Aquivion Ionomer in Mixed Alcohol-Water Solution: Insights from Multi-scale Molecular Modeling Ali Malek a, b , Ehsan Sadeghi a, Jasna Jankovic c, Michael Eikerling a, d , Kourosh Malek a, b * a) Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada b) NRC-EME, 4250 Wesbrook Mall, Vancouver, BC, V6T 1W5, Canada c) Materials Science and Engineering Department, University of Connecticut, 97 North Eagleville Road, Storrs, CT, 06269-3136, USA c) Institute of Energy and Climate Research, IEK-13: Modelling and Simulation of Energy Materials, Forschungszentrum Jülich, 52425 Jülich, Germany * Corresponding author. Phone: +1 6042613000, email:
[email protected] Abstract Short side-chain ionomers such as Aquivion are increasingly used in the fabrication of PEM fuel cells. Aquivion exhibits reduced gas crossover, enhanced glass transition temperature, better mechanical stability, and higher conductivity in comparison to Nafion, their long side-chain relative. We performed atomistic molecular dynamic simulations of Aquivion at varying water content and proportion of iso-propanol mixed into the solvent and examined the structure and dynamics of the system. Atomistic simulations are followed by coarse-grained simulations to develop a coarse- grained model applicable to both long and short side-chain ionomers. The density of Aquivion and Nafion membranes from simulations is calculated and compared with that from experiment. The Aquivion system higher diffusion coefficients for water molecules and hydronium ions than the Nafion system. The water network morphology is analyzed as a function of water content. 1 1. Introduction The core component of a polymer electrolyte fuel cell (PEFC) is an ionomer-based polymer electrolyte membrane (PEM) that conducts protons between anode and cathode.1-5 [references before or after punctuation???? Make it consistent.] The PEM exerts a vital impact on the performance characteristics of the cell.