A Conceptual Precipitation-Runoff Modeling Suite
Total Page:16
File Type:pdf, Size:1020Kb
A CONCEPTUAL PRECIPITATION-RUNOFF MODELING SUITE: MODEL SELECTION, CALIBRATION AND PREDICTIVE UNCERTAINTY ASSESSMENT by Tyler Jon Smith A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering MONTANA STATE UNIVERSITY Bozeman, Montana November 2008 ©COPYRIGHT by Tyler Jon Smith 2008 All Rights Reserved ii APPROVAL of a thesis submitted by Tyler Jon Smith This thesis has been read by each member of the thesis committee and has been found to be satisfactory regarding content, English usage, format, citation, bibliographic style, and consistency, and is ready for submission to the Division of Graduate Education. Dr. Joel E. Cahoon Dr. Lucy A Marshall Approved for the Department of Civil Engineering Dr. Brett W. Gunnink Approved for the Division of Graduate Education Dr. Carl A. Fox iii STATEMENT OF PERMISSION TO USE In presenting this thesis in partial fulfillment of the requirements for a master’s degree at Montana State University, I agree that the Library shall make it available to borrowers under rules of the Library. If I have indicated my intention to copyright this thesis by including a copyright notice page, copying is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for permission for extended quotation from or reproduction of this thesis in whole or in parts may be granted only by the copyright holder. Tyler Jon Smith November 2008 iv ACKNOWLEDGEMENTS I would like to offer my appreciation to all of the members of my graduate committee, Dr. Lucy Marshall, Dr. Joel Cahoon, Dr. Brian McGlynn and Dr. Otto Stein for their endless assistance to me in this endeavor. I wish to especially thank Dr. Lucy Marshall for her continuous support and encouragement toward the completion of this research project. Additionally, I would like to thank Dr. Joel Cahoon for making the process of performing research in the Department of Land Resources and Environmental Sciences, while pursuing a degree from the Department of Civil Engineering so uncomplicated. This research was made possible thanks to partial funding by a USGS 104b grant administered by the Montana Water Center. Logistical support was provided by Dr. Ward McCaughey and the US Forest Service Rocky Mountain Research Station. Further, I would like to express my appreciation to the members of the Watershed Hydrology Lab at MSU, and especially Kelsey Jencso, for providing much of the data used in this study. Finally, I would like to thank my adoring wife, Kelly, who happily suffered through countless conversations about the details of conceptual hydrologic modeling, model calibration algorithms, MATLAB® programming, etc. v TABLE OF CONTENTS 1. INTRODUCTION .........................................................................................................1 Scope and Context .........................................................................................................1 Research Motivation ......................................................................................................3 Outline of Thesis ............................................................................................................4 2. LITERATURE REVIEW ..............................................................................................6 Top-Down Model Development ....................................................................................6 Model Calibration Methods ...........................................................................................9 Uncertainty Methods ....................................................................................................12 Model Assessment .......................................................................................................15 3. BAYESIAN METHODS IN HYDROLOGIC MODELING: A STUDY OF RECENT ADVANCEMENTS IN MARKOV CHAIN MONTE CARLO TECHNIQUES ............................................................................................................20 Introduction ..................................................................................................................21 Bayesian Methods in Hydrology .................................................................................23 Advancements in Markov Chain Monte Carlo Techniques .........................................25 Adaptive Metropolis Algorithm .............................................................................26 Delayed Rejection Adaptive Metropolis Algorithm ..............................................27 Differential Evolution Markov Chain Algorithm ..................................................30 Case Studies .................................................................................................................32 Case Study 1: Synthetic Bimodal Gaussian Mixture .............................................33 Case Study 2: Tenderfoot Creek Experimental Forest, MT ..................................36 Site Description ................................................................................................36 Precipitation-Runoff Model Description .........................................................37 Input Data.........................................................................................................38 Algorithm Evaluations .....................................................................................39 Conclusions ..................................................................................................................43 Acknowledgements ......................................................................................................45 4. DEVELOPMENT OF A CONCEPTUAL PRECIPITATION-RUNOFF MODELING SUITE ....................................................................................................46 Introduction ..................................................................................................................46 Site Description ............................................................................................................47 Tenderfoot Creek Experimental Forest ..................................................................47 Model Data.............................................................................................................49 Conceptual Modeling Suite Development ...................................................................52 vi TABLE OF CONTENTS – CONTINUED Soil Moisture Accounting and Runoff Routing Base Structures ...........................53 Bucket Model ...................................................................................................54 Probability Distributed Model .........................................................................56 TOPMODEL ....................................................................................................59 Soil Moisture Accounting Data Requirements ................................................62 Snowmelt Accounting ............................................................................................63 Temperature Index Approach ..........................................................................64 Radiation Index Approach ...............................................................................64 Temperature and Radiation Index Approach ...................................................65 Precipitation Semi-Distribution .............................................................................66 Semi-Distribution by Aspect............................................................................67 Semi-Distribution by Elevation .......................................................................69 Semi-Distribution by Aspect and Elevation ....................................................71 Conclusion ...................................................................................................................72 5. PREDICTIVE PERFORMANCE AND UNCERTAINTY ASSESSMENT OF A CONCEPTUAL MODELING FRAMEWORK APPLIED TO STRINGER CREEK WATERSHED ...............................................................................................74 Introduction ..................................................................................................................74 A Review of the Bayesian Methodology Applied in this Study ..................................76 Assessment Protocol for Modeling Suite Applied to the Stringer Creek Watershed ....................................................................................................................77 Performance-Based Assessment ............................................................................77 Model Calibration ............................................................................................78 Results and Discussion of Model Performance Under Calibration .................79 Optimum Model Structure Under Calibration .................................................86 Assessment of Model Performance Using Independent Data Source .............89 Comparison of Likelihood Function Assumptions ..........................................96 Uncertainty-Based Assessment ..............................................................................98 Uncertainty Assessment of Individual Model Structures ..............................100 Realism-Based Assessment .................................................................................106 Conclusion .................................................................................................................113