Human Reproduction: Clinical, Pathologic and Pharmacologic Correlations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reference Sheet 1
MALE SEXUAL SYSTEM 8 7 8 OJ 7 .£l"00\.....• ;:; ::>0\~ <Il '"~IQ)I"->. ~cru::>s ~ 6 5 bladder penis prostate gland 4 scrotum seminal vesicle testicle urethra vas deferens FEMALE SEXUAL SYSTEM 2 1 8 " \ 5 ... - ... j 4 labia \ ""\ bladderFallopian"k. "'"f"";".'''¥'&.tube\'WIT / I cervixt r r' \ \ clitorisurethrauterus 7 \ ~~ ;~f4f~ ~:iJ 3 ovaryvagina / ~ 2 / \ \\"- 9 6 adapted from F.L.A.S.H. Reproductive System Reference Sheet 3: GLOSSARY Anus – The opening in the buttocks from which bowel movements come when a person goes to the bathroom. It is part of the digestive system; it gets rid of body wastes. Buttocks – The medical word for a person’s “bottom” or “rear end.” Cervix – The opening of the uterus into the vagina. Circumcision – An operation to remove the foreskin from the penis. Cowper’s Glands – Glands on either side of the urethra that make a discharge which lines the urethra when a man gets an erection, making it less acid-like to protect the sperm. Clitoris – The part of the female genitals that’s full of nerves and becomes erect. It has a glans and a shaft like the penis, but only its glans is on the out side of the body, and it’s much smaller. Discharge – Liquid. Urine and semen are kinds of discharge, but the word is usually used to describe either the normal wetness of the vagina or the abnormal wetness that may come from an infection in the penis or vagina. Duct – Tube, the fallopian tubes may be called oviducts, because they are the path for an ovum. -
NEW ZEALAND OBSTETRIC ULTRASOUND GUIDELINES 2019 Iii
New Zealand Obstetric Ultrasound Guidelines 2019 Released 2019 health.govt.nz Acknowledgements The Ministry of Health appreciates the time, expertise and commitment of those involved in developing the New Zealand Obstetric Ultrasound Guidelines. Content within these guidelines is derived and modified from Canterbury District Health Board’s obstetric imaging guidelines with permission. All scan images were kindly provided by members of the clinical working group. Members of the clinical working group Dr Rachael McEwing, Radiologist (Chair) Dr David Perry, Paediatric and Obstetric Radiologist Gill Waterhouse, Sonographer Dr Pippa Kyle, Consultant Obstetrician and Maternal Fetal Medicine Specialist Rex de Ryke, Charge Sonographer Peer reviewers Dr Jay Marlow, Maternal Fetal Medicine Specialist Martin Necas, Clinical Specialist Sonographer Dr Rachel Belsham, Radiologist Dr Tom Gentles, Paediatric Cardiologist Citation: Ministry of Health. 2019. New Zealand Obstetric Ultrasound Guidelines. Wellington: Ministry of Health. Published in December 2019 by the Ministry of Health PO Box 5013, Wellington 6140, New Zealand ISBN 978-1-98-859749-2 (online) HP 7284 This document is available at health.govt.nz This work is licensed under the Creative Commons Attribution 4.0 International licence. In essence, you are free to: share ie, copy and redistribute the material in any medium or format; adapt ie, remix, transform and build upon the material. You must give appropriate credit, provide a link to the licence and indicate if changes were made. Abbreviations -
Human Reproduction and Childbirth
8083DV HUMAN REPRODUCTION AND CHILDBIRTH DVD Version ISBN-13: 978-1-55548-681-5 ISBN: 1-55548-681-9 HUMAN REPRODUCTION AND CHILDBIRTH CREDITS Executive Producer Anson W. Schloat Producer Peter Cochran Script Karin Rhines Teacher’s Resource Book Karin Rhines Former Program Director, Westchester County (NY) Department of Health Copyright 2009 Human Relations Media, Inc. HUMAN RELATIONS MEDIA HUMAN REPRODUCTION AND CHILDBIRTH HUMAN REPRODUCTION AND CHILDBIRTH TABLE OF CONTENTS DVD Menu i Introduction 1 Learning Objectives 2 Program Summary 3 Note to the Teacher 4 Student Activities 1. Pre/Post Test 5 2. Male Anatomy 7 3. Female Anatomy 8 4. Comparative Anatomy 9 5. Matching Quiz 12 6. What Happens When? 14 7. The Fertilization Process 17 8. Care Before Birth 19 9. Research Project 20 10. Being a Parent 22 11. Stem Cells 23 Fact Sheets 1. The Menstrual Cycle 24 2. The Production of Sperm 26 3. Prenatal Care 27 4. Fetal Development 28 5. Screening Newborns for Inherited Diseases 31 6. Prenatal Pictures 32 7. Eating for Two 33 8. Fetal Alcohol Syndrome 35 9. What About Multiples? 36 10. Resources 38 11. Bibliography 39 Other Programs from Human Relations Media 40 HUMAN RELATIONS MEDIA HUMAN REPRODUCTION AND CHILDBIRTH HUMAN REPRODUCTION AND CHILDBIRTH DVD MENU MAIN MENU PLAY CHAPTER SELECTION From here you can access many different paths of the DVD, beginning with the introduction and ending with the credits. 1. Introduction 2. The Male Reproductive System 3. The Female Reproductive System 4. Fertilization and Pregnancy 5. First Trimester 6. Second and Third Trimester 7. -
Heterotopic Pregnancy and Septic Miscarriage:A Case Report
Journal of Gynecology and Women’s Health ISSN 2474-7602 Case Report J Gynecol Women’s Health Volume 18 Issue 5 - June 2020 Copyright © All rights are reserved by Frédéric Blavier DOI: 10.19080/JGWH.2020.18.556004 Heterotopic Pregnancy and Septic Miscarriage: A Case Report Illustrating Risks of “Medical Shopping”, Mostly for Tricky Diagnoses Frédéric B1,2, Gilles F1, Danah VO1, Noëlie D3 and Leonardo G1 1Department of Obstetrics and Prenatal Medicine, UZ Brussel University Hospital, Belgium 2Department of gynecological surgery, Arnaud de Villeneuve Hospital, France 3Department of Gynecology, UZ Brussel University Hospital, Belgium Submission: May 09, 2020; Published: June 09, 2020 *Corresponding author: Frédéric Blavier, Department of Obstetrics and Prenatal Medicine, UZ Brussel University Hospital, Belgium and Department of gynecological surgery, Arnaud de Villeneuve Hospital, France Abstract Background: Spontaneous heterotopic pregnancy and septic miscarriage are both rare and, each, associated with potential severe morbidity (shock, potential infertility) and mortality. Case presentation: A young and spontaneously pregnant woman presented acute abdomen and spotting with an empty uterus, liquid in for a suspected ectopic pregnancy, were discovered ascites, and pus in the right fallopian tube. After surgery, we observed a multiple organ the Douglas and a right tube mass in ultrasound with positif hCG and moderate inflammation, without fever. During the laparoscopy performed mechanical ventilation, temporary hemodialysis and broad-spectrum antibiotherapy, the patient recovered without neurological or systemic failure (ARDS, DIC, kidneys and liver insufficiencies) with severe inflammation and several collections in the uterine wall. After hysterectomy, abortion diagnosed one week ago in a third hospital also in Brussels. The multiple organ failure, the pus in the right fallopian tube (observed duringsequelae. -
World Fertility and Family Planning 2020: Highlights (ST/ESA/SER.A/440)
World Fertility and Family Planning 2020 Highlights ST/ESA/SER.A/440 Department of Economic and Social Affairs Population Division World Fertility and Family Planning 2020 Highlights United Nations New York, 2020 The Department of Economic and Social Affairs of the United Nations Secretariat is a vital interface between global policies in the economic, social and environmental spheres and national action. The Department works in three main interlinked areas: (i) it compiles, generates and analyses a wide range of economic, social and environmental data and information on which States Members of the United Nations draw to review common problems and take stock of policy options; (ii) it facilitates the negotiations of Member States in many intergovernmental bodies on joint courses of action to address ongoing or emerging global challenges; and (iii) it advises interested Governments on the ways and means of translating policy frameworks developed in United Nations conferences and summits into programmes at the country level and, through technical assistance, helps build national capacities. The Population Division of the Department of Economic and Social Affairs provides the international community with timely and accessible population data and analysis of population trends and development outcomes for all countries and areas of the world. To this end, the Division undertakes regular studies of population size and characteristics and of all three components of population change (fertility, mortality and migration). Founded in 1946, the Population Division provides substantive support on population and development issues to the United Nations General Assembly, the Economic and Social Council and the Commission on Population and Development. It also leads or participates in various interagency coordination mechanisms of the United Nations system. -
Human Physiology/The Male Reproductive System 1 Human Physiology/The Male Reproductive System
Human Physiology/The male reproductive system 1 Human Physiology/The male reproductive system ← The endocrine system — Human Physiology — The female reproductive system → Homeostasis — Cells — Integumentary — Nervous — Senses — Muscular — Blood — Cardiovascular — Immune — Urinary — Respiratory — Gastrointestinal — Nutrition — Endocrine — Reproduction (male) — Reproduction (female) — Pregnancy — Genetics — Development — Answers Introduction In simple terms, reproduction is the process by which organisms create descendants. This miracle is a characteristic that all living things have in common and sets them apart from nonliving things. But even though the reproductive system is essential to keeping a species alive, it is not essential to keeping an individual alive. In human reproduction, two kinds of sex cells or gametes are involved. Sperm, the male gamete, and an egg or ovum, the female gamete must meet in the female reproductive system to create a new individual. For reproduction to occur, both the female and male reproductive systems are essential. While both the female and male reproductive systems are involved with producing, nourishing and transporting either the egg or sperm, they are different in shape and structure. The male has reproductive organs, or genitals, that are both inside and outside the pelvis, while the female has reproductive organs entirely within the pelvis. The male reproductive system consists of the testes and a series of ducts and glands. Sperm are produced in the testes and are transported through the reproductive ducts. These ducts include the epididymis, ductus deferens, ejaculatory duct and urethra. The reproductive glands produce secretions that become part of semen, the fluid that is ejaculated from the urethra. These glands include the seminal vesicles, prostate gland, and bulbourethral glands. -
Knowledge About Human Reproduction and Experience of Puberty 4
KNOWLEDGE ABOUT HUMAN REPRODUCTION AND EXPERIENCE OF PUBERTY 4 4.1 KNOWLEDGE AND EXPERIENCE OF PUBERTY Knowledge of the physiology of human reproduction and the means to protect oneself against sexual or reproductive problems and diseases should be available to adolescents. Better knowledge of these subjects among young adults will lead to correct attitudes and responsible reproductive health behavior. 4.1.1 Knowledge of Physical Changes In the 2002-2003 Indonesia Young Adult Reproductive Health Survey (IYARHS), respondents were asked several questions to measure their knowledge about human reproduction and the experience of puberty. They were asked to name any physical changes that a boy or a girl goes through during the transition from childhood to adolescence. The responses were spontaneous, without any prompting from the interviewer. The findings are presented in Table 4.1. It is interesting to note that while the respondents may have experienced some of the physical changes listed in the questionnaire, some may not have recognized them as part of the process of growing up into adulthood; others may not report them to the interviewer. Table 4.1 Knowledge of physical changes at puberty Percentage of unmarried women and men age 15-24 who know of specific physical changes in a boy and a girl at puberty, by age, IYARHS 2002-2003 Women Men Indicators of physical changes 15-19 20-24 Total 15-19 20-24 Total In a boy Develop muscles 26.3 27.7 26.8 33.1 30.4 32.0 Change in voice 52.2 65.6 56.7 35.5 44.6 39.2 Growth of facial hair, pubic hair, -
The Role of Jelly Coats in Sperm-Egg Encounters, Fertilization Success, and Selection on Egg Size in Broadcast Spawners
vol. 157, no. 6 the american naturalist june 2001 The Role of Jelly Coats in Sperm-Egg Encounters, Fertilization Success, and Selection on Egg Size in Broadcast Spawners Gregory S. Farley* and Don R. Levitan† Department of Biological Science, Florida State University, 1996a, 1998b; Coma and Lasker 1997). The proposed mech- Tallahassee, Florida 32306-1100 anism generating this result is simply that larger egg targets are more likely to be struck by swimming sperm (Rothschild Submitted February 2, 2000; Accepted January 19, 2001 and Swann 1949, 1951; Vogel et al. 1982). This finding has generated the hypothesis that sperm availability can influ- ence the evolutionary trade-off between egg size and num- ber (Levitan 1993, 1996a, 1996b, 1998a, 1998b). However, abstract: Sperm limitation may be an important selective force the idea that fertilization kinetics might influence this trade- influencing gamete traits such as egg size. The relatively inexpensive off has been challenged because of the notion that extra- extracellular structures surrounding many marine invertebrate eggs might serve to enhance collision rates without the added cost of cellular structures or chemoattractants may increase sperm- increasing the egg cell. However, despite decades of research, the egg collisions yet may not represent as great a cost to effects of extracellular structures on fertilization have not been con- fecundity as the trade-off associated with increased egg size clusively documented. Here, using the sea urchin Lytechinus varie- (Podolsky and Strathmann 1996; Styan 1998). These con- gatus, we remove jelly coats from eggs, and we quantify sperm col- tradictory ideas have not been resolved because data de- lisions to eggs with jelly coats, eggs without jelly coats, and inert tailing the influence of extracellular materials on fertilization plastic beads. -
Fertilization Selection on Egg and Jelly-Coat Size in the Sand Dollar Dendraster Excentricus
Evolution, 55(12), 2001, pp. 2479±2483 FERTILIZATION SELECTION ON EGG AND JELLY-COAT SIZE IN THE SAND DOLLAR DENDRASTER EXCENTRICUS DON R. LEVITAN1,2 AND STACEY D. IRVINE2 1Department of Biological Science, Florida State University, Tallahassee, Florida 32306-1100 2Bam®eld Marine Station, Bam®eld, British Columbia VOR 1B0, Canada Abstract. Organisms with external fertilization are often sperm limited, and in echinoids, larger eggs have a higher probability of fertilization than smaller eggs. This difference is thought to be a result of the more frequent sperm- egg collisions experienced by larger targets. Here we report how two components of egg target size, the egg cell and jelly coat, contributed to fertilization success in a selection experiment. We used a cross-sectional analysis of correlated characters to estimate the selection gradients on egg and jelly-coat size in ®ve replicate male pairs of the sand dollar Dendraster excentricus. Results indicated that eggs with larger cells and jelly coats were preferentially fertilized under sperm limitation in the laboratory. The selection gradients were an average of 922% steeper for egg than for jelly- coat size. The standardized selection gradients for egg and jelly-coat size were similar. Our results suggest that fertilization selection can act on both egg-cell and jelly-coat size but that an increase in egg-cell volume is much more likely to increase fertilization success than an equal change in jelly-coat volume. The strengths of the selection gradients were inversely related to the correlation of egg traits across replicate egg clutches. This result suggests the importance of replication in studies of selection of correlated characters. -
Alcohol, Caffeine, and Ivf Success Pesticide Residues
E N V I R O N M E N T A N D R E P R O D U C T I V E H E A L T H ( E A R T H ) S T U D Y N E W S L E T T E R SPRING 2018 | VOL 3 HARVARD T.H. CHAN SCHOOL OF PUBLIC HEALTH, MASSACHUSETTS GENERAL HOSPITAL ALCOHOL, CAFFEINE, AND IVF SUCCESS GREETINGS, Alcohol and caffeine have often been the focus of dietary research We are excited to share our recent findings studies on fertility. Results of these studies have been inconsistent; from the Environment and Reproductive some show benefits while others show no effect or possibly reduced Health (EARTH) Study in our 2018 newsletter! fertility. In the EARTH Study, we found that low to moderate consumption of alcohol and caffeine in the year prior to infertility It has been almost 15 years since the EARTH treatment was not associated with IVF outcomes. Our results suggest Study first began. Thanks to your that women's alcohol intake of less than one alcoholic beverage per participation, we continue to learn more day and caffeine intake below 200mg/day (less than one 12oz cup of about the impact of the environment and coffee per day) in the year prior to IVF did not affect their chances of diet on fertility and pregnancy outcomes successful fertility treatment. We also found that men’s caffeine and among couples recruited from the alcohol consumption did not affect their semen quality (Abadia et al, Massachusetts General Hospital (MGH) Human Reproduction 2017; Karmon et al., Andrology 2017). -
INTRODUCTION to REPRODUCTIVE HEALTH and the ENVIRONMENT (Draft for Review)
TRAINING FOR THE HEALTH SECTOR [Date…Place…Event…Sponsor…Organizer] INTRODUCTION TO REPRODUCTIVE HEALTH AND THE ENVIRONMENT (Draft for review) Training Module 1 Children's Environmental Health Public Health and the Environment World Health Organization www.who.int/ceh November 2011 1 <<NOTE TO USER: Please add details of the date, time, place and sponsorship of the meeting for which you are using this presentation in the space indicated.>> <<NOTE TO USER: This is a large set of slides from which the presenter should select the most relevant ones to use in a specific presentation. These slides cover many facets of the issue. Present only those slides that apply most directly to the local situation in the region or country.>> <<NOTE TO USER: This module presents several examples of risk factors that affect reproductive health. You can find more detailed information in other modules of the training package that deal with specific risk factors, such as lead, mercury, pesticides, persistent organic pollutants, endocrine disruptors, occupational exposures; or disease outcomes, such as developmental origins of disease, reproductive effects, neurodevelopmental effects, immune effects, respiratory effects, and others.>> <<NOTE TO USER: For more information on reproductive health, please visit the website of the Department of Reproductive Health and Research at WHO: www.who.int/reproductivehealth/en/>> 1 Reproductive Health and the Environment (Draft for review) LEARNING OBJECTIVES After this presentation individuals should be able to understand, recognize, and know: Basic components of reproductive health Basic hormone and endocrine functions Reproductive physiology Importance of environmental exposures on reproductive health endpoints 2 <<READ SLIDE.>> According to the formal definition by the World Health Organization (WHO), health is more than absence of illness. -
Knowledge, Intentions, and Beliefs About Fertility and Assisted
KNOWLEDGE, INTENTIONS, AND BELIEFS ABOUT FERTILITY AND ASSISTED REPRODUCTIVE TECHNOLOGY AMONG ILLINOIS COLLEGE STUDENTS by Akilah Morris Smith B.S., Illinois State University, 2006 M.S., Illinois State University, 2008 A Dissertation Submitted in Partial Fulfillment of the Requirements for the Doctorate in Philosophy Department of Public Health and Recreation Professions in the College of Education Southern Illinois University Carbondale Spring 2018 Copyright by Akilah Morris Smith, 2018 All Rights Reserved i DEDICATION I want to thank My Heavenly Father for all his guidance, support and love during this time. Thanks for challenging and blessing me. I have learned that you are authentic and real in my life. I also want to thank my mother and father Olivia and Arthur Morris for loving and supporting me unconditionally through this time. I am grateful for the best brother in the world Oheni Morris, thank you for your light heartedness, positivity and love. Thanks to my husband Wayon Smith III, son Wayon Smith IV (KJ) and in laws Mr. and Mrs. Wayon Simth Jr. and Mrs. Faye Freeman Smith for helping me during graduate school. ii ACKNOWLEDGEMENTS Thanks to my extended family and friends who listened and added valuable input during this season of my life. Special thanks to Dr. Ogletree, Dr. Wallace, Dr. Melonie Ewing, Dr. Shelby Caffey, and Dr. Diehr for their commitment in seeing me through this process. iii AN ABSTRACT OF THE DISSERTATION OF AKILAH MORRIS SMITH, for the Doctor of Philosophy degree in Public Health, presented on April 11th 2018, at Southern Illinois University Carbondale. TITLE: KNOWLEDGE, INTENTIONS, AND BELIEFS ABOUT FERTILITY AND ASSISTED REPRODUCTIVE TECHNOLOGY AMONG ILLINOIS COLLEGE STUDENTS MAJOR PROFESSOR: Roberta Ogletree H.S.D and Juliane P.