 1947, 1953: 428, 1969: 141). Cos- of Subías (2013), Mediterranean (Subías and Gil- mochthoniids with the original Hypochthonius lana- Martín, 1997; Penttinen and Gordeeva, 2010; Subías tus type (Michael, 1885: 396), with the fenestrated and Shtanchaeva, 2012b) and Iberian (Subías and rostral tectum (Grandjean, 1962; Norton et al., 1983) Shtanchaeva, 2012a) and in accordance with hy- and without prodorsal spots or eyes (Grandjean, potheses of Gordeeva (1980), the polydactyl group 1953); notogaster orthotrichous with four com- is common in the Mediterranean ecozone and, in pletely divided segments, with setae in the d-series 184 Acarologia 54(2): 183–191 (2014) linked to the first type-E scissure, pectiniform, non- Cosmochthonius (Nortonchthonius) foliate setae from the e and f -series, without pecti- oblongisetosus n. sp.
Recommended publications
  • IV. the Oribatid Mites (Acari: Cryptostigmata)
    This file was created by scanning the printed publication. Text errors identified by the software have been corrected; however, some errors may remain. United States Department of Invertebrates of the H.J. Agriculture Andrews Experimental Forest Service Pacific Northwest Forest, Western Cascade Research Station General Technical Report Mountains, Oregon: IV. PNW-217 August 1988 The Oribatid Mites (Acari: Cryptostigmata) Andrew R. Moldenke and Becky L. Fichter I ANDREW MOLDENKE and BECKY FICHTER are Research Associates, Department of Entomology, Oregon State University, Corvallis, Oregon 97331. TAXONOMIC LISTING OF PACIFIC NORTHWEST GENERA * - indicates definite records from the Pacific Northwest *Maerkelotritia 39-40, figs. 83-84 PALAEOSOMATA (=BIFEMORATINA) (=Oribotritia sensu Walker) Archeonothroidea *Mesotritia 40 *Acaronychus 32, fig. 64 *Microtritia 40-41, fig. 85 *Zachvatkinella 32, fig. 63 *Oribotritia 39, figs. 81-82 Palaeacaroidea Palaeacarus 32, fig. 61 (=Plesiotritia) *Rhysotritia 40 Ctenacaroidea *Aphelacarus 32, fig. 59 *Synichotritia 41 Beklemishevia 32, fig. 62 Perlohmannioidea *Perlohmannia 65, figs. 164-166, 188 *Ctenacarus 32, fig. 60 ENARTHRONOTA (=ARTHRONOTINA) Epilohmannioidea *Epilohmannia 65-66, figs. 167-169, Brachychthonioidea 187 *Brachychthonius 29-30, fig. 53 Eulohmannioidea *Eobrachychthonius 29 *Eulohmannia 35, figs. 67-68 *Liochthonius 29, figs. 54,55,306 DESMONOMATA Mixochthonius 29 Crotonioidea (=Nothroidea) Neobrachychthonius 29 *Camisia 36, 68. figs. 70-71, Neoliochthonius 29 73, 177-178, 308 (=Paraliochthonius) Heminothrus 71 Poecilochthonius 29 *Malaconothrus 36, fig. 74 *Sellnickochthonius 29, figs. 56-57 Mucronothrus 36 (=Brachychochthonius) Neonothrus 71 *Synchthonius 29 *Nothrus 69, fig. 179-182, Verachthonius 29 186, 310 Hypochthonioidea *Platynothrus 71, figs. 183-185 *Eniochthonius 28, figs. 51-52 309 (=Hypochthoniella) *Trhypochthonius 35, fig. 69 *Eohypochthonius 27-28, figs. 44-45 *Hypochthonius 28, figs.
    [Show full text]
  • The Armoured Mite Fauna (Acari: Oribatida) from a Long-Term Study in the Scots Pine Forest of the Northern Vidzeme Biosphere Reserve, Latvia
    FRAGMENTA FAUNISTICA 57 (2): 141–149, 2014 PL ISSN 0015-9301 © MUSEUM AND INSTITUTE OF ZOOLOGY PAS DOI 10.3161/00159301FF2014.57.2.141 The armoured mite fauna (Acari: Oribatida) from a long-term study in the Scots pine forest of the Northern Vidzeme Biosphere Reserve, Latvia 1 2 1 Uģis KAGAINIS , Voldemārs SPUNĢIS and Viesturs MELECIS 1 Institute of Biology, University of Latvia, 3 Miera Street, LV-2169, Salaspils, Latvia; e-mail: [email protected] (corresponding author) 2 Department of Zoology and Animal Ecology, Faculty of Biology,University of Latvia, 4 Kronvalda Blvd., LV-1586, Riga, Latvia; e-mail: [email protected] Abstract: In 1992–2012, a considerable amount of soil micro-arthropods has been collected annually as a part of a project of the National Long-Term Ecological Research Network of Latvia at the Mazsalaca Scots Pine forest sites of the North Vidzeme Biosphere Reserve. Until now, the data on oribatid species have not been published. This paper presents a list of oribatid species collected during 21 years of ongoing research in three pine stands of different age. The faunistic records refer to 84 species (including 17 species new to the fauna of Latvia), 1 subspecies, 1 form, 5 morphospecies and 18 unidentified taxa. The most dominant and most frequent oribatid species are Oppiella (Oppiella) nova, Tectocepheus velatus velatus and Suctobelbella falcata. Key words: species list, fauna, stand-age, LTER, Mazsalaca INTRODUCTION Most studies of Oribatida or the so-called armoured mites (Subías 2004) have been relatively short term and/or from different ecosystems simultaneously and do not show long- term changes (Winter et al.
    [Show full text]
  • Acari: Oribatida) of Canada and Alaska
    Zootaxa 4666 (1): 001–180 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Monograph ZOOTAXA Copyright © 2019 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4666.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:BA01E30E-7F64-49AB-910A-7EE6E597A4A4 ZOOTAXA 4666 Checklist of oribatid mites (Acari: Oribatida) of Canada and Alaska VALERIE M. BEHAN-PELLETIER1,3 & ZOË LINDO1 1Agriculture and Agri-Food Canada, Canadian National Collection of Insects, Arachnids and Nematodes, Ottawa, Ontario, K1A0C6, Canada. 2Department of Biology, University of Western Ontario, London, Canada 3Corresponding author. E-mail: [email protected] Magnolia Press Auckland, New Zealand Accepted by T. Pfingstl: 26 Jul. 2019; published: 6 Sept. 2019 Licensed under a Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0 VALERIE M. BEHAN-PELLETIER & ZOË LINDO Checklist of oribatid mites (Acari: Oribatida) of Canada and Alaska (Zootaxa 4666) 180 pp.; 30 cm. 6 Sept. 2019 ISBN 978-1-77670-761-4 (paperback) ISBN 978-1-77670-762-1 (Online edition) FIRST PUBLISHED IN 2019 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] https://www.mapress.com/j/zt © 2019 Magnolia Press ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 4666 (1) © 2019 Magnolia Press BEHAN-PELLETIER & LINDO Table of Contents Abstract ...................................................................................................4 Introduction ................................................................................................5
    [Show full text]
  • Hotspots of Mite New Species Discovery: Sarcoptiformes (2013–2015)
    Zootaxa 4208 (2): 101–126 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Editorial ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4208.2.1 http://zoobank.org/urn:lsid:zoobank.org:pub:47690FBF-B745-4A65-8887-AADFF1189719 Hotspots of mite new species discovery: Sarcoptiformes (2013–2015) GUANG-YUN LI1 & ZHI-QIANG ZHANG1,2 1 School of Biological Sciences, the University of Auckland, Auckland, New Zealand 2 Landcare Research, 231 Morrin Road, Auckland, New Zealand; corresponding author; email: [email protected] Abstract A list of of type localities and depositories of new species of the mite order Sarciptiformes published in two journals (Zootaxa and Systematic & Applied Acarology) during 2013–2015 is presented in this paper, and trends and patterns of new species are summarised. The 242 new species are distributed unevenly among 50 families, with 62% of the total from the top 10 families. Geographically, these species are distributed unevenly among 39 countries. Most new species (72%) are from the top 10 countries, whereas 61% of the countries have only 1–3 new species each. Four of the top 10 countries are from Asia (Vietnam, China, India and The Philippines). Key words: Acari, Sarcoptiformes, new species, distribution, type locality, type depository Introduction This paper provides a list of the type localities and depositories of new species of the order Sarciptiformes (Acari: Acariformes) published in two journals (Zootaxa and Systematic & Applied Acarology (SAA)) during 2013–2015 and a summary of trends and patterns of these new species. It is a continuation of a previous paper (Liu et al.
    [Show full text]
  • Acari, Oribatida)
    Zootaxa 4027 (2): 151–204 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.4027.2.1 http://zoobank.org/urn:lsid:zoobank.org:pub:B2D0A15A-16BE-4311-B9F1-ADC27341D40C Nanohystricidae n. fam., an unusual, plesiomorphic enarthronote mite family endemic to New Zealand (Acari, Oribatida) ROY A. NORTON1 & MARUT FUANGARWORN2 1State University of New York, College of Environmental Science and Forestry, Syracuse, New York, U.S.A. E-mail: [email protected] 2Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand. E-mail: [email protected] Abstract Nanohystrix hammerae n. gen., n. sp.—proposed on the basis of numerous adults and a few juveniles—is a new oribatid mite of the infraorder Enarthronota that appears to be phylogenetically relictual and endemic to northern New Zealand, in habitats ranging from native shrublands to native and semi-native forests. With an adult body length of 1–1.2 mm, the species is the largest known enarthronote mite outside Lohmanniidae, and it has an unusual combination of plesiomorphic and apomorphic traits. Plesiomorphies include: a well-formed median (naso) eye and pigmented lateral eyes; a bothridial seta with a simple, straight base; a vertically-oriented gnathosoma; a peranal segment; adanal sclerites partially incorpo- rated in notogaster (uncertain polarity); three genu I solenidia and a famulus on tarsus II. Autapomorphies include: five pairs of pale cuticular disks on the notogaster, with unknown function; six pairs of long, erectile notogastral setae, includ- ing pair h2 incorporated in the second transverse scissure along with the f-row, and pair h1 in a third scissure; chelicerae that are unusually broad, creating a flat-faced appearance; legs I that are inferred to have an unusually wide range of mo- tion.
    [Show full text]
  • Transposable Elements in Sexual and Asexual Animals
    Transposable elements in sexual and asexual animals Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades „Doctor rerum naturalium“ der Georg-August-Universität Göttingen im Promotionsprogramm Biologie der Georg-August University School of Science (GAUSS) vorgelegt von Diplom-Biologe J e n s B a s t aus Bad Bergzabern Göttingen, 2014 Betreuungsausschuss Prof. Dr. Stefan Scheu, Tierökologie, J.F. Blumenbach Institut PD Dr. Mark Maraun, Tierökologie, J.F. Blumenbach Institut Dr. Marina Schäfer, Tierökologie, J.F. Blumenbach Institut Mitglieder der Prüfungskommision Referent: Prof. Dr. Stefan Scheu, Tierökologie, J.F. Blumenbach Institut Korreferent: PD Dr. Mark Maraun, Tierökologie, J.F. Blumenbach Institut Weitere Mitglieder der Prüfungskommision: Prof. Dr. Elvira Hörandl, Systematische Botanik, Albrecht von Haller Institut Prof. Dr. Ernst Wimmer, Entwicklungsbiologie, J.F. Blumenbach Institut Prof. Dr. Ulrich Brose, Systemische Naturschutzbiologie, J.F. Blumenbach Institut PD Dr. Marko Rohlfs, Tierökologie, J.F. Blumenbach Institut Tag der mündlichen Prüfung: 30.01.2015 2 Wahrlich es ist nicht das Wissen, sondern das Lernen, nicht das Besitzen, sondern das Erwerben, nicht das Da-Seyn, sondern das Hinkommen, was den grössten Genuss gewährt. – Schreiben Gauss an Wolfgang Bolyai, 1808 3 Curriculum Vitae PERSONAL DETAILS NAME Jens Bast BIRTH January, 31 1983 in Bad Bergzabern NATIONALITY German EDUCATION 2011-2015 PhD thesis (biology) Georg-August University Goettingen Title: 'Transposable elements in sexual and
    [Show full text]
  • Repeated Convergent Evolution of Parthenogenesis in Acariformes (Acari)
    Received: 25 July 2020 | Revised: 19 October 2020 | Accepted: 30 October 2020 DOI: 10.1002/ece3.7047 ORIGINAL RESEARCH Repeated convergent evolution of parthenogenesis in Acariformes (Acari) Patrick Pachl1 | Matti Uusitalo2 | Stefan Scheu1,3 | Ina Schaefer1 | Mark Maraun1 1JFB Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Abstract Germany The existence of old species-rich parthenogenetic taxa is a conundrum in evolution- 2 Zoological Museum, Centre for Biodiversity ary biology. Such taxa point to ancient parthenogenetic radiations resulting in mor- of Turku, Turku, Finland 3Centre of Biodiversity and Sustainable Land phologically distinct species. Ancient parthenogenetic taxa have been proposed to Use, University of Göttingen, Göttingen, exist in bdelloid rotifers, darwinulid ostracods, and in several taxa of acariform mites Germany (Acariformes, Acari), especially in oribatid mites (Oribatida, Acari). Here, we inves- Correspondence tigate the diversification of Acariformes and their ancestral mode of reproduction Mark Maraun, JFB Institute of Zoology and Anthropology, University of Göttingen, using 18S rRNA. Because parthenogenetic taxa tend to be more frequent in phylo- Untere Karspüle 2, 37073 Göttingen, genetically old taxa of Acariformes, we sequenced a wide range of members of this Germany. Email: [email protected] taxon, including early-derivative taxa of Prostigmata, Astigmata, Endeostigmata, and Oribatida. Ancestral character state reconstruction indicated that (a) Acariformes as well as Oribatida evolved
    [Show full text]
  • Mite (Acari) Ecology Within Protea Communities in The
    MITE (ACARI) ECOLOGY WITHIN PROTEA COMMUNITIES IN THE CAPE FLORISTIC REGION, SOUTH AFRICA NATALIE THERON-DE BRUIN Dissertation presented for the degree of Doctor of Philosophy in the Faculty of Agrisciences at Stellenbosch University Promoter: Doctor F. Roets, Co-promoter: Professor L.L. Dreyer March 2018 Stellenbosch University https://scholar.sun.ac.za DECLARATION By submitting this dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author hereof (save to the extent explicitly otherwise stated), that reproduction and publication therefore by the Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. ..................................... Natalie Theron-de Bruin March 2018 Copyright © 2018 Stellenbosch University All rights reserved i Stellenbosch University https://scholar.sun.ac.za GENERAL ABSTRACT Protea is a key component in the Fynbos Biome of the globally recognised Cape Floristic Region biodiversity hotspot, not only because of its own diversity, but also for its role in the maintenance of numerous other organisms such as birds, insects, fungi and mites. Protea is also internationally widely cultivated for its very showy inflorescences and, therefore, has great monetary value. Some of the organisms associated with these plants are destructive, leading to reduced horticultural and floricultural value. However, they are also involved in intricate associations with Protea species in natural ecosystems, which we still understand very poorly. Mites, for example, have an international reputation to negatively impact crops, but some taxa may be good indicators of sound management practices within cultivated systems.
    [Show full text]
  • Genome and Metagenome of the Phytophagous Gall-Inducing Mite Fragariocoptes Setiger (Eriophyoidea): Are Symbiotic Bacteria Responsible for Gall-Formation?
    Genome and Metagenome of The Phytophagous Gall-Inducing Mite Fragariocoptes Setiger (Eriophyoidea): Are Symbiotic Bacteria Responsible For Gall-Formation? Pavel B. Klimov ( [email protected] ) X-BIO Institute, Tyumen State University Philipp E. Chetverikov Saint-Petersburg State University Irina E. Dodueva Saint-Petersburg State University Andrey E. Vishnyakov Saint-Petersburg State University Samuel J. Bolton Florida Department of Agriculture and Consumer Services, Gainesville, Florida, USA Svetlana S. Paponova Saint-Petersburg State University Ljudmila A. Lutova Saint-Petersburg State University Andrey V. Tolstikov X-BIO Institute, Tyumen State University Research Article Keywords: Agrobacterium tumefaciens, Betabaculovirus Posted Date: August 20th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-821190/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/16 Abstract Eriophyoid mites represent a hyperdiverse, phytophagous lineage with an unclear phylogenetic position. These mites have succeeded in colonizing nearly every seed plant species, and this evolutionary success was in part due to the mites' ability to induce galls in plants. A gall is a unique niche that provides the inducer of this modication with vital resources. The exact mechanism of gall formation is still not understood, even as to whether it is endogenic (mites directly cause galls) or exogenic (symbiotic microorganisms are involved). Here we (i) investigate the phylogenetic anities of eriophyoids and (ii) use comparative metagenomics to test the hypothesis that the endosymbionts of eriophyoid mites are involved in gall-formation. Our phylogenomic analysis robustly inferred eriophyoids as closely related to Nematalycidae, a group of deep-soil mites belonging to Endeostigmata.
    [Show full text]
  • The "Giardino Di Boboli", Florence, Type-Locality of Many Species Mentioned in the Present Paper. BERLESE's PRIMITIVE ORIBATID MITES
    The "Giardino di Boboli", Florence, type-locality of many species mentioned in the present paper. BERLESE'S PRIMITIVE ORIBATID MITES by L. VAN DER HAMMEN Rijksmuseum van Natuurlijke Historie, Leiden CONTENTS I. Introduction I II. Bibliography 4 III. Systematic review 8 IV. References 84 V. Index 90 I. INTRODUCTION Among the works of acarologists of the past, Berlese's numerous writings take a particular place. Although they contain descriptions of an enormous number of new species, and notwithstanding the fact that they must be regarded as an important contribution to progress of systematics, the way of publishing is superficial to such a degree that Berlese appears to be the author that created the largest number of problems. As a rule his Latin descriptions are extremely short and consist of a few lines only. When exceptionally a figure is given, it represents at most some elementary characters. It even happens that reference is made to a species of which the diagnosis has never been published, whilst on the contrary it also occurs that a species is men- tioned two times as new to science. Considering at the same time that it is difficult to recover the dates of publication of many papers, it is clear that reinvestigations are badly needed. Several authors published excellent descriptions of some of Berlese's species, but a review of a group has never been given. Besides, a complete catalogue of the records 1) and a definite bibliography are both still wanting. Because studies of the type-species of genera, and monographs of some groups of primitive Oribatid mites are in course of preparation, a revision of Berlese's material appeared to be inevitable.
    [Show full text]
  • Oribatida, Enarthronota, Heterochthoniidae) with Remarks on Adjacent Setae
    88 (2) · August 2016 pp. 99–110 Fine structure of the trichobothrium of Heterochthonius gibbus (Oribatida, Enarthronota, Heterochthoniidae) with remarks on adjacent setae Gerd Alberti1,* and Ana Isabel Moreno Twose2 1 Zoologisches Institut und Museum, E-MAU Greifswald, J.-S.-Bach-Str. 11/12, 17489 Greifswald, Germany 2 Communidad de Baleares 8, 31010 Barañain, Spain * Corresponding author, e-mail: [email protected] Received 28 December 2015 | Accepted 4 May 2016 Published online at www.soil-organisms.de 1 August 2016 | Printed version 15 August 2016 Abstract The trichobothridium (bothridium and bothridial seta) of the enarthronote mite Heterochthonius gibbus is described using scanning and transmission electron microscopy. The cuticular wall of the bothridium shows three recognizable regions an external (distal) smooth part, a central region with a complex structured wall, and an internal (proximal) smooth part beginning where the bothridium bends sharply ending in the setal insertion. The central wall is provided with many tubules or chambers, which in the most distal region are filled with a secretion but otherwise are empty (likely filled with air). Distinct chambers separated by septa are not evident. The bothridial seta is similarly bent and is inserted in a proximal cuticular ring via only a few suspension fibers. Two dendrites terminating with tubular bodies innervate the bothridial seta. The dendrites are distally surrounded by a thick dense dendritic sheath. The overall structure of the trichobothrium, with a simple sharp bend, presents an intermediate condition compared with the straight trichobothrium of early derivative oribatid mites and the double-curved, S-shaped base found in more evolved taxa.
    [Show full text]
  • Fine Structure of Receptor Organs in Oribatid Mites (Acari)
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Biosystematics and Ecology Jahr/Year: 1998 Band/Volume: 14 Autor(en)/Author(s): Alberti Gerd Artikel/Article: Fine structure of receptor organs in oribatid mites (Acari). In: EBERMANN E. (ed.), Arthropod Biology: Contributions to Morphology, Ecology and Systematics. 27-77 Ebermann, E. (Ed) 1998:©Akademie Arthropod d. Wissenschaften Biology: Wien; Contributions download unter towww.biologiezentrum.at Morphology, Ecology and Systematics. - Biosystematics and Ecology Series 14: 27-77. Fine structure of receptor organs in oribatid mites (Acari) G. A l b e r t i Abstract: Receptor organs of oribatid mites represent important characters in taxonomy. However, knowledge about their detailed morphology and function in the living animal is only scarce. A putative sensory role of several integumental structures has been discussed over years but was only recently clarified. In the following the present state of knowledge on sensory structures of oribatid mites is reviewed. Setiform sensilla are the most obvious sensory structures in Oribatida. According to a clas- sification developed mainly by Grandjean the following types are known: simple setae, trichobothria, eupathidia, famuli and solenidia. InEupelops sp. the simple notogastral setae are innervated by two dendrites terminating with tubulär bodies indicative of mechanore- ceptive cells. A similar innervation was seen in trichobothria ofAcrogalumna longipluma. The trichobothria are provided with a setal basis of a very high complexity not known from other arthropods. The setal shafts of these two types of sensilla are solid and without pores. They thus represent so called no pore sensilla (np-sensilla).
    [Show full text]