The River Speaks

Total Page:16

File Type:pdf, Size:1020Kb

The River Speaks Speaking with the River: Embodied Encounters and Local Values of the Río Peñas Blancas in Response to Potential Hydroelectric Development in South-Pacific Costa Rica Carmen Alejandra Umaña-Kinitzki A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTERS Graduate Program in Environmental Studies York University Toronto, Ontario August 2017 © Carmen Alejandra Umaña-Kinitzki ii ABSTRACT In Costa Rica, the state’s decision to approve the construction of two private hydropower dams along the Peñas Blancas River is being called into question by local residents and non-governmental agencies who caution against the environmental, socio-cultural, and economic implications of constructing multiple dams along a potable and highly biodiverse river system. To explore these various concerns, I conducted research with 36 primary participants (including residents, peasants, conservationists and student youth) within the Alexander Skutch Biological Corridor (ASBC) in the south- Pacific region of Costa Rica. The primary objective of this research was to understand how local knowledges can inform state policy—particularly with regard to how environmental impact studies are conducted and written. In addition, by considering how the river itself is assembled from organic, geophysical, material, social, discursive, and technological components, this thesis offers alternative ways of envisioning freshwater that do not adhere to the dominant representations found within current policy. The study finds that the river is indistinguishable from the components that generate its quantity and quality, indicating that the effective conservation of the river’s water is integrally tied to and dependent on the protection of the conditions and elements that generate its flow. iii ACKNOWLEDGEMENTS I would like to begin by expressing my deepest gratitude to Dr. Sean Kheraj who jump started my fascination in this area of research during my undergraduate studies by asking the critical question: what is nature? I would like to extend my appreciation to Dr. Zulfikar Hirji and Dr. David Murray whose methodological and theoretical insights were extremely valuable to this research. I would also like to thank Dr. Cate Sandilands for introducing me to the essential literature upon which my research is grounded, particularly the works of Jane Bennett, and whose course (Culture and Environment) permanently changed my perspective on socio-natural relations. I would also like to express my gratitude to Dr. Peter Vandergeest for his invaluable feedback and ideas and for helping me to consider how power and authority inform Liberal Western ways of knowing nature, and the implications of these knowledges. I am also very grateful to Dr. Anna Zalik for pushing me to consider how power operates to inform resource extractive negotiations in the Global South. I am additionally very grateful to Dr. Shubhra Gururani for emphasizing the existence of other ways of knowing nature, and for asking the question: how might our dominant understandings of ethics and politics change if we consider other ways of knowing? I am also exceedingly grateful to my Supervisor Dr. Felipe Montoya and to my Advisor Dr. Anders Sandberg for their constant and unwavering support, and whose extremely valuable ideas and advice have made this work what it is. Our conversations, office meetings, and casual hangouts will be remembered fondly. Moreover, I feel extremely privileged to have had Dr. Anders Sandberg as such a wonderful and constant mentor throughout this entire degree. Words cannot express my gratitude for all of his endless support, insights, and wisdom. I would also like to thank York University’s Faculty of Environmental Studies, the Las Nubes Project, and the Lambert family for making my research within Costa Rica financially possible with the Lambert Family Graduate Award in Neotropical Research and Conservation. This thank you also extends to the Centre for Research on Latin America and the Caribbean for funding this study with the Paavo and Aino Lukkari Human Rights Award. A very special thank you goes to my mother, Carole Umaña, who not only started my passion for reading and writing but who also facilitated so many opportunities for me to follow my various interests and goals. Carole was a constant support throughout this degree and she continues to motivate me to keep improving on my own abilities. This project would not have iv been possible without her. I would also like to thank my father, Mauricio Umaña, and my abuela, Tita, for their kind words of love and support that have kept me going. I wish to extend a deep and sincere thank you to Brittany Maguire who not only enriched this research process with great insights and wonderful conversations, but whose friendship has been a gift. Cheers to many more future adventures. Finally, I would like to thank Veronica Zuñiga-Romo for her sincere friendship, for supporting me through the ups and downs, and for knowing when I needed to close the books and “get out” to enjoy the day. I would also like to thank Marita and other members of the Arias family who took wonderful care of me, and to the additional friends who I had the pleasure of meeting throughout my time in Costa Rica. A special thanks goes to members of the women’s group AMACoBAS, and to the aqueduct council (ASADA) of Santa Elena for including me as a member in their local initiatives. I would also like to deeply thank all allies and members of Movimiento Rios Vivos. Their struggles and efforts to protect the country’s rivers remain invaluable and inspire me in my objective to continue to research disputes surrounding freshwater and environmental policy. Finally, I wish to extend my gratitude to communities and activists throughout the world, and especially within Latin America, who continue to defend freshwater sources against extractive forms of industrial development. v FOREWORD My area of concentration within my Plan of Study explores different understandings of freshwater and their contributions to how this element is used and managed in the Neotropics. I am particularly concerned with how beliefs and values with respect to freshwater become embedded within distinct environmental positions that converge, or conflict within water and energy politics to inform decisions about freshwater access, allocation, and conservation. Moreover, I consider how these distinct environmental knowledge systems are mediated by power relations to become unevenly embedded within the rules and regulations that govern freshwater. I additionally explore how these rules and regulations operate in association with local beliefs and practices to constitute a region’s particular hydro-social conditions and the lived bodily-realities of its water dependents. Throughout this degree, I have considered these aspects of freshwater through the frameworks of environmental anthropology and political ecology. Together, these disciplines emphasize a changing nature to the dominant ways of understanding freshwater and valuing its capacities. With the future uncertainties of global climate change, population growth, and freshwater extraction for industry, increasing concerns about a global water crisis have become prominent in the language used by state and non-state actors to warrant this element’s control. I have experienced such control through numerous initiatives aimed towards citizens to self regulate our individual consumption: “don’t leave the faucet running, don’t water gardens or wash cars in a drought”. However, these initiatives often do not account for freshwater’s primary consumer: industrial/commercial industry. While water scarcity has become a largely naturalized condition within politics, theorists such as Lyla Mehta argue that the notion of scarcity is “usually socially mediated and the result of sociopolitical processes” that tend to “naturalize its anthropogenic dimensions”; prompting the need to distinguish between the material forms of scarcity that are increasingly and unevenly felt by water dependents, and the relative forms of scarcity that are generated by its industrial users (Mehta 2011:372). Extending from this, I borrow anthropological methods and theory to consider alternative ways of understanding freshwater conservation within mountain communities in Costa Rica, where residents contest dominant perceptions of water scarcity and freshwater management. Within this thesis, I expand upon the components within my Plan of Study (with regard to freshwater knowledges, uses, and management approaches) to envision alternative ways of understanding freshwater that bring its own agency to the forefront of its study. vi TABLE OF CONTENTS ABSTRACT __________________________________________________________ II ACKNOWLEDGEMENTS ______________________________________________ III FOREWORD _________________________________________________________ V TABLE OF CONTENTS ________________________________________________ VI LIST OF TABLES _____________________________________________________ X LIST OF FIGURES____________________________________________________ XI LIST OF ACRONYMS _________________________________________________ XII LIST OF ABBREVIATIONS ____________________________________________ XIII 1 INTRODUCTION ___________________________________________________ 1 1.1 An Introduction to the Study ____________________________________________________ 1 1.2 Costa Rica’s Watersheds _______________________________________________________
Recommended publications
  • Dedicated to the Conservation and Biological Research of Costa Rican Amphibians”
    “Dedicated to the Conservation and Biological Research of Costa Rican Amphibians” A male Crowned Tree Frog (Anotheca spinosa) peering out from a tree hole. 2 Text by: Brian Kubicki Photography by: Brian Kubicki Version: 3.1 (October 12th, 2009) Mailing Address: Apdo. 81-7200, Siquirres, Provincia de Limón, Costa Rica Telephone: (506)-8889-0655, (506)-8841-5327 Web: www.cramphibian.com Email: [email protected] Cover Photo: Mountain Glass Frog (Sachatamia ilex), Quebrada Monge, C.R.A.R.C. Reserve. 3 Costa Rica is internationally recognized as one of the most biologically diverse countries on the planet in total species numbers for many taxonomic groups of flora and fauna, one of those being amphibians. Costa Rica has 190 species of amphibians known from within its tiny 51,032 square kilometers territory. With 3.72 amphibian species per 1,000 sq. km. of national territory, Costa Rica is one of the richest countries in the world regarding amphibian diversity density. Amphibians are under constant threat by contamination, deforestation, climatic change, and disease. The majority of Costa Rica’s amphibians are surrounded by mystery in regards to their basic biology and roles in the ecology. Through intense research in the natural environment and in captivity many important aspects of their biology and conservation can become better known. The Costa Rican Amphibian Research Center (C.R.A.R.C.) was established in 2002, and is a privately owned and operated conservational and biological research center dedicated to studying, understanding, and conserving one of the most ecologically important animal groups of Neotropical humid forest ecosystems, that of the amphibians.
    [Show full text]
  • The Most Frog-Diverse Place in Middle America, with Notes on The
    Offcial journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 13(2) [Special Section]: 304–322 (e215). The most frog-diverse place in Middle America, with notes on the conservation status of eight threatened species of amphibians 1,2,*José Andrés Salazar-Zúñiga, 1,2,3Wagner Chaves-Acuña, 2Gerardo Chaves, 1Alejandro Acuña, 1,2Juan Ignacio Abarca-Odio, 1,4Javier Lobon-Rovira, 1,2Edwin Gómez-Méndez, 1,2Ana Cecilia Gutiérrez-Vannucchi, and 2Federico Bolaños 1Veragua Foundation for Rainforest Research, Limón, COSTA RICA 2Escuela de Biología, Universidad de Costa Rica, San Pedro, 11501-2060 San José, COSTA RICA 3División Herpetología, Museo Argentino de Ciencias Naturales ‘‘Bernardino Rivadavia’’-CONICET, C1405DJR, Buenos Aires, ARGENTINA 4CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas 7, 4485-661 Vairão, Vila do Conde, PORTUGAL Abstract.—Regarding amphibians, Costa Rica exhibits the greatest species richness per unit area in Middle America, with a total of 215 species reported to date. However, this number is likely an underestimate due to the presence of many unexplored areas that are diffcult to access. Between 2012 and 2017, a monitoring survey of amphibians was conducted in the Central Caribbean of Costa Rica, on the northern edge of the Matama mountains in the Talamanca mountain range, to study the distribution patterns and natural history of species across this region, particularly those considered as endangered by the International Union for Conservation of Nature. The results show the highest amphibian species richness among Middle America lowland evergreen forests, with a notable anuran representation of 64 species.
    [Show full text]
  • Herpetology at the Isthmus Species Checklist
    Herpetology at the Isthmus Species Checklist AMPHIBIANS BUFONIDAE true toads Atelopus zeteki Panamanian Golden Frog Incilius coniferus Green Climbing Toad Incilius signifer Panama Dry Forest Toad Rhaebo haematiticus Truando Toad (Litter Toad) Rhinella alata South American Common Toad Rhinella granulosa Granular Toad Rhinella margaritifera South American Common Toad Rhinella marina Cane Toad CENTROLENIDAE glass frogs Cochranella euknemos Fringe-limbed Glass Frog Cochranella granulosa Grainy Cochran Frog Espadarana prosoblepon Emerald Glass Frog Sachatamia albomaculata Yellow-flecked Glass Frog Sachatamia ilex Ghost Glass Frog Teratohyla pulverata Chiriqui Glass Frog Teratohyla spinosa Spiny Cochran Frog Hyalinobatrachium chirripoi Suretka Glass Frog Hyalinobatrachium colymbiphyllum Plantation Glass Frog Hyalinobatrachium fleischmanni Fleischmann’s Glass Frog Hyalinobatrachium valeroi Reticulated Glass Frog Hyalinobatrachium vireovittatum Starrett’s Glass Frog CRAUGASTORIDAE robber frogs Craugastor bransfordii Bransford’s Robber Frog Craugastor crassidigitus Isla Bonita Robber Frog Craugastor fitzingeri Fitzinger’s Robber Frog Craugastor gollmeri Evergreen Robber Frog Craugastor megacephalus Veragua Robber Frog Craugastor noblei Noble’s Robber Frog Craugastor stejnegerianus Stejneger’s Robber Frog Craugastor tabasarae Tabasara Robber Frog Craugastor talamancae Almirante Robber Frog DENDROBATIDAE poison dart frogs Allobates talamancae Striped (Talamanca) Rocket Frog Colostethus panamensis Panama Rocket Frog Colostethus pratti Pratt’s Rocket
    [Show full text]
  • Shifts in the Diversity of an Amphibian Community from a Premontane Forest of San Ramón, Costa Rica Cambios En La Diversidad De
    DOI 10.15517/RBT.V67I2SUPL.37240 Artículo Shifts in the diversity of an amphibian community from a premontane forest of San Ramón, Costa Rica Cambios en la diversidad de una comunidad de anfibios en un bosque premontano de San Ramón, Costa Rica Víctor J. Acosta-Chaves1, 2* Víctor Madrigal-Elizondo3 Gerardo Chaves4 Brayan Morera-Chacón5 Adrián García-Rodríguez 4, 6 Federico Bolaños 4 1 Carrera de Turismo Ecológico, Universidad de Costa Rica Sede Atlántico, Recinto de Paraíso, Cartago, Costa Rica; [email protected]* 2 Red Mesoamericana y del Caribe para la Conservación de Anfibios y Reptiles. 3 Red de Áreas Protegidas, Universidad de Costa Rica, Sede Rodrigo Facio, San Pedro, Costa Rica; [email protected] 4 Escuela de Biología, Universidad de Costa Rica, San Pedro, 11501-2060 San José, Costa Rica; [email protected], [email protected] 5 Instituto Internacional para la Conservación y Manejo de Vida Silvestre, Universidad Nacional, Heredia, Costa Rica; [email protected] 6 Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico; [email protected] * Correspondence Received 05-X-2018 Corrected 18-I-2019 Accepted 06-II-2019 Abstract Biological communities are experiencing rapid shifts of composition in Neotropical ecosystems due to several factors causing population declines. However, emerging evidence has provided insights on the adaptive potential of multiple species to respond to illnesses and environmental pressures. In Costa Rica, the decline of amphibian populations is a remarkable example of these changes. Here we provide evidence of variation in the amphibian richness of a premontane forest of San Ramón (Costa Rica) across a ~30 year period.
    [Show full text]
  • Molecular and Morphological Data Support Recognition of a New Genus of New World Direct-Developing Frog (Anura: Terrarana) From
    Zootaxa 3986 (2): 151–172 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3986.2.1 http://zoobank.org/urn:lsid:zoobank.org:pub:82BDF224-FE83-4792-9AD1-D954B96B1136 Molecular and morphological data support recognition of a new genus of New World direct-developing frog (Anura: Terrarana) from an under-sampled region of South America MATTHEW P. HEINICKE1,4, CÉSAR L. BARRIO-AMORÓS2 & S. BLAIR HEDGES3 1Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI 48128 USA 2Doc Frog Expeditions, Apartado Postal 220-8000, San José, Pérez Zeledón, San Isidro del General, 11901 Costa Rica. E-mail: [email protected] 3Center for Biodiversity, College of Science and Technology, Temple University, Philadelphia, PA 19122. E-mail: [email protected] 4Corresponding author. E-mail: [email protected] Abstract We describe a new genus of New World direct-developing frog (Terrarana) from the northern Andes of Venezuela and adjacent Colombia. Tachiramantis gen. nov. includes three species formerly placed in the large genus Pristimantis. Mo- lecular phylogenetic analysis of data from five nuclear and mitochondrial genes shows that Tachiramantis is not part of Pristimantis or any other named genus in its family (Craugastoridae or Strabomantidae). Morphological evidence further supports the distinctiveness of Tachiramantis, which has several aspects of skull morphology that are rare or absent in Pristimantis and synapomorphic for Tachiramantis, including frontoparietal-prootic fusion and degree of vomer develop- ment. The terminal phalanges, which narrow greatly before expanding at the tips, may represent an additional morpholog- ical synapomorphy.
    [Show full text]
  • An Integrative Approach to Reveal Speciation and Species Richness in the Genus Diasporus (Amphibia: Anura: Eleutherodactylidae) in Eastern Panama
    Zoological Journal of the Linnean Society, 2016, 178, 267–311. With 17 figures An integrative approach to reveal speciation and species richness in the genus Diasporus (Amphibia: Anura: Eleutherodactylidae) in eastern Panama 1,2 € 1 3 1,2 ABEL BATISTA *, GUNTHER KOHLER , KONRAD MEBERT , ANDREAS HERTZ and MILAN VESELY 4 1Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Senckenberganlage 25, 60325 Frankfurt am Main, Germany 2Institute for Ecology, Evolution & Diversity, Biologicum, Goethe-University, Building C, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany 3Department of Environmental Sciences, Section of Conservation Biology, University of Basel, St. Johanns-Vorstadt 10, CH-4056 Basel, Switzerland 4Department of Zoology, Faculty of Natural Sciences, Palacky University, 17. Listopadu 50, 77146 Olomouc, Czech Republic Received 4 August 2015; revised 27 January 2016; accepted for publication 7 February 2016 We have applied an integrative taxonomic approach, including bioacoustics, ecology, morphology, and molecular genetics (barcoding and phylogeography), to explore species richness in the genus Diasporus in eastern Panama, from where only Diasporus quidditus (Lynch, 2001) was previously known. During fieldwork in eastern Panama in 2011 and 2012 we found six additional species, four of which we are describing here as new to science, plus two species that are new for this region. We have evaluated the presence of Diasporus diastema (Cope, 1875) in eastern Panama by comparing morphological, genetic, and bioacoustic characters of specimens from near the type locality in central Panama with specimens from eastern Panama. We further describe and compare male advertisement calls of most Diasporus species. The phylogeographic analysis suggests the allopatric speciation of Diasporus species in eastern Panama following the completion of the Panamanian isthmus in the middle Miocene.
    [Show full text]
  • Real-Time Bioacoustics Monitoring and Automated Species Identification
    Real-time bioacoustics monitoring and automated species identification T. Mitchell Aide1, Carlos Corrada-Bravo2, Marconi Campos-Cerqueira1, Carlos Milan1, Giovany Vega2 and Rafael Alvarez2 1 Department of Biology, University of Puerto Rico-Rio Piedras, San Juan, Puerto Rico, United States 2 Department of Computer Science, University of Puerto Rico - Rio Piedras, San Juan, Puerto Rico, United States ABSTRACT Traditionally, animal species diversity and abundance is assessed using a variety of methods that are generally costly, limited in space and time, and most importantly, they rarely include a permanent record. Given the urgency of climate change and the loss of habitat, it is vital that we use new technologies to improve and expand global biodiversity monitoring to thousands of sites around the world. In this article, we describe the acoustical component of the Automated Remote Biodiversity Mon- itoring Network (ARBIMON), a novel combination of hardware and software for automating data acquisition, data management, and species identification based on audio recordings. The major components of the cyberinfrastructure include: a solar powered remote monitoring station that sends 1-min recordings every 10 min to a base station, which relays the recordings in real-time to the project server, where the recordings are processed and uploaded to the project website (arbimon.net). Along with a module for viewing, listening, and annotating recordings, the website includes a species identification interface to help users create machine learning algorithms to automate species identification. To demonstrate the system we present data on the vocal activity patterns of birds, frogs, insects, and mammals from Puerto Rico and Costa Rica.
    [Show full text]
  • Engineering a Future for Amphibians Under Climate Change
    Journal of Applied Ecology 2011, 48, 487–492 doi: 10.1111/j.1365-2664.2010.01942.x FORUM Engineering a future for amphibians under climate change Luke P. Shoo1*, Deanna H. Olson2, Sarah K. McMenamin3, Kris A. Murray4, Monique Van Sluys5,6, Maureen A. Donnelly7, Danial Stratford6, Juhani Terhivuo8, Andres Merino-Viteri1,9, Sarah M. Herbert10, Phillip J. Bishop11, Paul Stephen Corn12, Liz Dovey13, Richard A. Griffiths14, Katrin Lowe6, Michael Mahony15, Hamish McCallum16, Jonathan D. Shuker6, Clay Simpkins6, Lee F. Skerratt17, Stephen E. Williams1 and Jean-Marc Hero6 1Centre for Tropical Biodiversity and Climate Change, School of Marine and Tropical Biology, James Cook University of North Queensland, Townsville, Queensland 4811, Australia; 2US Forest Service, Pacific Northwest Research Sta- tion, 3200 SW Jefferson Way, Corvallis, OR 97331, USA; 3Department of Biology, University of Washington, Kincaid Hall, Box 351800, Seattle, WA 98195-1800, USA; 4School of Integrative Biology, University of Queensland, St Lucia, Brisbane 4072, Australia; 5Departamento de Ecologia, IBRAG, Universidade do Estado do Rio de Janeiro. Rua Sa˜o Francisco Xavier 524, CEP 20550-900, Rio de Janeiro, Rio de Janeiro State, Brazil; 6Environmental Futures Centre, School of Environment, Griffith University, Gold Coast Campus, Queensland, Australia; 7College of Arts and Sciences and Department of Biological Sciences, Florida International University, Miami, FL 33199, USA; 8Finnish Museum of Natural History ⁄ Zoological Museum, PO Box 17 (P. Rautatiekatu 13), FIN-00014 University of Helsinki, Finland; 9Museo de Zoologı´a, Escuela de Biologı´a, Pontificia Universidad Cato´lica del Ecuador, Av. 12 de Octubre 1076 y Roca, Aptdo 17-01-2184, Quito, Ecuador; 10EcoGecko Consultants, 212 Pembroke Rd, Wilton, Wellington 6012; 11Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand; 12US Geological Survey, Aldo Leopold Wilderness Research Inst., 790 E.
    [Show full text]
  • Amphibians of the San Ramón Cloud Forest 1 Brayan H
    San Ramón, Alajuela, Costa Rica Amphibians of the San Ramón Cloud Forest 1 Brayan H. Morera-Chacón Gestión de los Recursos Naturales, Universidad de Costa Rica All photos by Brayan H. Morera-Chacón Produced by: Brayan H. Morera-Chacón © Brayan H. Morera-Chacón [[email protected]]. Thanks to: César L. Barrio-Amorós (Doc Frog Expeditions). (M) Male, (F) Female and (A) Amplexus [fieldguides.fieldmuseum.org] [855] version 1 01/2017 1 Incilius coniferus (M) 2 Incilius melanochlorus 3 Incilius melanochlorus 4 Rhinella horribilis BUFONlDAE BUFONlDAE BUFONlDAE BUFONlDAE 5 Cochranella granulosa 6 Espadarana prosoblepon (M) 7 Espadarana prosoblepon (F) 8 Sachatamia ilex CENTROLENIDAE CENTROLENIDAE CENTROLENIDAE CENTROLENIDAE 9 Teratohyla pulverata 10 Craugastor bransfordii 11 Craugastor crassidigitus 12 Craugastor fitzingeri CENTROLENIDAE CRAUGASTORIDAE CRAUGASTORIDAE CRAUGASTORIDAE 13 Craugastor fitzingeri 14 C.crassidigitus (above); C. fitzingeri 15 Craugastor podiciferus 16 Craugastor podiciferus (below) CRAUGASTORIDAE CRAUGASTORIDAE CRAUGASTORIDAE CRAUGASTORIDAE 17 Craugastor stejnegerianus 18 Pristimantis altae 19 Pristimantis caryophyllaceus 20 Pristimantis cruentus (M) CRAUGASTORIDAE CRAUGASTORIDAE CRAUGASTORIDAE CRAUGASTORIDAE San Ramón, Alajuela, Costa Rica Amphibians of the San Ramón Cloud Forest 2 Brayan H. Morera-Chacón Gestión de los Recursos Naturales, Universidad de Costa Rica All photos by Brayan H. Morera-Chacón Produced by: Brayan H. Morera-Chacón © Brayan H. Morera-Chacón [[email protected]]. Thanks to: César L. Barrio-Amorós
    [Show full text]
  • Coincident Mass Extirpation of Neotropical Amphibians with the Emergence of the Infectious Fungal Pathogen Batrachochytrium Dendrobatidis
    Coincident mass extirpation of neotropical amphibians with the emergence of the infectious fungal pathogen Batrachochytrium dendrobatidis Tina L. Chenga, Sean M. Rovitob, David B. Wakeb,c,1, and Vance T. Vredenburga,b aDepartment of Biology, San Francisco State University, San Francisco, CA, 94132-1722; and bMuseum of Vertebrate Zoology and cDepartment of Integrative Biology, University of California, Berkeley, CA 94720-3160 Contributed by David B. Wake, April 8, 2011 (sent for review February 26, 2011) Amphibians highlight the global biodiversity crisis because ∼40% use noninvasive sampling and molecular techniques to detect Bd of all amphibian species are currently in decline. Species have dis- in formalin-preserved specimens to investigate the role of Bd in appeared even in protected habitats (e.g., the enigmatic extinction two well-studied cases of enigmatic amphibian decline in Mes- of the golden toad, Bufo periglenes, from Costa Rica). The emer- oamerica (i): the decline and disappearance of anurans from gence of a fungal pathogen, Batrachochytrium dendrobatidis (Bd), Costa Rica’s Monteverde Reserve in the late 1980s (13, 14), and has been implicated in a number of declines that have occurred in (ii) the decline and disappearance of plethodontid salamanders the last decade, but few studies have been able to test retroac- from the mountains of southern Mexico and western Guatemala tively whether Bd emergence was linked to earlier declines and in the 1970s and 1980s (15). extinctions. We describe a noninvasive PCR sampling technique The sudden extinction of the golden toad (Bufo periglenes) and that detects Bd in formalin-preserved museum specimens. We de- harlequin frog (Atelopus varius) from Costa Rica’s Monteverde tected Bd by PCR in 83–90% (n = 38) of samples that were identi- Reserve in the late 1980s (13, 14) are among the earliest and fied as positive by histology.
    [Show full text]
  • Size, 12.6 MB
    Published in the United States of America 2013 • VOLUME 6 • NUMBER 2 AMPHIBIAN & REPTILE CONSERVATION amphibian-reptile-conservation.org ISSN: 1083-446X eISSN: 1525-9153 Editor Craig Hassapakis Berkeley, California, USA Associate Editors Raul E. Diaz Howard O. Clark, Jr. Erik R. Wild University of Kansas, USA Garcia and Associates, USA University of Wisconsin-Stevens Point, USA Assistant Editors Alison R. Davis Daniel D. Fogell University of California, Berkeley, USA Southeastern Community College, USA Editorial Review Board David C. Blackburn Bill Branch Jelka Crnobrnja-Isailovć California Academy of Sciences, USA Port Elizabeth Museum, SOUTH AFRICA IBISS University of Belgrade, SERBIA C. Kenneth Dodd, Jr. Lee A. Fitzgerald Adel A. Ibrahim University of Florida, USA Texas A&M University, USA Ha’il University, SAUDIA ARABIA Harvey B. Lillywhite Julian C. Lee Rafaqat Masroor University of Florida, USA Taos, New Mexico, USA Pakistan Museum of Natural History, PAKISTAN Peter V. Lindeman Henry R. Mushinsky Elnaz Najafimajd Edinboro University of Pennsylvania, USA University of South Florida, USA Ege University, TURKEY Jaime E. Péfaur Rohan Pethiyagoda Nasrullah Rastegar-Pouyani Universidad de Los Andes, VENEZUELA Australian Museum, AUSTRALIA Razi University, IRAN Jodi J. L. Rowley Peter Uetz Larry David Wilson Australian Museum, AUSTRALIA Virginia Commonwealth University, USA Instituto Regional de Biodiversidad, USA Advisory Board Allison C. Alberts Aaron M. Bauer Walter R. Erdelen Zoological Society of San Diego, USA Villanova University, USA UNESCO, FRANCE Michael B. Eisen James Hanken Roy W. McDiarmid Public Library of Science, USA Harvard University, USA USGS Patuxent Wildlife Research Center, USA Russell A. Mittermeier Robert W. Murphy Eric R. Pianka Conservation International, USA Royal Ontario Museum, CANADA University of Texas, Austin, USA Antonio W.
    [Show full text]
  • How to Cite Complete Issue More Information About This Article
    Revista de Biología Tropical ISSN: 0034-7744 ISSN: 0034-7744 Universidad de Costa Rica Acosta-Chaves, Víctor J.; Madrigal-Elizondo, Víctor; Chaves, Gerardo; Morera-Chacón, Brayan; García-Rodríguez, Adrián; Bolaños, Federico Shifts in the diversity of an amphibian community from a premontane forest of San Ramón, Costa Rica Revista de Biología Tropical, vol. 67, no. 2, 2019, pp. 259-273 Universidad de Costa Rica DOI: DOI 10.15517/RBT.V67I2SUPL.37240 Available in: http://www.redalyc.org/articulo.oa?id=44965759019 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative DOI 10.15517/RBT.V67I2SUPL.37240 Artículo Shifts in the diversity of an amphibian community from a premontane forest of San Ramón, Costa Rica Cambios en la diversidad de una comunidad de anfibios en un bosque premontano de San Ramón, Costa Rica Víctor J. Acosta-Chaves1, 2* Víctor Madrigal-Elizondo3 Gerardo Chaves4 Brayan Morera-Chacón5 Adrián García-Rodríguez 4, 6 Federico Bolaños 4 1 Carrera de Turismo Ecológico, Universidad de Costa Rica Sede Atlántico, Recinto de Paraíso, Cartago, Costa Rica; [email protected]* 2 Red Mesoamericana y del Caribe para la Conservación de Anfibios y Reptiles. 3 Red de Áreas Protegidas, Universidad de Costa Rica, Sede Rodrigo Facio, San Pedro, Costa Rica; [email protected] 4 Escuela de Biología,
    [Show full text]