Petrology and Geochemistry of the Nipissing Gabbro: Exploration Strategies for Nickel, Copper, and Platinum Group Elements in a Large Igneous Province

Total Page:16

File Type:pdf, Size:1020Kb

Petrology and Geochemistry of the Nipissing Gabbro: Exploration Strategies for Nickel, Copper, and Platinum Group Elements in a Large Igneous Province Petrology and Geochemistry of the Nipissing Gabbro: Exploration Strategies for Nickel, Copper, and Platinum Group Elements in a Large Igneous Province Ontario Geological Survey Study 58 1996 Petrology and Geochemistry of the Nipissing Gabbro: Exploration Strategies for Nickel, Copper, and Platinum Group Elements in a Large Igneous Province Ontario Geological Survey Study 58 by P.C. Lightfoot and A.J. Naldrett 1996 Queen’s Printer for Ontario, 1996 ISSN 0704-2590 ISBN 0-778-4804-X All publications of the Ontario Geological Survey and the Ministry of Northern Development and Mines are available for viewing and purchase at the following locations: Mines and Minerals Information Centre (MMIC) Macdonald Block, Room M2-17 900 Bay Street Toronto, Ontario M7A 1C3 Telephone: 1-800-665-4480 (within Ontario) (416) 314-3800 Fax: (416) 314-3797 Publication Sales 933 Ramsey Lake Road, Level B2 Sudbury, Ontario P3E 6B5 Telephone: (705) 670-5691 Fax: (705) 670-5770 E-mail: [email protected] Use of Visa or Mastercard ensures the fastest possible service. Cheques or money orders should be made payable to the Minister of Finance. Canadian Cataloguing in Publication Data Lightfoot, Peter C. (Peter Charles) Petrology and Geochemistry of the Nipissing gabbro: exploration strategies for nickel, copper, and platinum group elements in a large igneous province (Ontario Geological Survey report, ISSN 0704-2590; 58) Includes bibliographical references. ISBN 0-7778-4804-X 1. Gabbro---Ontario---Nipissing Region. I. Naldrett, A.J. II. Ontario Ministry of Northern Development and Mines III. Ontario Geological Survey. IV. Series. QE462.G3L53 1995 552’.3 C95-964107-6 Every possible effort is made to ensure the accuracy of the information contained in this report, but the Ministry of Northern Development and Mines does not assume any liability for errors that may occur. Source references are included in the report and users may wish to verify critical information. If you wish to reproduce any of the text, tables or illustrations in this report, please write for permission to the Manager, Publication Services Section, Ministry of Northern Development and Mines, 933 Ramsey Lake Road, Level B4, Sudbury, Ontario P3E 6B5. Cette publication est disponible en anglais seulement. Parts of this report may be quoted if credit is given. It is recommended that reference be made in the following form: Lightfoot, P.C. and Naldrett, A.J., 1996. Petrology and geochemistry of the Nipissing Gabbro: Exploration strategies for nickel, copper, and platinum group elements in a large igneous province; Ontario Geological Survey, Study 58, 81p. Critical Reader: J.A. Fyon Editor: T. Ayalew ii Contents Objective and Approach of the Present Study.................................................. 3 Acknowledgements ..................................................................... 6 Introduction and General Geology........................................................ 6 Empirical Metallogeny of the Nipissing Gabbro................................................ 9 Sampling and Analysis .................................................................. 11 Effects of the Textural Variations in the Gabbro on the Analytical Data........................ 11 Geochemical Evidence for the Emplacement and In-situ Differentiation of Nipissing Intrusions.... 12 Duration of Nipissing Magmatic Activity and Associated Compositional Variation............... 24 Compositional Variation in the Parental Nipissing Magma Type............................... 26 Empirical Observations Related to Mineral Potential, Land Use Planning and Exploration........ 37 Further Work .......................................................................... 48 Conclusions ........................................................................... 48 Appendix 1: Sampling, Analysis, Geology, Petrography and Mineralogy of the Nipissing Intrusions..... 49 1.1 Sampling and Analysis ............................................................. 49 1.2 Age and Distribution: .............................................................. 49 1.2.1 Differentiation ................................................................ 49 1.2.2 Thickness .................................................................... 49 1.2.3 Emplacement sites ............................................................. 49 1.2.4 Deformation .................................................................. 50 1.3.1 Geology of the Nipissing sills and dykes around Lake Temagami...................... 50 1.4 Geology of the Kerns Sill........................................................... 50 1.5 Petrography and Mineralogy of the Nipissing Gabbro................................... 56 1.6 Metamorphism of the Nipissing Gabbro.............................................. 65 Appendix 2 ............................................................................... 66 2.1 Assimilation and Fractional Crystallisation in the Kerns Intrusion - a Case Study of the Physical Process ............................................................. 66 References ............................................................................... 76 Conversion Factors for Measurements in Ontario Geological Survey Publications.................... 80 FIGURES 1a. Distribution of Nipissing gabbro across the Southern Province................................... 4 1b. Sketch diagram showing the relationship between the petrology of the undulatory sills and the associated mineralisation ................................................................ 5 1c. Typical sequence of lithologies seen in a well-differentiated intrusion of Nipissing gabbro showing the relationship between silicate rocks and sulphide mineralization....................... 6 1d. Location of samples and results from U-Pb geochronology work................................. 7 2. Regional tectonic setting of the Nipissing gabbro and the location of the 2.2 Ga Preissac Dyke Swarm ........................................................................... 7 3a. Ni versus forsterite relationships in olivines from the Cross Lake Sill.............................. 12 3b. PGE distribution patterns for the Rathbun Lake showing (after Lightfoot et al., 1993 and Rowell and Edgar, 1986) ................................................................. 12 4. Geological relationships between Nipissing intrusions, mineralisation, and geophysical anomalies, Paleoproterozoic mineralisation, and the Sudbury Igneous Complex..................... 13 5a. Comparison of primitive mantle normalised spidergrams on vari-textured gabbronorite patches and gabbronorite host; Emerald Lake gabbro........................................... 18 5b. Comparison of primitive mantle normalised spidergrams on vari-textured gabbronorite patches and gabbronorite host; Basswood Lake Intrusion.............................................. 19 iii 6. Location of individual intrusive bodies and detailed study areas referenced in this report.............. 20 7a. Chemostratigraphy of the High Rock Intrusion, Lake Temagami................................. 21 7b. Primitive mantle normalised spidergrams of the High Rock Intrusion samples, Lake Temagami......... 21 7c. Primitive mantle normalised spidergrams of the High Rock Intrusion samples....................... 22 8. Geochemical stratigraphy of the Miller Lake Intrusion, Gowganda................................ 22 9a. Primitive-mantle normalised trace element spidergrams for representative samples from the Kerns Intrusion, northwest of New Liskeard Chilled basal quartz diabase, quartz diabase .......................................................................... 23 9b. Primitive-mantle normalised trace element spidergrams for representative samples from the Kerns Intrusion, northwest of New Liskeard Hypersthene gabbro.......................... 24 9c. Primitive-mantle normalised trace element spidergrams for representative samples from the Kerns Intrusion, northwest of New Liskeard Vari--textured gabbro......................... 25 9d. Primitive-mantle normalised trace element spidergrams for representative samples from the Kerns Intrusion, northwest of New Liskeard Granophyric gabbro.......................... 26 9e. Primitive-mantle normalised trace element spidergrams for representative samples from the Kerns Intrusion, northwest of New Liskeard Aplites.................................... 27 9f. Primitive-mantle normalised trace element spidergrams for representative samples from the Kerns Intrusion, northwest of New Liskeard Hornfelsed sediment rafts within the granophyric gabbro, and roof sediments. See text and Appendix 1 and Lightfoot et al. (1987) for detailed sample locations and descriptions...................................... 28 10. Geochemical variations in samples from the Kerns Intrusion, where elemental and oxide abundances are plotted against Zr concentration............................................... 29 11. a) VariationinThversusNb,b) Variation in Cu versus Zr in Nipissing gabbros, c) Variation in Cu/Zr versus SiO2 for all Nipissing gabbro samples.......................................... 35 12. a) Variation in 143Nd/144Nd versus 147Sm/144Nd in samples from the Kerns Intrusion and local country rocks. b) Relationship of the array of the Kerns Intrusion to isochron lines based on U - Pb geochronology for magmas with a range in initial 143Nd/144Nd isotopic composition............ 37 13. A model for the evolution of the Kerns Intrusion.............................................
Recommended publications
  • ON the ROCKS Newsletter of the Yorkshire Branch of the Open University Geological Society March 2018
    ON THE ROCKS Newsletter of the Yorkshire Branch of the Open University Geological Society March 2018 A view of Great Gable (899m – the 9th highest mountain in England), Cumbria, looking northeast from the end of Wast Water, where the River Irt starts its short journey to the Irish Sea. Wast Water is the deepest lake in England (76m). The mountains are all from the Borrowdale Volcanic Group. (Peter Roberts 27.3.17 Grid Ref: NY 14535 03878) Welcome to the Spring edition of your newsletter Contents I hope you enjoy reading it and feel inspired to contribute to future issues. I must 1. Editor’s piece start with an apology. Unfortunately, the minutes of the AGM are not yet available 2. Rick’s musings but will be appearing in the next issue along with a copy of the accounts. 3. - 6. Blencathra report 7. Guide to minerals Our main article this time is the first of a number of reports by Peter Vallely on last 7. Obituary autumn’s Blencathra trip, and, if the photos are anything to go by, the hardy 8. Climate change article participants enjoyed a lovely sunny, if rather chilly, day out. 9. YOUGS 2018 field trips Peter Roberts has kindly provided the above photo, and we have another “simple 10. Snippets guide to minerals”, David Cousins’ personal view on surviving climate change, an 11. 2018 Blencathra obituary to Bill Graham who was a long-time Branch member, and a full listing of this year’s field trips, including separate details of this year’s Blencathra trip.
    [Show full text]
  • Temagami Area Rock Art and Indigenous Routes
    Zawadzka Temagami Area Rock Art 159 Beyond the Sacred: Temagami Area Rock Art and Indigenous Routes Dagmara Zawadzka The rock art of the Temagami area in northeastern Ontario represents one of the largest concentrations of this form of visual expression on the Canadian Shield. Created by Algonquian-speaking peoples, it is an inextricable part of their cultural landscape. An analysis of the distribution of 40 pictograph sites in relation to traditional routes known as nastawgan has revealed that an overwhelming majority are located on these routes, as well as near narrows, portages, or route intersections. Their location seems to point to their role in the navigation of the landscape. It is argued that rock art acted as a wayfinding landmark; as a marker of places linked to travel rituals; and, ultimately, as a sign of human occupation in the landscape. The tangible and intangible resources within which rock art is steeped demonstrate the relationships that exist among people, places, and the cultural landscape, and they point to the importance of this form of visual expression. Introduction interaction in the landscape. It may have served as The boreal forests of the Canadian Shield are a boundary, resource, or pathway marker. interspersed with places where pictographs have Therefore, it may have conveyed information that been painted with red ochre. Pictographs, located transcends the religious dimension of rock art and most often on vertical cliffs along lakes and rivers, of the landscape. are attributed to Algonquian-speaking peoples and This paper discusses the rock art of the attest, along with petroglyphs, petroforms, and Temagami area in northeastern Ontario in relation lichen glyphs, to a tradition that is at least 2000 to the traditional pathways of the area known as years old (Aubert et al.
    [Show full text]
  • Low Force and Holwick Are in the North Pennines Area of Outstanding Natural Beauty (AONB) and Geology and Landscape Around European Geopark
    Low Force and Holwick are in the North Pennines Area of Outstanding Natural Beauty (AONB) and Geology and landscape around European Geopark European Geoparks The North Pennines AONB is Britain’s first European Low Force Geopark, a status supported by UNESCO, and a founding member of the Global Geoparks Network. Geoparks are special places with outstanding geology and landscape, and Holwick and where there are strong local efforts to make the most of geological heritage through interpretation, education, conservation and nature tourism. To find out more visit www.europeangeoparks.org A 2½-mile walk exploring landscape, Walk starts from here rocks, fossils and mines North Pennines Moor House – Upper Teesdale National Nature AONB & European Reserve (NNR) Geopark © Crown Copyright. All rights reserved. Part of this walk (south of the River Tees near Low Force) is Durham County Council. LA100049055. 2011. within the Moor House – Upper Teesdale NNR. This large reserve contains an almost complete range of upland For more information please contact: habitats typical of the North Pennines, from hay meadows North Pennines AONB Partnership, +44 (0)1388 528801 and juniper woods to limestone grassland and blanket bog. Weardale Business Centre, [email protected] It also includes the waterfalls of Cauldron Snout and High The Old Co-op Building, www.northpennines.org.uk 1 Martin Street, Stanhope, twitter.com/NorthPennAONB Force. For more information contact the Reserve Base on Bishop Auckland, County Durham facebook.com/NorthPenninesAONB 01833 622374. DL13 2UY Find out more about North Pennine geology This leaflet is one of a series of geological publications about the North Pennines.
    [Show full text]
  • Knock Geological Trail 3 Swindale Beck This Trail Is Approximately 9.5Km Long
    the financial assistance of English Nature, Heritage Lottery Fund and the Countryside Agency Countryside the and Fund Lottery Heritage Nature, English of assistance financial the rdcdb ot ennsAN atesi,BiihGooia uvyadEgihNtr,with Nature, English and Survey Geological British Partnership, AONB Pennines North by Produced contact Appleby TIC: 017683 51177. 017683 TIC: Appleby contact For further information about the area, including public transport, public including area, the about information further For www.english-nature.org.uk Moor House-Upper Teesdale Reserve Base: 01833 622374 01833 Base: Reserve Teesdale House-Upper Moor English Nature Northumbria Team Office: 01661 845500 01661 Office: Team Northumbria Nature English Elizabeth Pickett (BGS) and to Eric Johnson Eric to and (BGS) Pickett Elizabeth Thanks to Charlotte Vye, Stu Clarke and Clarke Stu Vye, Charlotte to Thanks www.northpennines.org.uk Partnership on 01388 528801 or visit or 528801 01388 on Partnership contact the North Pennines AONB Pennines North the contact To find out more, out find To Network. Geoparks Please do not camp or light fires. light or camp not do Please founding member of the UNESCO Global UNESCO the of member founding also Britain's first European Geopark and a and Geopark European first Britain's also nesting birds and grazing livestock. grazing and birds nesting special places.The North Pennines AONB is AONB Pennines North places.The special keep dogs on a lead to avoid disturbing ground disturbing avoid to lead a on dogs keep , one of England's wildest and most and wildest England's of , one (AONB) Please follow the Countryside Code, in particular in Code, Countryside the follow Please Area of Outstanding Natural Beauty Natural Outstanding of Area this area.
    [Show full text]
  • THE WHIN SILL Quartz-Dolerite, Dark in Colour
    The rock itself is mainly fine to medium-grained THE WHIN SILL quartz-dolerite, dark in colour. It is tough stuff Alan Gill and makes excellent road stone. You may well have driven on it. One of the many interesting geological features in the north of England is the Whin Sill. This is essentially a subterranean layer of igneous rock underlying much of Northumberland, north east Cumbria, along the Pennine escarpment and in Teesdale. Its area is estimated to be at least 5000 sq km. The maximum thickness recorded is 75m but the average is between 25m and 50m. In many places the intrusion separates into two or more layers divided by several hundred metres induced by joint and fault planes. There are dykes associated with the Whin Sill forming together one single petrographic province. It is possible that these were the conduits through which the magma flowed prior to solidification. The proximity of the sill to the Carboniferous Limestone Series led some geologists to conclude that the sill originated as a contemporaneous lava flow. Sedgwick however advocated its Fig 2: High Force on the River Tees showing the intrusive origin as early as 1826, and was proved vertical structure of the Whin Sill resting on the right later in 1870. It was the subject, of pioneer horizontal Tynebottom Limestone. isotopic age determination by Arthur Holmes. The evidence suggests that the Whin Sill was intruded in late Carboniferous Times; an age of 295 +/- 6my has been computed. There are many good outcrops; the sea cliffs of the Farne Islands - the Romans saw a good thing when they built their wall along the north facing escarpments.
    [Show full text]
  • Lindisfarne Castle a Rock Mass Stability Assessment
    COOLING PRIZE PAPER Lindisfarne Castle A Rock Mass Stability Assessment Katherine Jones, Dunelm Geotechnical and Environmental Abstract Figure 1: The Lindisfarne Castle is built on an outcrop of the Locations of FIGURE 1 Whin Sill, which has a strong joint sequence due to the discontinuity WESTERN END slow cooling of the igneous intrusion. The orientation surveys © 2003 DS4 Gentles Limited, and distribution of these discontinuities may lead to the Low Level Aerial structural integrity of the castle becoming compromised. Photography This paper uses discontinuity survey data to assess the DS3 stability of the historic monument, which has long been an iconic symbol of the region. Walkover survey observations are described and locally DS5 DS2 surveyed discontinuity data is used to characterise jointing patterns within the Whin Sill outcrop. This is used to provide a representative record of the rock condition, DS1 together with a visual assessment of the slope stability. During the assessment, consideration was made of the impact of plant growth on the slope, in particular red DS6 valerian, and its effect on the stability of the rock face. 1.0 Introduction DS7 1.1 General Background The Lindisfarne Castle, situated on Holy Island, Northumberland, was constructed in the 16th century, long before engineering standards became common practice. Now a National Trust-owned property, the castle is situated on a steep outcrop of the Holy Island dyke, an offshoot of the Whin Sill (Goulty et al 2000), which has been noted in recent years to be disintegrating. Discontinuity characteristics within the rock mass play an DS8 important role in the stability of the faces of the outcrop, and the security of the structures founded above them.
    [Show full text]
  • County Durham Landscape Character Assessment
    THE DURHAM LANDSCAPE The Durham Landscape Physical influences Human influences The modern landscape Perceptions of the landscape Designated landscapes 7 THE DURHAM LANDSCAPE PHYSICAL INFLUENCES Physical influences The Durham landscape is heavily influenced by the character of its underlying rocks, by the effects of erosion and deposition in the last glacial period, and by the soils that have developed on the post-glacial terrain under the influence of the climatic conditions that have prevailed since then. Geology The geology of the county is made up of gently folded Carboniferous rocks dipping towards the east where they are overlain by younger Permian rocks. In the west, thinly bedded sandstones, mudstones and limestones of the Carboniferous Limestone series (Dinantian period) outcrop in the upper dales and are overlain by similar rocks of the Millstone Grit series (Namurian period), which form most of the upland fells. The alternating strata of harder and softer rocks give a stepped profile to many dale sides and distinctive flat-topped summits to the higher fells. Older Ordovician rocks, largely made up of pale grey mudstones or slates showing a degree of metamorphism, occur in a small inlier in upper Teesdale. The rocks of the Millstone Grit series are overlain in the north by the Lower and Middle Coal Measures (Westphalian period) which fall from the upland fringes to the lowlands of the Wear and dip under the Permian Limestone in the east. The soft and thinly bedded strata of coal, sandstone and mudstone have been eroded to form gently sloping valley sides where occasional steeper bluffs mark thicker beds of harder sandstones.
    [Show full text]
  • NW Timagami Area
    THESE TERMS GOVERN YOUR USE OF THIS DOCUMENT Your use of this Ontario Geological Survey document (the “Content”) is governed by the terms set out on this page (“Terms of Use”). By downloading this Content, you (the “User”) have accepted, and have agreed to be bound by, the Terms of Use. Content: This Content is offered by the Province of Ontario’s Ministry of Northern Development and Mines (MNDM) as a public service, on an “as-is” basis. Recommendations and statements of opinion expressed in the Content are those of the author or authors and are not to be construed as statement of government policy. You are solely responsible for your use of the Content. You should not rely on the Content for legal advice nor as authoritative in your particular circumstances. Users should verify the accuracy and applicability of any Content before acting on it. MNDM does not guarantee, or make any warranty express or implied, that the Content is current, accurate, complete or reliable. MNDM is not responsible for any damage however caused, which results, directly or indirectly, from your use of the Content. MNDM assumes no legal liability or responsibility for the Content whatsoever. Links to Other Web Sites: This Content may contain links, to Web sites that are not operated by MNDM. Linked Web sites may not be available in French. MNDM neither endorses nor assumes any responsibility for the safety, accuracy or availability of linked Web sites or the information contained on them. The linked Web sites, their operation and content are the responsibility of the person or entity for which they were created or maintained (the “Owner”).
    [Show full text]
  • Geology of the Canadian Shield in Ontario
    ISSN 0826-9580 ISBN 978-1-4249-3434-8 THESE TERMS GOVERN YOUR USE OF THIS DOCUMENT Your use of this Ontario Geological Survey document (the “Content”) is governed by the terms set out on this page (“Terms of Use”). By downloading this Content, you (the “User”) have accepted, and have agreed to be bound by, the Terms of Use. Content: This Content is offered by the Province of Ontario’s Ministry of Northern Development and Mines (MNDM) as a public service, on an “as-is” basis. Recommendations and statements of opinion expressed in the Content are those of the author or authors and are not to be construed as statement of government policy. You are solely responsible for your use of the Content. You should not rely on the Content for legal advice nor as authoritative in your particular circumstances. Users should verify the accuracy and applicability of any Content before acting on it. MNDM does not guarantee, or make any warranty express or implied, that the Content is current, accurate, complete or reliable. MNDM is not responsible for any damage however caused, which results, directly or indirectly, from your use of the Content. MNDM assumes no legal liability or responsibility for the Content whatsoever. Links to Other Web Sites: This Content may contain links, to Web sites that are not operated by MNDM. Linked Web sites may not be available in French. MNDM neither endorses nor assumes any responsibility for the safety, accuracy or availability of linked Web sites or the information contained on them. The linked Web sites, their operation and content are the responsibility of the person or entity for which they were created or maintained (the “Owner”).
    [Show full text]
  • The Whin Sill You Can See Dramatic Exposures of the Whin Sill at Several Places in Northern England
    Where to see the Whin Sill You can see dramatic exposures of the Whin Sill at several places in northern England. Visit Upper Teesdale in the North Pennines to see it at the waterfalls of High Force, Low Force and Cauldron Snout, and at the crags of Holwick Scars, Falcon Clints and Cronkley Scar. The North Pennines is one of England’s most special places – a peaceful, unspoilt landscape with a rich history and vibrant Holwick Scars natural beauty. In recognition of this it is designated as an ▲ Area of Outstanding Natural Beauty (AONB). The area is also a The Whin Sill Global Geopark – an accolade endorsed by UNESCO. ▲ Falcon Clints The Whin Sill is one of the most famous and dramatic natural features of the North Pennines – and its origins are just as spectacular. North Pennines AONB Partnership NorthPenninesAONB www.northpennines.org.uk @NorthPennAONB +44 (0)1388 528801 northpennines [email protected] northpennaonb ▲ On the North Pennine escarpment, near Dufton, the The AONB Partnership has a Green Whin Sill forms a spectacular ring of cliffs towering over Tourism award for its corporate office the deep valley of High Cup Gill. In Weardale you can see the Little Whin Sill in the Rookhope Burn and in the disused quarry at Greenfoot, near Stanhope. In the Northumberland Coast AONB the Whin Sill forms the Farne Islands and some dramatic stretches of coastline. In the Supported by: Northumberland National Park the Whin Sill is a formidable natural rampart for Hadrian’s Wall. Front cover photo: High Force, Upper Teesdale Unless otherwise credited, all photographs © NPAP/Elizabeth Pickett 01/15/8K Printed on 150gsm Revive 100 Silk The Whin Sill is one of the most famous and dramatic natural features of Working the whinstone the North Pennines – and its origins are just as spectacular.
    [Show full text]
  • A Geological Outline of the Northern Pennines
    A GEOLOGICAL OUTLINE OF THE NORTHERN PENNINES Brief notes to introduce essential features of the area’s geology relevant to mining sites under investigation as part of the AONB OREsome Project Prepared for the North Pennine AONB OREsome Project By B. YOUNG B Sc, C Eng, FIMM Honorary research Fellow, Department of Earth Sciences, University of Durham OREsome Geology Report No. 2. November 2016 © B.Young 2016 1 CONTENTS Page WELCOME & DON’T PANIC! 3 1. INTRODUCTION 4 2. THE NORTHERN PENNINE OREFIELD: A BRIEF GEOLOGICAL SUMMARY 4 2.1. BEDROCK or ‘SOLID’ GEOLOGY 4 Basement rocks 5 Carboniferous rocks 5 The Whin Sill 7 The Cleveland-Armathwaite Dyke 7 2.2. SUPERFICIAL of ‘DRIFT’ GEOLOGY 7 3. THE MINERAL DEPOSITS OF THE NORTHERN PENNINE OREFIELD 8 4. MINERALS OF THE NORTHERN PENNINE OREFIELD 12 5. MINERAL PRODUCTS OF THE NORTHERN PENNINE OREFIELD 13 6. INFORMATION SOURCES 14 6.1. Technical publications 14 6.2. Geological maps 15 2 WELCOME & DON’T PANIC! Thank you for volunteering to join this project, and in particular thank you for taking an interest in the geological aspects of what promises to be a useful and hopefully very enjoyable programme of work. I very much look forward to working with all volunteers in the variety of tasks we will be setting ourselves. The project organisers do not expect volunteers to be trained or expert geologists, archaeologists or ecologists, so please don’t be put off by repeated references to these - ologies! As you may already appreciate, all of the topics we will be exploring have much to offer and can be extremely rewarding even if you have no formal training or experience in those fields.
    [Show full text]
  • The Whin Sill You Can See Dramatic Exposures of the Whin Sill at Several Places in the North Pennines AONB Is Britain ’S First UNESCO European Northern England
    Where to see the Whin Sill You can see dramatic exposures of the Whin Sill at several places in The North Pennines AONB is Britain ’s first UNESCO European northern England. Visit Upper Teesdale in the North Pennines to see Geopark and is a founding member of the UNESCO Global it at the waterfalls of High Force, Low Force and Cauldron Snout, Geoparks Network. Geoparks are places where outstanding and at the crags of Holwick Scars, Falcon Clints and Cronkley Scar. geology is being used to support sustainable development . The To find out more, please contact: Holwick Scars L North Pennines AONB Partnership Weardale Business Centre L The Old Co-op Building Falcon Clints Whin Sill 1 Martin Street Stanhope, Co. Durham DL13 2UY +44 (0)1388 528801 [email protected] www.northpennines.org.uk www.europeangeoparks.org Front cover: High Force, Upper Teesdale Above right: Low Force, Upper Teesdale Unless otherwise credited, all photographs © NPAP/Elizabeth Pickett L We can provide a summary of the On the North Pennine escarpment , near Dufton, the Whin Sill forms a spectacular ring of cliffs towering over the deep valley of information contained in this High Cup Gill . publication in large print, different formats and other languages on request. Please call 01388 528801 for details. This leaflet was produced as part of the Rockworks project – an initiative of the: Rockworks is supported by: In Weardale you can see the Little Whin Sill in the Rookhope Burn and in the disused quarry at Greenfoot, near Stanhope. This publication is printed on Greencoat Plus Velvet paper: 80% recycled post consumer, FSC certification; NAPM recycled certification; 10%TCF virgin fibre; 10% ECF fibre.
    [Show full text]