Big Sagebrush Shrub-Steppe Postfire Succession in Southwest Montana
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Flower Power
FLOWER POWER IDAHO BOTANICAL GARDEN WHAT IS A FLOWER? INSTRUCTIONAL OBJECTIVE: When students finish this project, they will have gained respect for the beauty of flowers and appreciate their ecological and practical importance. INTRODUCTION Dear Teacher, The Idaho Botanical Garden is an outdoor learning environment. We want to make your visit comfortable and enjoyable, and ask that your students are dressed appropriately for the weather and have water, especially in the warm weather months. TERMS Angiosperms: Flowering plants that produce seeds enclosed in a fruit. Anthers: The boxlike structures at the top of stamens, where pollen is produced. Botanical garden: A place where plants are collected and displayed for scientific, educational and artistic purposes. Fertilization: The union of male sperm cells and female egg cells. Filament: The stalk of the stamen. Flower: The reproductive structure of an angiosperm. Fruit: A ripened ovary conaining seeds. Nectar: The sweet liquid produced by flowers to attract pollinators. Ovary: The hollow compartment at the base of the pistil which contains ovules. It develops into a fruit containing seeds. Ovules: The structures in a flower ovary that can develop into seeds. Pistil: The female part of a flower; stigma, style, and ovary. Pollen: A yellow, powder-like material containing sperm cells. Pollen tubes: Tubes that carry sperm cells from the stigma into the ovary. Pollination: The process of pollen coming together with the stigma of a flower. Pollinators: Animals which carry pollen from one flower to another. Seed: A structure containing a baby plant and its food supply, which is surrounded by a protective seed coat. -
Grassland Resources and Development of Grassland Agriculture in Temperate China
124 Rangelands 10(3), June 1988 Grassland Resources and Development of Grassland Agriculture in Temperate China Zhu Tinachen Natural temperate grasslands occupy 2.4 million km2 or one-quarter ofthe area of China. They form a broad beltfrom the plains of the northeast to the Tibetan Plateau of the southwest (Fig. 1). The nature and distribution of thegrassland is determined in large part by the influence of the monsoon. In the north- east where the monsoon is well developed, the grassland owes its existenceto dry conditions in the spring. Westward and southwestward wherethe monsooninfluence is weaker, the grasslandsoccupy higherelevations (to as high as 5,000 m) in response to the semiarid and arid regional climate. Similarly, temperate grasslands occur at high elevations in mountains of the desert region in northwestern China, far beyond the continuous grassland belt. Some 4,000 species offlowering plants comprise thevegetation ofthese temper- ate grasslands.About 200 are important forage species. The livestock population in China is about 130 million Fig. I Steppe zone of China cattle units. Most of the livestock are dependent on these 1.Meadow steppe, 2.Typical steppe. 3.Desert steppe. 4. Shrub steppe. 5. Alpine steppe. natural temperategrasslands. GrasslandTypes responding to climate and distributed in the form of a belt. Meadows are not zonal; they are controlled by local envi- Based on the concept of zonal vegetation, the natural ronments.About 80 ofthe area of is occu- of China can be divided into two percent grassland temperategrasslands major pied by zone steppetypes and about 20 percent by meadow types: steppe and meadow. -
Perennials for Special Purposes
Perennials for Special Purposes Hot & Dry Areas • Sage, Perennial (Artemisia) Newly planted perennials will need regular • Sea Holly (Eryngium) watering until established. • Sea Lavender (Limonium) • Spurge, Cushion (Euphorbia • Aster polychroma) • Baby’s Breath • Statice, German (Gypsophila) (Goniolimon) • Beardtongue • Stonecrop (Sedum) (Penstemon) • Sunflower, False (Heliopsis) • Big Bluestem • Sunflower, Perennial (Helianthus) (Andropogon) • Switch Grass (Panicum) • Bitterroot (Lewisia) • Tickseed (Coreopsis) • Blanketflower (Gaillardia) • Tufted Hair Grass (Deschampsia) • Blue Oat Grass (Helictotrichon) • Yarrow (Achillea) • Cactus, Prickly Pear (Opuntia) • Yucca • Candytuft (Iberis sempervirens) • Cinquefoil (Potentilla) Groundcover for Sun • Coneflower (Echinacea) • Daisy, Painted (Tanacetum) • Baby’s Breath, Creeping • Daisy, Shasta (Leucanthemum x superbum) (Gypsophila repens) • Daylily (Hemerocallis) • Beardtongue, Spreading • Evening Primrose (Oenothera) (Penstemon) • False Indigo (Baptisia) • Bellflower, Spreading • Feather Reed Grass (Calamagrostis) (Campanula) • Fescue, Blue (Festuca glauca) • Cinquefoil (Potentilla) • Flax (Linum) • Cliff Green (Paxistima • Foxtail Lily (Eremurus) canbyi) • Globe Thistle (Echinops) • Cranesbill (Geranium) • Goldenrod (Solidago) • Gentian, Trumpet (Gentiana acaulis) • Helen’s Flower (Helenium) • Globe Daisy (Globularia) • Hens & Chicks (Sempervivum) • Hens & Chicks (Sempervivum) • Ice Plant (Delosperma) • Irish/Scotch Moss (Sagina subulata) • Lamb’s Ears (Stachys byzantina) • Kinnikinnick -
Stuart, Trees & Shrubs
Excerpted from ©2001 by the Regents of the University of California. All rights reserved. May not be copied or reused without express written permission of the publisher. click here to BUY THIS BOOK INTRODUCTION HOW THE BOOK IS ORGANIZED Conifers and broadleaved trees and shrubs are treated separately in this book. Each group has its own set of keys to genera and species, as well as plant descriptions. Plant descriptions are or- ganized alphabetically by genus and then by species. In a few cases, we have included separate subspecies or varieties. Gen- era in which we include more than one species have short generic descriptions and species keys. Detailed species descrip- tions follow the generic descriptions. A species description in- cludes growth habit, distinctive characteristics, habitat, range (including a map), and remarks. Most species descriptions have an illustration showing leaves and either cones, flowers, or fruits. Illustrations were drawn from fresh specimens with the intent of showing diagnostic characteristics. Plant rarity is based on rankings derived from the California Native Plant Society and federal and state lists (Skinner and Pavlik 1994). Two lists are presented in the appendixes. The first is a list of species grouped by distinctive morphological features. The second is a checklist of trees and shrubs indexed alphabetically by family, genus, species, and common name. CLASSIFICATION To classify is a natural human trait. It is our nature to place ob- jects into similar groups and to place those groups into a hier- 1 TABLE 1 CLASSIFICATION HIERARCHY OF A CONIFER AND A BROADLEAVED TREE Taxonomic rank Conifer Broadleaved tree Kingdom Plantae Plantae Division Pinophyta Magnoliophyta Class Pinopsida Magnoliopsida Order Pinales Sapindales Family Pinaceae Aceraceae Genus Abies Acer Species epithet magnifica glabrum Variety shastensis torreyi Common name Shasta red fir mountain maple archy. -
THE KAZAKH STEPPE Conserving the World's Largest Dry
THE KAZAKH STEPPE Conserving the world’s largest dry steppe region Photo: Chris Magin, IUCN Saryarka is an internationally significant mosaic of steppe and wetlands The Dry Steppe Region The steppe grasslands of Eurasia were once among the most extensive in the world, stretching from eastern Romania, Moldova and Ukraine in eastern Europe (often referred to as the Pontic steppe) east through Kazakhstan and western Russia). Together, the Pontic and Kazakh steppes, often collectively referred to as the Pontian steppe, comprise about 24% of the world’s temperate grasslands. They eventually link to the vast grasslands of eastern Asia extending to Mongolia, China and Siberian Russia, together creating the largest complex of temperate grasslands on earth. The remaining extent and ecological condition of these grasslands varies considerably by region. Today in eastern Europe, for example, only 3–5 % remain in a natural or near natural state, with only 0.2% protected. In contrast, the eastward extension of these steppes into Kazakhstan reveals lower levels of disturbance, where as much as 36% remain in a semi-natural or natural state. Although current levels of protection in this region are also very low, the steppes of Kazakhstan have the potential to offer significant opportunities for increased conservation and protection. The Kazakh steppe, also known as the Kirghiz steppe, is itself one of the largest dry steppe regions on the planet, covering approximately 804,500 square kilometres and extending more than 2,200 kilometres from north of the Caspian Sea east to the Altai Mountains. These grasslands lie at the southern end of the Ural Mountains, the traditional dividing line between Europe and Asia. -
Temperate Grasslandsgrasslands Temperate Grasslands
TemperateTemperate GrasslandsGrasslands Temperate Grasslands § One of the most extensive of the biomes § North America: prairies 350 million ha running from eastern deciduous forest border to western cordilleras Konza Prairie, Kansas Temperate Grasslands § One of the most extensive of the biomes § Eurasia: steppes 250 million ha running from Hungary to Manchuria Mongolian steppe Russian Steppe Temperate Grasslands § One of the most extensive of the biomes § Argentina, Uruguay: pampas Temperate Grasslands § One of the most extensive of the biomes § Argentina, Uruguay: pampas Cortaderia - pampas grass Temperate Grasslands § One of the most extensive of the biomes § South Africa: grassveldt Temperate Grasslands § Temperate grasslands are adapted to recurring drought (50 - 120 cm rain) § Temperate grasslands appear homogenous but important structural and floristic differences have developed in response to regional and local conditions (e.g. in prairie province) § increasing latitude & east to west: warm to cold and moist to dry Temperate Grasslands § American prairie gradients: west to east Curtis Prairie - tall grass, Wisconsin Shortgrass prairie, Nebraska Konza Prairie - mixed grass, Kansas Temperate Grasslands § American prairie gradients: forest - grassland Curtis Prairie - tall grass, Wisconsin Prairie-oak savanna Temperate Grasslands § soils are rich 'chernozens' or 'udolls’ § thick organic layer of very dark humus; active earthworm and soil fauna activity making this soil one of the most productive of terrestrial systems § light rainfall -
CDFG Natural Communities List
Department of Fish and Game Biogeographic Data Branch The Vegetation Classification and Mapping Program List of California Terrestrial Natural Communities Recognized by The California Natural Diversity Database September 2003 Edition Introduction: This document supersedes all other lists of terrestrial natural communities developed by the Natural Diversity Database (CNDDB). It is based on the classification put forth in “A Manual of California Vegetation” (Sawyer and Keeler-Wolf 1995 and upcoming new edition). However, it is structured to be compatible with previous CNDDB lists (e.g., Holland 1986). For those familiar with the Holland numerical coding system you will see a general similarity in the upper levels of the hierarchy. You will also see a greater detail at the lower levels of the hierarchy. The numbering system has been modified to incorporate this richer detail. Decimal points have been added to separate major groupings and two additional digits have been added to encompass the finest hierarchal detail. One of the objectives of the Manual of California Vegetation (MCV) was to apply a uniform hierarchical structure to the State’s vegetation types. Quantifiable classification rules were established to define the major floristic groups, called alliances and associations in the National Vegetation Classification (Grossman et al. 1998). In this document, the alliance level is denoted in the center triplet of the coding system and the associations in the right hand pair of numbers to the left of the final decimal. The numbers of the alliance in the center triplet attempt to denote relationships in floristic similarity. For example, the Chamise-Eastwood Manzanita alliance (37.106.00) is more closely related to the Chamise- Cupleaf Ceanothus alliance (37.105.00) than it is to the Chaparral Whitethorn alliance (37.205.00). -
Revisiting ANPC's Rare Plants Book
Iris No. 69 • January 2013 The Alberta Native Plant Council Newsletter Revisiting ANPC’s Rare Plants Book by Linda Kershaw of Alberta, you will see that each Line drawing – Illustrations came consists of five main components: from a variety of sources, including an a block of text (name, description, ANHIC collection of commissioned and notes); a photo; a line drawing; drawings and a variety of previously an Alberta distribution map; a North published works (most notably the America distribution map. five-volume Flora of the Pacific Northwest published by the University of Text – Although the four editors Washington Press). The ANPC even compiled, organized, and edited the commissioned some original drawings information, there were also more to fill the last remaining gaps. than 30 additional Alberta botanists who contributed species accounts Alberta distribution map – The and other text (you can see their detailed Alberta dot maps were smiling faces on page 483 of the provided by ANHIC during the last book). Alberta Environment staff days of production. These were (first through the Recreation and generated electronically using the Protected Areas Program and later ANHIC/ACIMS (Alberta Conservation through the Alberta Natural Heritage Information Management System) Information Centre [ANHIC]) was database. key to the project, from generating When Rare Vascular Plants of Alberta the initial species list to sorting out North America distribution map was finally published in 2001, it was taxonomic problems and providing a – The Biota of North America the culmination of 10 years of work wide range of information. Also, several Program (BONAP) at the University of involving many dedicated volunteers. -
Facilitation of Yucca Brevifolia Recruitment by Mojave Desert Shrubs
UNLV Retrospective Theses & Dissertations 1-1-1998 Facilitation of Yucca brevifolia recruitment by Mojave Desert shrubs Steve B Brittingham University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds Repository Citation Brittingham, Steve B, "Facilitation of Yucca brevifolia recruitment by Mojave Desert shrubs" (1998). UNLV Retrospective Theses & Dissertations. 950. http://dx.doi.org/10.25669/ms22-zauw This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter free, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. -
Washington Plant List Douglas County by Scientific Name
The NatureMapping Program Washington Plant List Revised: 9/15/2011 Douglas County by Scientific Name (1) Non- native, (2) ID Scientific Name Common Name Plant Family Invasive √ 763 Acer glabrum Douglas maple Aceraceae 800 Alisma graminium Narrowleaf waterplantain Alismataceae 19 Alisma plantago-aquatica American waterplantain Alismataceae 1087 Rhus glabra Sumac Anacardiaceae 650 Rhus radicans Poison ivy Anacardiaceae 29 Angelica arguta Sharp-tooth angelica Apiaceae 809 Angelica canbyi Canby's angelica Apiaceae 915 Cymopteris terebinthinus Turpentine spring-parsley Apiaceae 167 Heracleum lanatum Cow parsnip Apiaceae 991 Ligusticum grayi Gray's lovage Apiaceae 709 Lomatium ambiguum Swale desert-parsley Apiaceae 997 Lomatium canbyi Canby's desert-parsley Apiaceae 573 Lomatium dissectum Fern-leaf biscuit-root Apiaceae 582 Lomatium geyeri Geyer's desert-parsley Apiaceae 586 Lomatium gormanii Gorman's desert-parsley Apiaceae 998 Lomatium grayi Gray's desert-parsley Apiaceae 999 Lomatium hambleniae Hamblen's desert-parsley Apiaceae 609 Lomatium macrocarpum Large-fruited lomatium Apiaceae 1000 Lomatium nudicaule Pestle parsnip Apiaceae 634 Lomatium triternatum Nine-leaf lomatium Apiaceae 474 Osmorhiza chilensis Sweet-cicely Apiaceae 264 Osmorhiza occidentalis Western sweet-cicely Apiaceae 1044 Osmorhiza purpurea Purple sweet-cicely Apiaceae 492 Sanicula graveolens Northern Sierra) sanicle Apiaceae 699 Apocynum androsaemifolium Spreading dogbane Apocynaceae 813 Apocynum cannabinum Hemp dogbane Apocynaceae 681 Asclepias speciosa Showy milkweed Asclepiadaceae -
The Bitterroot Valley of Western Montana Area Economic Profile
The Bitterroot Valley of Western Montana AREA ECONOMIC PROFILE prepared by Dr. Larry Swanson, Associate Directori O’Connor Center for the Rocky Mountain West The University of Montana May, 2001 This profile provides a description and assessment of the area economy of the Bitterroot Valley of southwestern Montana. Changing conditions and trends in the area economy over the course of the last twenty to twenty-five years are examined, including trends in population and employment growth and associated income changes and economic restruc- turing. Changing conditions in Ravalli County and the Bitterroot Valley are compared to those for the larger Rocky Mountain West region and nation as a whole. Various measures of the Bitterroot area economy also are systematically compared to similar measures for areas throughout the western United States having similar characteristics to the Bitterroot Valley. Two types of “peer areas” are selected for this purpose: 1) non-metro areas in the West nearby small and intermediate regional centers of 30,000 to 100,000 people, and, 2) non-metro areas nearby small and intermediate regional centers that are also nearby large concentrations of Forest Service lands. Major Findings and Observations Southwestern Montana’s Bitterroot Valley is the central watershed of the Bitterroot River, which flows north through the valley toward its confluence with the Clark Fork River near Missoula. This 1. Population Growth - During the 1990s, Ravalli County was the fastest growing county watershed is largely defined by the boundaries of Ravalli County. County boundaries also define in Montana and became one of the fastest growing counties in the entire United States, the outer boundaries of the Bitterroot National Forest. -
Sagebrush Bibliography
For Research Use Rio Grande National Forest – Sagebrush Bibliography Prepared by Janine Rice, PhD Rice Consulting LLC November 10, 2016 Contents Overview ......................................................................................................................................... 1 Sagebrush: Ecology and Climate .................................................................................................... 3 Sagebrush: Carbon Cycle and Climate ........................................................................................... 7 Sagebrush: Fire, Stressors and Climate .......................................................................................... 8 Sagebrush: Vegetation Modeling .................................................................................................... 9 Sagebrush: Management and Restoration ..................................................................................... 14 Relevant Publications in other Bibliography Chapters ................................................................. 17 Vulnerability Assessments and Reports Bibliography ............................................................. 17 Spruce-Fir Bibliography ........................................................................................................... 17 --Ctrl/Click to follow link above Overview This bibliography provides relevant scientific citations with abstracts on topics identified by the Rio Grande National Forest staff as important to the development of their assessment and plan