A New Perspective for Earth Observation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GPS Radio Occultation with CHAMP, GRACE-A, Terrasar-X, and COSMIC: Brief Review of Results from GFZ J
GPS radio occultation with CHAMP, GRACE-A, TerraSAR-X, and COSMIC: Brief review of results from GFZ J. Wickert, G. Beyerle, C. Falck, S. Heise, R. König, G. Michalak, D. Pingel*, M. Rothacher, T. Schmidt, and C. Viehweg GeoForschungsZentrum Potsdam, * Deutscher Wetterdienst Overview Current GPS occultation missions During the last decade ground and space based GNSS techniques for atmospheric/ionospheric remote sensing were established. The currently increasing number of receiver platforms (e.g., extension of regional/global ground networks and additional LEO satellites) together with future additional transmitters (GALILEO, reactivated GLONASS, new signal structures for GPS) will extend the potential of these innovative sounding techniques during the next years. Here, we focus to GPS radio CHAMP GRACE TerraSAR-X occultation and present selected examples of recent GFZ results. The activities include orbit and atmospheric /ionospheric occultation data processing for several satellite mission (CHAMP,GRACE-A, SAC-C, and COSMIC), but also various applications. Data sets from CHAMP, GRACE and COSMIC MetOp COSMIC SAC-C Current GPS radio occultation missions: CHAMP (launch July 15, 2000), GRACE (March 17, 2002), TerraSAR-X (June 15, 2007), MetOp (October 18, 2006), COSMIC (April 15, 2006) and SAC-C(November 21, 2000). Number of daily available vertical atmospheric profiles, derived from CHAMP (left), GRACE (middle), and COSMIC (right, UCAR processing) measurements (note the different scale). COSMIC provides significantly more data compared to CHAMP and GRACE-A. The long-term set from CHAMP is unique (300 km orbit altitude expected in Dec. 2008). Validation of CHAMP with MOZAIC aircraft data Near-real time data from CHAMP and GRACE-A (a) (b) (c) GFZ provides near-real time occultation data (bending angle and refractivity profiles) from CHAMP and GRACE-A using it’s operational ground infrastructure including 2 receiving antennas at Ny Ålesund. -
A Survey and Assessment of the Capabilities of Cubesats for Earth Observation
Acta Astronautica 74 (2012) 50–68 Contents lists available at SciVerse ScienceDirect Acta Astronautica journal homepage: www.elsevier.com/locate/actaastro Review A survey and assessment of the capabilities of Cubesats for Earth observation Daniel Selva a,n, David Krejci b a Massachusetts Institute of Technology, Cambridge, MA 02139, USA b Vienna University of Technology, Vienna 1040, Austria article info abstract Article history: In less than a decade, Cubesats have evolved from purely educational tools to a standard Received 2 December 2011 platform for technology demonstration and scientific instrumentation. The use of COTS Accepted 9 December 2011 (Commercial-Off-The-Shelf) components and the ongoing miniaturization of several technologies have already led to scattered instances of missions with promising Keywords: scientific value. Furthermore, advantages in terms of development cost and develop- Cubesats ment time with respect to larger satellites, as well as the possibility of launching several Earth observation satellites dozens of Cubesats with a single rocket launch, have brought forth the potential for University satellites radically new mission architectures consisting of very large constellations or clusters of Systems engineering Cubesats. These architectures promise to combine the temporal resolution of GEO Remote sensing missions with the spatial resolution of LEO missions, thus breaking a traditional trade- Nanosatellites Picosatellites off in Earth observation mission design. This paper assesses the current capabilities of Cubesats with respect to potential employment in Earth observation missions. A thorough review of Cubesat bus technology capabilities is performed, identifying potential limitations and their implications on 17 different Earth observation payload technologies. These results are matched to an exhaustive review of scientific require- ments in the field of Earth observation, assessing the possibilities of Cubesats to cope with the requirements set for each one of 21 measurement categories. -
OSTM/Jason-2 Products Handbook
OSTM/Jason-2 Products Handbook References: CNES : SALP-MU-M-OP-15815-CN EUMETSAT : EUM/OPS-JAS/MAN/08/0041 JPL: OSTM-29-1237 NOAA : Issue: 1 rev 0 Date: 17 June 2008 OSTM/Jason-2 Products Handbook Iss :1.0 - date : 17 June 2008 i.1 Chronology Issues: Issue: Date: Reason for change: 1rev0 June 17, 2008 Initial Issue People involved in this issue: Written by (*) : Date J.P. DUMONT CLS V. ROSMORDUC CLS N. PICOT CNES S. DESAI NASA/JPL H. BONEKAMP EUMETSAT J. FIGA EUMETSAT J. LILLIBRIDGE NOAA R. SHARROO ALTIMETRICS Index Sheet : Context: Keywords: Hyperlink: OSTM/Jason-2 Products Handbook Iss :1.0 - date : 17 June 2008 i.2 List of tables and figures List of tables: Table 1 : Differences between Auxiliary Data for O/I/GDR Products 1 Table 2 : Summary of error budget at the end of the verification phase 9 Table 3 : Main features of the OSTM/Jason-2 satellite 11 Table 4 : Mean classical orbit elements 16 Table 5 : Orbit auxiliary data 16 Table 6 : Equator Crossing Longitudes (in order of Pass Number) 18 Table 7 : Equator Crossing Longitudes (in order of Longitude) 19 Table 8 : Models and standards 21 Table 9 : CLS01 MSS model characteristics 22 Table 10 : CLS Rio 05 MDT model characteristics 23 Table 11 : Recommended editing criteria 26 Table 12 : Recommended filtering criteria 26 Table 13 : Recommended additional empirical tests 26 Table 14 : Main characteristics of (O)(I)GDR products 40 Table 15 - Dimensions used in the OSTM/Jason-2 data sets 42 Table 16 - netCDF variable type 42 Table 17 - Variable’s attributes 43 List of figures: Figure 1 -
The Impact of Satellite Data in the Joint Center for Satellite
The Impact of Satellite Data in the Joint Center for Satellite Data Assimilation John Le Marshall (JCSDA) Director, JCSDA 2004-2007 Lars-Peter Rishojgaard 2007- … Overview • Background • The Challenge • The JCSDA • The Satellite Program • Recent Advances • Impact of Satellite Data • Plans/Future Prospects • Summary CDAS/Reanl vs GFS NH/SH 500Hpa day 5 Anomaly Correlation (20-80 N/S) 90 NH GFS 85 SH GFS NH CDAS/Reanl 80 SH CDAS/Reanl 75 70 65 60 Anomaly Correlation Anomaly Correlation 55 50 45 40 1960 1970 1980 1990 2000 YEAR Data Assimilation Impacts in the NCEP GDAS N. Hemisphere 500 mb AC Z 20N - 80N Waves 1-20 15 Jan - 15 Feb '03 1 0.9 0.8 0.7 0.6 control 0.5 no amsu 0.4 no conv 0.3 Anomaly Correlation 0.2 0.1 0 1234567891011121314151617 Forecast [days] AMSU and “All Conventional” data provide nearly the same amount of improvement to the Northern Hemisphere. Impact of Removing Selected Satellite Data on Hurricane Track Forecasts in the East Pacific Basin 140 120 100 Control No AMSU 80 No HIRS 60 No GEO Wind 40 No QSC 20 Average Track ErrorsAverage [NM] 0 12 24 36 48 Forecst Time [hours] Anomaly correlation for days 0 to 7 for 500 hPa geopotential height in the zonal band 20°-80° for January/February. The red arrow indicate use of satellite data in the forecast model has doubled the length of a useful forecast. The Challenge Satellite Systems/Global Measurements GRACE Aqua Cloudsat CALIPSO TRMM SSMIS GIFTS TOPEX NPP Landsat MSG Meteor/ SAGE GOES-R COSMIC/GPS NOAA/ POES NPOESS SeaWiFS Terra Jason Aura ICESat SORCE WindSAT 5-Order Magnitude -
Estimating Gale to Hurricane Force Winds Using the Satellite Altimeter
VOLUME 28 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY APRIL 2011 Estimating Gale to Hurricane Force Winds Using the Satellite Altimeter YVES QUILFEN Space Oceanography Laboratory, IFREMER, Plouzane´, France DOUG VANDEMARK Ocean Process Analysis Laboratory, University of New Hampshire, Durham, New Hampshire BERTRAND CHAPRON Space Oceanography Laboratory, IFREMER, Plouzane´, France HUI FENG Ocean Process Analysis Laboratory, University of New Hampshire, Durham, New Hampshire JOE SIENKIEWICZ Ocean Prediction Center, NCEP/NOAA, Camp Springs, Maryland (Manuscript received 21 September 2010, in final form 29 November 2010) ABSTRACT A new model is provided for estimating maritime near-surface wind speeds (U10) from satellite altimeter backscatter data during high wind conditions. The model is built using coincident satellite scatterometer and altimeter observations obtained from QuikSCAT and Jason satellite orbit crossovers in 2008 and 2009. The new wind measurements are linear with inverse radar backscatter levels, a result close to the earlier altimeter high wind speed model of Young (1993). By design, the model only applies for wind speeds above 18 m s21. Above this level, standard altimeter wind speed algorithms are not reliable and typically underestimate the true value. Simple rules for applying the new model to the present-day suite of satellite altimeters (Jason-1, Jason-2, and Envisat RA-2) are provided, with a key objective being provision of enhanced data for near-real- time forecast and warning applications surrounding gale to hurricane force wind events. Model limitations and strengths are discussed and highlight the valuable 5-km spatial resolution sea state and wind speed al- timeter information that can complement other data sources included in forecast guidance and air–sea in- teraction studies. -
Combination of Multi-Satellite Altimetry Data with CHAMP and GRACE Egms for Geoid and Sea Surface Topography Determination
Combination of multi-satellite altimetry data with CHAMP and GRACE EGMs for geoid and sea surface topography determination G.S. Vergos , V.N. Grigoriadis, I.N. Tziavos Department of Geodesy and Surveying, Aristotle University of Thessaloniki, University Box 440, 541 24, Thessalo- niki, Greece, Fax: +30 231 0995948, E-mail: [email protected]. M.G. Sideris Department of Geomatics Engineering, University of Calgary, Abstract. Since the launch of the first altimetric mis- repeating measurements of the sea surface. Such satel- sions a wealth of data for the sea surface has become lites are ERS1, ERS2 and ENVISAT and available and utilized for geoid and sea surface topogra- TOPEX/Poseidon (T/P) with JASON-1. JASON-1 and phy modeling. The data from the gravity field dedicated ENVISAT are the latest on orbit satellites (December satellite missions of CHAMP and GRACE provide a 2001 and March 2002, respectively) and are both set on unique opportunity for combination studies with satel- exact repeat missions (ERM). lite altimetric observations. This study focuses on the This long series of altimetric observations has been combination of data from GEOSAT, ERS1/2, widely used for studies on the determination of MSS Topex/Poseidon, JASON-1 and ENVISAT with Earth models (Andersen and Knudsen 1998; Cazenave et al. Gravity Models (EGMs) generated from CHAMP and 1996), global and regional geoid models (Andritsanos et GRACE data to study the mean sea surface al. 2001; Lemoine et al. 1998; Vergos et al. 2005) as (MSS)/marine geoid in the Mediterranean Sea. Various well as on the recovery of gravity anomalies from al- combination methods, i.e., weighted least squares and timetric measurements (Andersen and Knudsen 1998; least squares collocation are investigated and conclu- Hwang et al. -
Gravity Field Analysis from the Satellite Missions CHAMP and GOCE
Institut fÄurAstronomische und Physikalische GeodÄasie Gravity Field Analysis from the Satellite Missions CHAMP and GOCE Martin K. Wermuth VollstÄandigerAbdruck der von der FakultÄatfÄurBauingenieur- und Vermessungswesen der Technischen UniversitÄatMÄunchen zur Erlangung des akademischen Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr.-Ing. U. Stilla PrÄuferder Dissertation: 1. Univ.-Prof. Dr.-Ing., Dr. h.c. R. Rummel 2. Univ.-Prof. Dr.-Ing. N. Sneeuw, UniversitÄatStuttgart Die Dissertation wurde am 04.03.2008 bei der Technischen UniversitÄatMÄunchen eingereicht und durch die FakultÄatfÄurBauingenieur- und Vermessungswesen am 04.07.2008 angenommen. Zusammenfassung In dieser Arbeit ist die Bestimmung von globalen Schwerefeldmodellen aus Beobachtungen der Satelliten- missionen CHAMP und GOCE beschrieben. Im Fall von CHAMP wird die sogenannte Energieerhaltungs- Methode auf GPS Beobachtungen des tief fliegenden CHAMP Satelliten angewandt. Im Fall von GOCE ist Gradiometrie die wichtigste BeobachtungsgrÄo¼e.Die Erfahrung die bei der Verarbeitung von Echt- daten der CHAMP Mission gewonnen wurde, fließt in die Entwicklung einer operationellen Quick-look Software fÄurdie GOCE Mission ein. Die Aufgabe globaler Schwerefeldbestimmung ist es, aus Beobach- tungen entlang einer Satellitenbahn ein Model des Gravitationsfeldes der Erde abzuleiten, das auf der Erdoberfl¨ache in sphÄarisch-harmonischen Koe±zienten beschrieben wird. Die theoretischen Grundla- gen, die nÄotigsind um die Beobachtungen mit dem Schwerefeld in Bezug zu setzen und ein globales Schwerefeld aus Satellitenbeobachtungen zu berechnen sind werden ausfÄuhrlich erklÄart. Die CHAMP Mission wurde im Jahr 2000 gestartet. Sie ist die erste Schwerefeldmission mit einem GPS EmpfÄangeran Bord. Die HauptbeobachtungsgrÄo¼ensind die GPS Bahn-Beobachtungen zu CHAMP, das sogenannte "satellite-to-satellite tracking" (SST). Ein Schwerefeldmodell wird mit der Energieerhaltungs- Methode unter Verwendung von kinematischen Bahnen berechnet. -
Dear Dr. Saverio Mori, Thank You Very Much for Kindly Inviting Us To
Dear Dr. Saverio Mori, Thank you very much for kindly inviting us to submit a revised manuscript titled “Simulating precipitation radar observations from a geostationary satellite” to Atmospheric Measurement Techniques. We would also appreciate the time and effort you and the reviewers have dedicated to providing insightful feedback on the ways to strengthen our paper. We would like to submit our revised manuscript. We have incorporated changes that reflect the suggestions you and the reviewers have provided. We hope that the revisions properly address the suggestions and comments. Sincerely, A. Okazaki, T. Honda, S. Kotsuki, M. Yamaji, T. Kubota, R. Oki, T. Iguchi, and T. Miyoshi The reviewer comments are in blue and italic and the replies are in black. Anonymous Referee #1 The manuscript presents the usefulness of a “feasible” Ku-band precipitation radar for a geostationary satellite (GeoSat/PR). It is an effort ongoing at JAXA to overcome two limitations of orbiting radar-based systems such as TRMM or GPM, namely, the limited swath and revisit time. A geostationary satellite needs a larger antenna than TRMM PR and GPM KuPR. A 20-m antenna for a 20 km footprint is considered in the study for its feasibility. The scan of the radar is within 6◦ that makes measurements available for a circular disk with a diameter of 8400 km. Effects of Non Uniform Beam Filling (NUBF) and clutter are presented usng an extremely simple cloud model. The impact of coarse resolutions of the GeoSat/PR is quantified on 3-D Typhoon observations obtained with realistic simulations. The subject of is important and the manuscript is, in general, well written. -
A Prototype WRF-Based Ensemble Data Assimilation System for Dynamically Downscaling Satellite Precipitation Observations
118 JOURNAL OF HYDROMETEOROLOGY VOLUME 12 A Prototype WRF-Based Ensemble Data Assimilation System for Dynamically Downscaling Satellite Precipitation Observations DUSANKA ZUPANSKI* CIRA/Colorado State University, Fort Collins, Colorado SARA Q. ZHANG NASA Goddard Space Flight Center, Greenbelt, Maryland MILIJA ZUPANSKI CIRA/Colorado State University, Fort Collins, Colorado ARTHUR Y. HOU NASA Goddard Space Flight Center, Greenbelt, Maryland SAMSON H. CHEUNG University of California, Davis, Davis, California (Manuscript received 12 January 2010, in final form 23 August 2010) ABSTRACT In the near future, the Global Precipitation Measurement (GPM) mission will provide precipitation observations with un- precedented accuracy and spatial/temporal coverage of the globe. For hydrological applications, the satellite observations need to be downscaled to the required finer-resolution precipitation fields. This paper explores a dynamic downscaling method using ensemble data assimilation techniques and cloud-resolving models. A prototype ensemble data assimilation system using the Weather Research and Forecasting Model (WRF) has been developed. A high-resolution regional WRF with multiple nesting grids is used to provide the first-guess and ensemble forecasts. An ensemble assimilation algorithm based on the maximum likelihood ensemble filter (MLEF) is used to perform the analysis. The forward observation operators from NOAA–NCEP’s gridpoint statistical interpolation (GSI) are incorporated for using NOAA–NCEP operational datastream, including conven- tional data and clear-sky satellite observations. Precipitation observation operators are developed with a combination of the cloud-resolving physics from NASA Goddard cumulus ensemble (GCE) model and the radiance transfer schemes from NASA Satellite Data Simulation Unit (SDSU). The prototype of the system is used as a test bed to optimally combine observations and model information to produce a dynamically downscaled precipitation analysis. -
Toward 1-Mgal Accuracy in Global Marine Gravity from Cryosat-2, Envisat, and Jason-1
SPECIALGravity SECTION: and G rpotential a v i t y and fieldspotential fields Toward 1-mGal accuracy in global marine gravity from CryoSat-2, Envisat, and Jason-1 DAVID SANDWELL and EMMANUEL GARCIA, Scripps Institution of Oceanography KHALID SOOFI, ConocoPhillips PAUL WESSEL and MICHAEL CHANDLER, University of Hawaii at Mānoa WALTER H. F. SMITH, National Oceanic and Atmospheric Administration ore than 60% of the Earth’s land and shallow contribution to gravity field improvement, especially Mmarine areas are covered by > 2 km of sediments in the Arctic where the closely spaced repeat tracks can and sedimentary rocks, with the thickest accumulations collect data over unfrozen areas as the ice cover changes on rifted continental margins (Figure 1). Free-air marine (Childers et al., 2012). gravity anomalies derived from Geosat and ERS-1 satellite 3) The Jason-1 satellite was launched in 2001 to replace the altimetry (Fairhead et al., 2001; Sandwell and Smith, 2009; aging Topex/Poseidon satellite. To avoid a potential colli- Andersen et al., 2009) outline most of these major basins sion between Jason 1 and Topex, the Jason-1 satellite was with remarkable precision. Moreover, gravity and bathymetry moved into a lower orbit with a long repeat time of 406 data derived from altimetry are used to identify current and days resulting in an average ground-track spacing of 3.9 paleo-submarine canyons, faults, and local recent uplifts. km at the equator. The maneuver was performed in May These geomorphic features provide clues to where to look 2012 and the satellite is collecting a tremendous new data for large deposits of sediments. -
Étude De Faisabilité Télédétection De L'écoulement De Surface Provenant D'amas Au Champ Et Enclos D'hivernage
Étude de faisabilité Télédétection de l’écoulement de surface provenant d’amas au champ et enclos d’hivernage Présentée au : Ministère Développement durable, Environnement et Parcs Direction des politiques en milieu terrestre Édifice Marie-Guyart, 9e étage, boîte 71 675, boulevard René-Lévesque Est, Québec (Québec), G1R 5V7 Par Karem Chokmani, professeur Lisa-Marie Pâquet, assistante de recherche Yves Gauthier, agent de recherche Institut national de la recherche scientifique – Eau, Terre & Environnement 490 rue de la Couronne, Québec (Québec), G1K 9A9 Tél. : (418) 654-2570 Téléc. : (418) 654-2600 Courriel : [email protected] Rapport de recherche N° R-979 Avril 2008 ISBN : 978-2-89146- 568-7 ii AVANT PROPOS Dans le cadre des efforts du ministère du développement durable, de l’environnement et des parcs (MDDEP) pour valider et bonifier les connaissances sur la conception des amas de fumier au champ, l’équipe de recherche de l’INRS-ETE, sous la direction du professeur Karem Chokmani, a été mandaté par le ministère pour réaliser une étude de faisabilité pour la télédétection de l’écoulement de surface provenant d’amas au champ et d’enclos d’hivernage. Dans le présent rapport de recherche, après une section d’introduction consacrée à la problématique et aux objectifs, une synthèse de la revue de littérature et un exposé de la méthodologie de travail y sont présentés. Les résultats sont par la suite décrits et discutés pour finir avec les conclusions ainsi qu’une série de recommandations concernant la faisabilité de l’approche et la démarche à suivre pour son éventuelle application opérationnelle. -
Users, Uses, and Value of Landsat Satellite Imagery— Results from the 2012 Survey of Users
Users, Uses, and Value of Landsat Satellite Imagery— Results from the 2012 Survey of Users By Holly M. Miller, Leslie Richardson, Stephen R. Koontz, John Loomis, and Lynne Koontz Open-File Report 2013–1269 U.S. Department of the Interior U.S. Geological Survey i U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette Kimball, Acting Director U.S. Geological Survey, Reston, Virginia 2013 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation: Miller, H.M., Richardson, Leslie, Koontz, S.R., Loomis, John, and Koontz, Lynne, 2013, Users, uses, and value of Landsat satellite imagery—Results from the 2012 survey of users: U.S. Geological Survey Open-File Report 2013–1269, 51 p., http://dx.doi.org/10.3133/ofr20131269. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. Contents Contents ......................................................................................................................................................... ii Acronyms and Initialisms ...............................................................................................................................