Knowledge-Based Question Answering as Machine Translation Junwei Bao† ∗, Nan Duan‡ , Ming Zhou‡ , Tiejun Zhao† †Harbin Institute of Technology ‡Microsoft Research
[email protected] nanduan, mingzhou @microsoft.com {
[email protected]} Abstract 2013; Poon, 2013; Artzi et al., 2013; Kwiatkowski et al., 2013; Berant et al., 2013); Then, the answer- A typical knowledge-based question an- s are retrieved from existing KBs using generated swering (KB-QA) system faces two chal- MRs as queries. lenges: one is to transform natural lan- Unlike existing KB-QA systems which treat se- guage questions into their meaning repre- mantic parsing and answer retrieval as two cas- sentations (MRs); the other is to retrieve caded tasks, this paper presents a unified frame- answers from knowledge bases (KBs) us- work that can integrate semantic parsing into the ing generated MRs. Unlike previous meth- question answering procedure directly. Borrow- ods which treat them in a cascaded man- ing ideas from machine translation (MT), we treat ner, we present a translation-based ap- the QA task as a translation procedure. Like MT, proach to solve these two tasks in one u- CYK parsing is used to parse each input question, nified framework. We translate questions and answers of the span covered by each CYK cel- to answers based on CYK parsing. An- l are considered the translations of that cell; un- swers as translations of the span covered like MT, which uses offline-generated translation by each CYK cell are obtained by a ques- tables to translate source phrases into target trans- tion translation method, which first gener- lations, a semantic parsing-based question trans- ates formal triple queries as MRs for the lation method is used to translate each span into span based on question patterns and re- its answers on-the-fly, based on question patterns lation expressions, and then retrieves an- and relation expressions.