Predicting Pubertal Development by Infantile and Childhood Height, BMI, and Adiposity Rebound
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Human Physiology/The Male Reproductive System 1 Human Physiology/The Male Reproductive System
Human Physiology/The male reproductive system 1 Human Physiology/The male reproductive system ← The endocrine system — Human Physiology — The female reproductive system → Homeostasis — Cells — Integumentary — Nervous — Senses — Muscular — Blood — Cardiovascular — Immune — Urinary — Respiratory — Gastrointestinal — Nutrition — Endocrine — Reproduction (male) — Reproduction (female) — Pregnancy — Genetics — Development — Answers Introduction In simple terms, reproduction is the process by which organisms create descendants. This miracle is a characteristic that all living things have in common and sets them apart from nonliving things. But even though the reproductive system is essential to keeping a species alive, it is not essential to keeping an individual alive. In human reproduction, two kinds of sex cells or gametes are involved. Sperm, the male gamete, and an egg or ovum, the female gamete must meet in the female reproductive system to create a new individual. For reproduction to occur, both the female and male reproductive systems are essential. While both the female and male reproductive systems are involved with producing, nourishing and transporting either the egg or sperm, they are different in shape and structure. The male has reproductive organs, or genitals, that are both inside and outside the pelvis, while the female has reproductive organs entirely within the pelvis. The male reproductive system consists of the testes and a series of ducts and glands. Sperm are produced in the testes and are transported through the reproductive ducts. These ducts include the epididymis, ductus deferens, ejaculatory duct and urethra. The reproductive glands produce secretions that become part of semen, the fluid that is ejaculated from the urethra. These glands include the seminal vesicles, prostate gland, and bulbourethral glands. -
Female Tanner Stages (Sexual Maturity Rating)
Strength of Recommendations Preventive Care Visits – 6 to 17 years Bold = Good Greig Health Record Update 2016 Italics = Fair Plain Text = consensus or Selected Guidelines and Resources – Page 3 inconclusive evidence The CRAFFT Screening Interview Begin: “I’m going to ask you a few questions that I ask all my patients. Please be honest. I will keep your Screening for Major Depressive Disorder -USPSTF answers confidential.” Age 12 years to 18 years 7 to 11 yrs No Yes Part A During the past 12 months did you: Screen (when systems in place for diagnosis, treatment and Insufficient 1. Drink any alcohol (more than a few sips)? □ □ follow-up) evidence 2. Smoked any marijuana or hashish? □ □ Risk factors- parental depression, co-morbid mental health or chronic medical 3. Used anything else to get high? (“anything else” includes illegal conditions, having experienced a major negative life event drugs, over the counter and prescription drugs and things that you sniff or “huff”) □ □ Tools-Patient Health Questionnaire for Adolescent(PHQ9-A) Tools For clinic use only: Did the patient answer “yes” to any questions in Part A? &Beck Depression Inventory-Primary Care version (BDI-PC) perform less No □ Yes □ well Ask CAR question only, then stop. Ask all 6 CRAFFT questions Treatment-Pharmacotherapy – fluoxetine (a SSRI) is Part B Have you ever ridden in a CAR driven by someone □ □ efficacious but SSRIs have a risk of suicidality – consider only (including yourself) who was ‘‘high’’ or had been using if clinical monitoring is possible. Psychotherapy alone or alcohol or drugs? combined with pharmacotherapy can be efficacious. -
Inside Front Cover October 7.Pmd
Early Female Puberty: A Review of Research on Etiology and Implications Eileen Daniel and Linda F. Balog Abstract Though the age of menarche has not decreased signifi cantly over the past 40 years, on average, girls began The age of female puberty appears to have decreased in to develop breasts one to two years earlier during the same the United States and western countries as child health time frame. African American girls typically begin thelarche and nutrition have improved and obesity has become more by age 9 compared to age 10 for White girls, though prevalent. Also, environmental contaminants, particularly approximately 15% of African American girls and 5% of endocrine disruptors, may also play a role in lowering the age White girls begin breast budding between the ages of 7 and of puberty. Puberty at an early age increases the risk of stress, 8 (Slyper, 2006). Currently, around 50% of all girls in the poor school performance, teen pregnancy, eating disorders, U.S. have begun to develop breasts by age 10 and 14% by substance abuse, and a variety of health issues which may ages 8 and 9. appear later in life including breast cancer and heart disease. The typical age range for the onset of puberty is between Articles for this literature review were located using a 8 and 14 years in girls while early puberty occurs between 7 computerized search of the databases Health Reference and 9, and precocious puberty generally takes place before Center, Medline, PsycINFO, and ScienceDirect from 2000 the age of 6 or 7 (Carel & Leger, 2008). -
Coupling of the HPA and HPG Axes
University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses Fall 12-20-2013 Coupling of the HPA and HPG Axes Andrew Dismukes University of New Orleans, [email protected] Follow this and additional works at: https://scholarworks.uno.edu/td Part of the Biological Psychology Commons Recommended Citation Dismukes, Andrew, "Coupling of the HPA and HPG Axes" (2013). University of New Orleans Theses and Dissertations. 1732. https://scholarworks.uno.edu/td/1732 This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights- holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. Coupling of the HPA and HPG Axes A Thesis Submitted to the Graduate Faculty of the University of New Orleans in partial fulfillment of the requirements for the degree of Master of Science in Psychology by Andrew Dismukes B.S. Auburn University December, 2013 Table of Contents Table of Figures ........................................................................................................................................................... -
Pubertal Timing and Breast Density in Young Women: a Prospective Cohort Study Lauren C
Houghton et al. Breast Cancer Research (2019) 21:122 https://doi.org/10.1186/s13058-019-1209-x RESEARCH ARTICLE Open Access Pubertal timing and breast density in young women: a prospective cohort study Lauren C. Houghton1* , Seungyoun Jung2, Rebecca Troisi3, Erin S. LeBlanc4, Linda G. Snetselaar5, Nola M. Hylton6, Catherine Klifa7, Linda Van Horn8, Kenneth Paris9, John A. Shepherd10, Robert N. Hoover2 and Joanne F. Dorgan3 Abstract Background: Earlier age at onset of pubertal events and longer intervals between them (tempo) have been associated with increased breast cancer risk. It is unknown whether the timing and tempo of puberty are associated with adult breast density, which could mediate the increased risk. Methods: From 1988 to 1997, girls participating in the Dietary Intervention Study in Children (DISC) were clinically assessed annually between ages 8 and 17 years for Tanner stages of breast development (thelarche) and pubic hair (pubarche), and onset of menses (menarche) was self-reported. In 2006–2008, 182 participants then aged 25–29 years had their percent dense breast volume (%DBV) measured by magnetic resonance imaging. Multivariable, linear mixed-effects regression models adjusted for reproductive factors, demographics, and body size were used to evaluate associations of age and tempo of puberty events with %DBV. Results: The mean (standard deviation) and range of %DBV were 27.6 (20.5) and 0.2–86.1. Age at thelarche was negatively associated with %DBV (p trend = 0.04), while pubertal tempo between thelarche and menarche was positively associated with %DBV (p trend = 0.007). %DBV was 40% higher in women whose thelarche-to-menarche tempo was 2.9 years or longer (geometric mean (95%CI) = 21.8% (18.2–26.2%)) compared to women whose thelarche-to-menarche tempo was less than 1.6 years (geometric mean (95%CI) = 15.6% (13.9–17.5%)). -
Human Reproduction: Clinical, Pathologic and Pharmacologic Correlations
HUMAN REPRODUCTION: CLINICAL, PATHOLOGIC AND PHARMACOLOGIC CORRELATIONS 2008 Course Co-Director Kirtly Parker Jones, M.D. Professor Vice Chair for Educational Affairs Department of Obstetrics and Gynecology Course Co-Director C. Matthew Peterson, M.D. Professor and Chair Department of Obstetrics and Gynecology 1 Welcome to the course on Human Reproduction. This syllabus has been recently revised to incorporate the most recent information available and to insure success on national qualifying examinations. This course is designed to be used in conjunction with our website which has interactive materials, visual displays and practice tests to assist your endeavors to master the material. Group discussions are provided to allow in-depth coverage. We encourage you to attend these sessions. For those of you who are web learners, please visit our web site that has case studies, clinical/pathological correlations, and test questions. http://libarary.med.utah.edu/kw/human_reprod 2 TABLE OF CONTENTS Page Lectures/Examination................................................................................................................................... 5 Schedule........................................................................................................................................................ 6 Faculty .......................................................................................................................................................... 9 Groups, Workshop..................................................................................................................................... -
Review Article Physiologic Course of Female Reproductive Function: a Molecular Look Into the Prologue of Life
Hindawi Publishing Corporation Journal of Pregnancy Volume 2015, Article ID 715735, 21 pages http://dx.doi.org/10.1155/2015/715735 Review Article Physiologic Course of Female Reproductive Function: A Molecular Look into the Prologue of Life Joselyn Rojas, Mervin Chávez-Castillo, Luis Carlos Olivar, María Calvo, José Mejías, Milagros Rojas, Jessenia Morillo, and Valmore Bermúdez Endocrine-Metabolic Research Center, “Dr. Felix´ Gomez”,´ Faculty of Medicine, University of Zulia, Maracaibo 4004, Zulia, Venezuela Correspondence should be addressed to Joselyn Rojas; [email protected] Received 6 September 2015; Accepted 29 October 2015 Academic Editor: Sam Mesiano Copyright © 2015 Joselyn Rojas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The genetic, endocrine, and metabolic mechanisms underlying female reproduction are numerous and sophisticated, displaying complex functional evolution throughout a woman’s lifetime. This vital course may be systematized in three subsequent stages: prenatal development of ovaries and germ cells up until in utero arrest of follicular growth and the ensuing interim suspension of gonadal function; onset of reproductive maturity through puberty, with reinitiation of both gonadal and adrenal activity; and adult functionality of the ovarian cycle which permits ovulation, a key event in female fertility, and dictates concurrent modifications in the endometrium and other ovarian hormone-sensitive tissues. Indeed, the ultimate goal of this physiologic progression is to achieve ovulation and offer an adequate environment for the installation of gestation, the consummation of female fertility. Strict regulation of these processes is important, as disruptions at any point in this evolution may equate a myriad of endocrine- metabolic disturbances for women and adverse consequences on offspring both during pregnancy and postpartum. -
Reproductive Physiology and Endocrinology
Comparative Veterinary Reproduction and Obstetrics, Instructor: Patrick J. Hemming DVM LECTURE 3 Reproductive Physiology and Endocrinology A. Reproductive endocrinology 1. Reproductive organs and hormones of the endocrine system; Endocrine control of estrus cycles, pregnancy, spermatogenesis, sexual development and behavior and all other aspects of reproduction is the responsibility of the hypothalamic-pituitary-gonadal axis. Hypothalamic hormones control the release of pituitary hormones while pituitary hormones exert their effects on the development, function and hormone synthesis of the gonads. Gonadal hormones, in addition to direct effects on the genital organs, complete the hypothalamic-pituitary-gonadal axis by either suppressing or stimulating the production and/or release of hypothalamic and pituitary hormones in what is called negative feedback or positive feedback mechanisms. Gonadal Hormones also exert influence over growth, behavior, organs or tissue function such as in the mammary glands. Most other endocrine systems have similar feedback mechanisms. A) Hypothalamus; the master endocrine gland; The hypothalamus represents the interface of the central nervous system with the endocrine system. The hypothalamus receives direct CNS innervation from several areas of the brain stem and cerebrum. Direct and indirect visual, olfactory, auditory and touch sensory inputs also innervate areas of the hypothalamus. Neurons of the hypothalamus involved with reproduction also contain receptors for estrogen and other steroidal hormones, constituting the feedback mechanism. These neuronal and hormonal signals regulate the endocrine functions of the hypothalamus. Anatomically the hypothalamus is a diffuse area of the brain, composed of groups of neurons organized into distinct nuclei. These nuclei lie dorsal and rostral of the pituitary gland and stalk, in an area surrounding the third ventricle, in the most rostral portions of the brain stem. -
Precocious Puberty Dominique Long, MD Johns Hopkins University School of Medicine, Baltimore, MD
Briefin Precocious Puberty Dominique Long, MD Johns Hopkins University School of Medicine, Baltimore, MD. AUTHOR DISCLOSURE Dr Long has disclosed Precocious puberty (PP) has traditionally been defined as pubertal changes fi no nancial relationships relevant to this occurring before age 8 years in girls and 9 years in boys. A secular trend toward article. This commentary does not contain fi a discussion of an unapproved/investigative earlier puberty has now been con rmed by recent studies in both the United use of a commercial product/device. States and Europe. Factors associated with earlier puberty include obesity, endocrine-disrupting chemicals (EDC), and intrauterine growth restriction. In 1997, a study by Herman-Giddens et al found that breast development was present in 15% of African American girls and 5% of white girls at age 7 years, which led to new guidelines published by the Lawson Wilkins Pediatric Endocrine Society (LWPES) proposing that breast development or pubic hair before age 7 years in white girls and age 6 years in African-American girls should be evaluated. More recently, Biro et al reported the onset of breast development at 8.8, 9.3, 9.7, and 9.7 years for African American, Hispanic, white non-Hispanic, and Asian study participants, respectively. The timing of menarche has not been shown to be advancing as quickly as other pubertal changes, with the average age between 12 and 12.5 years, similar to that reported in the 1970s. In boys, the Pediatric Research in Office Settings Network study recently found the mean age for onset of testicular enlargement, usually the first sign of gonadarche, is 10.14, 9.14, and 10.04 years in non-Hispanic white, African American, and Hispanic boys, respectively. -
Diagnosis and Management of Primary Amenorrhea and Female Delayed Puberty
6 184 S Seppä and others Primary amenorrhea 184:6 R225–R242 Review MANAGEMENT OF ENDOCRINE DISEASE Diagnosis and management of primary amenorrhea and female delayed puberty Satu Seppä1,2 , Tanja Kuiri-Hänninen 1, Elina Holopainen3 and Raimo Voutilainen 1 Correspondence 1Departments of Pediatrics, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland, should be addressed 2Department of Pediatrics, Kymenlaakso Central Hospital, Kotka, Finland, and 3Department of Obstetrics and to R Voutilainen Gynecology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland Email [email protected] Abstract Puberty is the period of transition from childhood to adulthood characterized by the attainment of adult height and body composition, accrual of bone strength and the acquisition of secondary sexual characteristics, psychosocial maturation and reproductive capacity. In girls, menarche is a late marker of puberty. Primary amenorrhea is defined as the absence of menarche in ≥ 15-year-old females with developed secondary sexual characteristics and normal growth or in ≥13-year-old females without signs of pubertal development. Furthermore, evaluation for primary amenorrhea should be considered in the absence of menarche 3 years after thelarche (start of breast development) or 5 years after thelarche, if that occurred before the age of 10 years. A variety of disorders in the hypothalamus– pituitary–ovarian axis can lead to primary amenorrhea with delayed, arrested or normal pubertal development. Etiologies can be categorized as hypothalamic or pituitary disorders causing hypogonadotropic hypogonadism, gonadal disorders causing hypergonadotropic hypogonadism, disorders of other endocrine glands, and congenital utero–vaginal anomalies. This article gives a comprehensive review of the etiologies, diagnostics and management of primary amenorrhea from the perspective of pediatric endocrinologists and gynecologists. -
Figure 3-7. Exposure-Response Array of Female Reproductive Effects, Maternal Weight and Toxicity, Following Oral Exposure to DIBP
EPA/635/R-14/333 Preliminary Materials www.epa.gov/iris Preliminary Materials for the Integrated Risk Information System (IRIS) Toxicological Review of Diisobutyl Phthalate (DIBP) (CASRN No. 84-69-5) September 2014 NOTICE This document is comprised of preliminary materials. This information is distributed solely for the purpose of pre-dissemination review under applicable information quality guidelines. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. It is being circulated for review of its technical accuracy and science policy implications. National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Washington, DC Preliminary Materials for the IRIS Toxicological Review of Diisobutyl Phthalate DISCLAIMER This document is comprised of preliminary materials for review purposes only. This information is distributed solely for the purpose of pre-dissemination review under applicable information quality guidelines. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. This document is a draft for review purposes only and does not constitute Agency policy. ii DRAFT—DO NOT CITE OR QUOTE Preliminary Materials for the IRIS Toxicological Review of Diisobutyl Phthalate CONTENTS PREFACE ..................................................................................................................................................... -
Neonatal Breast Hypertrophy
& The ics ra tr pe a u i t i d c e s P Pediatrics & Therapeutics Donaire et al., Pediatr Ther 2016, 6:3 ISSN: 2161-0665 DOI: 10.4172/2161-0665.1000297 Case Report Open Access Neonatal Breast Hypertrophy: Revisited Alvaro Donaire, Juan Guillen and Benamanahalli Rajegowda* Department of Pediatrics, Lincoln Medical and Mental Health Center, USA *Corresponding author: Benamanahalli Rajegowda, Department of Pediatrics, Division of Neonatology, Lincoln Medical and Mental Health Center, 234 East 149th Street, Bronx, New York, 10451, USA, Tel: 718-579-5360; Fax: 718-579-4958; E-mail: [email protected] Received date: Jun 28, 2016, Accepted date: Jul 14, 2016, Published date: Jul 18, 2016 Copyright: © 2016 Donaire A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited. Introduction Neonatal breast enlargement is a benign condition that may be seen during the first days of life in the neonatal period and it has been reported to occur in 65-90% of infants. Within few months after birth it usually involutes, and later regrows during puberty due to hormonal stimulation. Breast enlargement is uncommon, when it occurs is a benign physical finding [1]. Neonatal galactorrhea, commonly referred to as witch’s milk, is a cloudy discharge from the breasts that occurs when estrogen and progesterone levels decrease after delivery, enabling the secretion of prolactin and oxytocin from the neonate’s pituitary [2]. The “witch’s milk” resembles the maternal milk composition, the milk comes only when the breast are expressed.