Transactivation by the P65 Subunit of NF-B in Response to Interleukin-1

Total Page:16

File Type:pdf, Size:1020Kb

Transactivation by the P65 Subunit of NF-B in Response to Interleukin-1 MOLECULAR AND CELLULAR BIOLOGY, July 2001, p. 4544–4552 Vol. 21, No. 14 0270-7306/01/$04.00ϩ0 DOI: 10.1128/MCB.21.14.4544–4552.2001 Copyright © 2001, American Society for Microbiology. All Rights Reserved. Transactivation by the p65 Subunit of NF-␬B in Response to Interleukin-1 (IL-1) Involves MyD88, IL-1 Receptor-Associated Kinase 1, TRAF-6, and Rac1 CAROLINE JEFFERIES,1* ANDREW BOWIE,1 GARETH BRADY,1 EMMA-LOUISE COOKE,2 3 1 XIAOXIA LI, AND LUKE A. J. O’NEILL Department of Biochemistry and Biotechnology Institute, Trinity College, Dublin 2, Ireland1; Department of Cell Biology, Glaxo Wellcome Research and Development, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, United Kingdom2; and Department of Molecular Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 441953 Received 30 August 2000/Returned for modification 2 October 2000/Accepted 19 April 2001 We have examined the involvement of components of the interleukin-1 (IL-1) signaling pathway in the transactivation of gene expression by the p65 subunit of NF-␬B. Transient transfection of cells with plasmids encoding wild-type MyD88, IL-1 receptor-associated kinase 1 (IRAK-1), and TRAF-6 drove p65-mediated transactivation. In addition, dominant negative forms of MyD88, IRAK-1, and TRAF-6 inhibited the IL-1- induced response. In cells lacking MyD88 or IRAK-1, no effect of IL-1 was observed. Together, these results indicate that MyD88, IRAK-1, and TRAF-6 are important downstream regulators of IL-1-mediated p65 transactivation. We have previously shown that the low-molecular-weight G protein Rac1 is involved in this response. Constitutively active RacV12-mediated transactivation was not inhibited by dominant negative MyD88, while dominant negative RacN17 inhibited the MyD88-driven response, placing Rac1 downstream of MyD88 on this pathway. Dominant negative RacN17 inhibited wild-type IRAK-1- and TRAF-6-induced trans- activation, and in turn, dominant negative IRAK-1 and TRAF-6 inhibited the RacV12-driven response, sug- gesting a mutual codependence of Rac1, IRAK-1, and TRAF-6 in regulating this pathway. Finally, Rac1 was found to associate with the receptor complex via interactions with both MyD88 and the IL-1 receptor accessory protein. A pathway emanating from MyD88 and involving IRAK-1, TRAF-6, and Rac1 is therefore involved in transactivation of gene expression by the p65 subunit of NF-␬B in response to IL-1. Regulation of the transcription factor nuclear factor kappa Tollip (Toll-interacting protein), which has been shown to be B (NF-␬B) following stimulation with the proinflammatory involved in IRAK-1 recruitment to the receptor complex via cytokine interleukin-1 (IL-1) occurs via activation of two inde- association of Tollip with IL-1RAcP (7). Once associated with pendent pathways (28). The first and to date best-characterized the receptor complex, IRAK-1 subsequently recruits the pathway regulates the release of NF-␬B (typically a het- adapter tumor necrosis factor (TNF) receptor-associated fac- erodimer comprising the p50 and p65 subunits) from its inhib- tor 6 (TRAF-6), an essential mediator of IL-1 signaling to ␬ ␬ itory protein I B, allowing NF- B to translocate to the nu- NF-␬B activation (10). Subsequent autophosphorylation of cleus. The second pathway, which has recently been described, IRAK-1 is thought to promote dissociation of IRAK-1 from regulates the transactivating ability of the p65 subunit of the receptor complex, thus enabling downstream signaling, re- ␬ NF- B once it is bound to its consensus sequence (3, 17). sulting in activation of the I␬B kinase (IKK) complex, respon- ␬ IL-1 signal transduction to I B degradation has been the sible for I␬B phosphorylation and subsequent ubiquitin-medi- subject of intense investigation (21). In response to IL-1 bind- ated degradation (12, 40). The upstream kinases involved in ing to its type I IL-1 receptor (IL-1RI), a complex is formed activating IKK1 and -2 are thought to belong to the mitogen- between IL-1RI and its accessory protein (IL-1RAcP). These activated protein kinase (MAPK) family of kinases. NF-␬B- proteins have a region of homology in their cytoplasmic do- interacting kinase (NIK) has been shown to phosphorylate and mains, the Toll/IL-1R (TIR) domain, which is characteristic of activate the IKKs when overexpressed in cells, and a role for the Toll/IL-1-like receptor superfamily and is also responsible the kinase TAK1 and its regulator TAB1, upstream of NIK, for signaling (27). The cytosolic adapter protein MyD88 (also has been indicated (23). However, the involvement of NIK in containing a C-terminal TIR domain) interacts with IL-1RAcP regulating IKK activation in response to either TNF or IL-1 via a homotypic interaction involving both TIR domains and is has recently been disputed (2). MEKK-1 (MAPK/ERK ki- a key regulator of IL-1 signal transduction (5, 8, 16). The nase-1) has also been shown to phosphorylate and activate the interaction of MyD88 with the receptor complex mediates the IKKs (20), and recently an adapter protein, ECSIT (evolution- recruitment of the IL-1 receptor-associated kinases (IRAK) 1 and 2 (9, 26). Recently, a novel protein has been identified, arily conserved signaling intermediate in Toll pathways), has been described which regulates MEKK-1 and links TRAF-6 with MEKK-1 regulation (19). In contrast, little is known about the signaling components * Corresponding author. Mailing address: Department of Biochem- istry and Biotechnology Institute, Trinity College, Dublin 2, Ireland. involved in the pathway regulating the transactivating activity Phone: 353-1-6082449. Fax: 353-1-6772400. E-mail: [email protected]. of the p65 subunit of NF-␬B. Several reports have demon- 4544 VOL. 21, 2001 IL-1 REGULATION OF p65 TRANSACTIVATION 4545 strated that upon stimulation with either IL-1 or TNF, the dominant negative RacN17 were kind gifts from D. Cantrell (Imperial Cancer ability of the p65 subunit of NF-␬B to transactivate gene ex- Research Fund, London, United Kingdom) and have been described elsewhere (13). The cDNA for MyD88 was cloned into the bacterial expression vector pression is enhanced, possibly as a result of phosphorylation of pGEX, expressed in Escherichia coli BL21(DE3) as a fusion protein with gluta- multiple serine residues on p65 (3, 4, 17, 36). The kinases thione S-transferase (GST), and purified with glutathione-agarose beads (Sigma) involved in regulating this response following TNF stimulation by standard protocols. have, to some extent, been identified. Protein kinase A has Transient-transfection and reporter gene assays. EL4.NOB-1 cells (7 ϫ 106) been demonstrated to phosphorylate serine 276 in the Rel were transfected with plasmids as indicated in the figure legends in a final volume of 0.6 ml using DEAE-dextran. Following 16 to 18 h of recovery, cells were homology domain of p65, and casein kinase II has been shown seeded at a density of 106 viable cells (as determined by the trypan blue dye Ϫ Ϫ to be responsible for phosphorylating serine 529 in the C- exclusion method) prior to stimulation. 293-RI and 293-IRAK / cells (2 ϫ 104 terminal transactivation domain (37, 38, 41). In addition, re- per well) were seeded onto 96-well plates and transfected 24 h later with 5 ng of (1–551) ports have also indicated the ability of the IKKs to phosphor- Gal4-p65 , 25 ng of Gal-luciferase, and 40 ng of Renilla luciferase (used as an internal control) with FuGENE 6 (Roche) according to the manufacturer’s ylate p65 on serine 536 in the transactivation domain while the recommendations. MEK and MyD88-deficient cells (2.5 ϫ 104 per well) were protein is in the cytoplasm, adding another level of complexity seeded onto 24-well plates and transfected 24 h later with 100 ng of Gal4- to the regulation of transactivation of gene expression by p65 p65(1–551), 200 ng of Gal-luciferase, and 200 ng of Renilla luciferase with Fu- (30). Phosphorylation of either the Rel homology domain or GENE 6 (Roche) according to the manufacturers’ recommendations. In all the transactivation domain of p65 mediates the interaction of cases, the amount of DNA transfected was kept constant by the addition of various amounts of the appropriate empty vector plasmid. Cells were either left p65 with coactivators such as CREB-binding protein (CBP). A untreated or stimulated with IL-1 (10 ng/ml) as indicated following a period of role for phosphatidylinositol 3-kinase (PI3K) in the events recovery (16 to 18 h). To assay firefly luciferase activity, cells were lysed using leading to phosphorylation of p65 in response to IL-1 has been passive lysis buffer (Promega), and luciferase activity was determined by standard ␤ demonstrated (34). procedures. Renilla luciferase acivity and -galactosidase activity were deter- mined by standard protocols and used to normalize firefly luciferase activity in Despite the rapidly accumulating evidence for a role of var- relation to transfection efficiency. ious kinase pathways in regulating p65-mediated transactiva- Immunoprecipitation and Western blot analysis. Cells were treated as de- tion, much research is required into the signaling events reg- scribed in the figure legends for the times indicated, and treatment was termi- ulating the kinases responsible for phosphorylating p65. nated by the addition of 5 ml of ice-cold phosphate-buffered saline (PBS). Cells Previous studies in our laboratory have demonstrated the in- were lysed on ice (30 min) in buffer containing 150 mM NaCl, 2 mM EDTA, 10% glycerol, 1% NP-40, 0.2 mM phenylmethylsulfonyl fluoride, 0.2 mM Na3VO4 and volvement of the low-molecular-weight G protein Rac1 in reg- 1 ␮g of leupeptin per ml. Lysates were cleared by centrifugation, and following ulating these events in response to IL-1 stimulation, but exactly clearing for 30 min at 4°C with protein G-Sepharose (Sigma), AU1-tagged how Rac1 mediates this signal remains to be discovered.
Recommended publications
  • REVIEW Signal Transduction, Cell Cycle Regulatory, and Anti
    Leukemia (1999) 13, 1109–1166 1999 Stockton Press All rights reserved 0887-6924/99 $12.00 http://www.stockton-press.co.uk/leu REVIEW Signal transduction, cell cycle regulatory, and anti-apoptotic pathways regulated by IL-3 in hematopoietic cells: possible sites for intervention with anti-neoplastic drugs WL Blalock1, C Weinstein-Oppenheimer1,2, F Chang1, PE Hoyle1, X-Y Wang3, PA Algate4, RA Franklin1,5, SM Oberhaus1,5, LS Steelman1 and JA McCubrey1,5 1Department of Microbiology and Immunology, 5Leo Jenkins Cancer Center, East Carolina University School of Medicine Greenville, NC, USA; 2Escuela de Quı´mica y Farmacia, Facultad de Medicina, Universidad de Valparaiso, Valparaiso, Chile; 3Department of Laboratory Medicine and Pathology, Mayo Clinic and Foundation, Rochester, MN, USA; and 4Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA Over the past decade, there has been an exponential increase growth factor), Flt-L (the ligand for the flt2/3 receptor), erythro- in our knowledge of how cytokines regulate signal transduc- poietin (EPO), and others affect the growth and differentiation tion, cell cycle progression, differentiation and apoptosis. Research has focused on different biochemical and genetic of these early hematopoietic precursor cells into cells of the 1–4 aspects of these processes. Initially, cytokines were identified myeloid, lymphoid and erythroid lineages (Table 1). This by clonogenic assays and purified by biochemical techniques. review will concentrate on IL-3 since much of the knowledge This soon led to the molecular cloning of the genes encoding of how cytokines affect cell growth, signal transduction, and the cytokines and their cognate receptors.
    [Show full text]
  • The Activator Protein-1 Transcription Factor in Respiratory Epithelium Carcinogenesis
    Subject Review The Activator Protein-1 Transcription Factor in Respiratory Epithelium Carcinogenesis Michalis V. Karamouzis,1 Panagiotis A. Konstantinopoulos,1,2 and Athanasios G. Papavassiliou1 1Department of Biological Chemistry, Medical School, University of Athens, Athens, Greece and 2Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts Abstract Much of the current anticancer research effort is focused on Respiratory epithelium cancers are the leading cause cell-surface receptors and their cognate upstream molecules of cancer-related death worldwide. The multistep natural because they provide the easiest route for drugs to affect history of carcinogenesis can be considered as a cellular behavior, whereas agents acting at the level of gradual accumulation of genetic and epigenetic transcription need to invade the nucleus. However, the aberrations, resulting in the deregulation of cellular therapeutic effect of surface receptor manipulation might be homeostasis. Growing evidence suggests that cross- considered less than specific because their actions are talk between membrane and nuclear receptor signaling modulated by complex interacting downstream signal trans- pathways along with the activator protein-1 (AP-1) duction pathways. A pivotal transcription factor during cascade and its cofactor network represent a pivotal respiratory epithelium carcinogenesis is activator protein-1 molecular circuitry participating directly or indirectly in (AP-1). AP-1–regulated genes include important modulators of respiratory epithelium carcinogenesis. The crucial role invasion and metastasis, proliferation, differentiation, and of AP-1 transcription factor renders it an appealing survival as well as genes associated with hypoxia and target of future nuclear-directed anticancer therapeutic angiogenesis (7). Nuclear-directed therapeutic strategies might and chemoprevention approaches.
    [Show full text]
  • Signal Transduction and the Ets Family of Transcription Factors
    Oncogene (2000) 19, 6503 ± 6513 ã 2000 Macmillan Publishers Ltd All rights reserved 0950 ± 9232/00 $15.00 www.nature.com/onc Signal transduction and the Ets family of transcription factors John S Yordy1 and Robin C Muise-Helmericks*,1,2 1Center for Molecular and Structural Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, SC 29403, USA; 2Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, South Carolina, SC 29403, USA Cellular responses to environmental stimuli are con- expression required for cellular growth, dierentiation trolled by a series of signaling cascades that transduce and survival. One group of downstream eectors of extracellular signals from ligand-activated cell surface these signaling pathways is the Ets family of transcrip- receptors to the nucleus. Although most pathways were tion factors. Ets family members can also be initially thought to be linear, it has become apparent that considered upstream eectors of signal transduction there is a dynamic interplay between signaling pathways pathways controlling the expression of a number of that result in the complex pattern of cell-type speci®c signaling components including both receptor tyrosine responses required for proliferation, dierentiation and kinases and intermediate signaling molecules. survival. One group of nuclear eectors of these The Ets family of transcription factors is de®ned by signaling pathways are the Ets family of transcription a conserved winged helix ± turn ± helix DNA binding factors, directing cytoplasmic signals to the control of domain (Papas et al., 1989; Wasylyk et al., 1993; gene expression. This family is de®ned by a highly Werner et al., 1995).
    [Show full text]
  • Quantitative Analysis of NF-B Transactivation Specificity Using A
    Quantitative Analysis of NF-#B Transactivation Specificity Using a Yeast-Based Functional Assay The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Sharma, Vasundhara, Jennifer J. Jordan, Yari Ciribilli, Michael A. Resnick, Alessandra Bisio, and Alberto Inga. “Quantitative Analysis of NF-κB Transactivation Specificity Using a Yeast-Based Functional Assay.” Edited by Sue Cotterill. PLOS ONE 10, no. 7 (July 6, 2015): e0130170. As Published http://dx.doi.org/10.1371/journal.pone.0130170 Publisher Public Library of Science Version Final published version Citable link http://hdl.handle.net/1721.1/99881 Terms of Use Creative Commons Attribution Detailed Terms http://creativecommons.org/licenses/by/4.0/ RESEARCH ARTICLE Quantitative Analysis of NF-κB Transactivation Specificity Using a Yeast- Based Functional Assay Vasundhara Sharma1, Jennifer J. Jordan1¤, Yari Ciribilli1, Michael A. Resnick2, Alessandra Bisio1‡*, Alberto Inga1‡* 1 Laboratory of Transcriptional Networks, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy, 2 Chromosome Stability Group; National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America a11111 ¤ Current address: Department of Biological Engineering, MIT, Boston, MA, USA ‡ These authors are co-last authors on this work. * [email protected] (AB); [email protected] (AI) Abstract κ OPEN ACCESS The NF- B transcription factor family plays a central role in innate immunity and inflamma- tion processes and is frequently dysregulated in cancer. We developed an NF-κB functional Citation: Sharma V, Jordan JJ, Ciribilli Y, Resnick κ MA, Bisio A, Inga A (2015) Quantitative Analysis of assay in yeast to investigate the following issues: transactivation specificity of NF- B pro- NF-κB Transactivation Specificity Using a Yeast- teins acting as homodimers or heterodimers; correlation between transactivation capacity Based Functional Assay.
    [Show full text]
  • ETS1, Nfkb and AP1 Synergistically Transactivate the Human GM ± CSF Promoter
    Oncogene (1997) 14, 2845 ± 2855 1997 Stockton Press All rights reserved 0950 ± 9232/97 $12.00 ETS1, NFkB and AP1 synergistically transactivate the human GM ± CSF promoter Ross S Thomas1, Martin J Tymms1, Leigh H McKinlay1, M Frances Shannon2, Arun Seth3 and Ismarl Kola1 1Molecular Genetics and Development Group, Institute of Reproduction and Development, Monash University, Melbourne 3168, Australia; 2Division of Human Immunology, Hanson Centre for Cancer Research, Institute of Medical and Veterinary Science, Adelaide 5000, Australia; 3Department of Pathology, University of Toronto/Women's College Hospital, Toronto, Ontario, Canada Activation of helper T cells results in coordinate Activating signals ultimately result in cellular prolifera- expression of a number of cytokines involved in tion, and transcriptional induction and secretion of a dierentiation, proliferation and activation of the number of cytokines including IL-2 (interleukin-2), IL-3, haematopoietic system. Granulocyte-macrophage colony IFNg (interferon-gamma) and GM ± CSF (granulocyte- stimulating factor (GM ± CSF) is one such cytokine, macrophage colony-stimulating factor) (Stanley et al., whose increased expression results mostly from increases 1985; Miyajima et al., 1988; Arai et al., 1990). These in transcription. Cis-acting elements with NFkB, AP1 cytokines direct the eector functions of various cell and ETS-like binding motifs have been identi®ed in the types involved in an immune response, including B cells, promoter region of the GM ± CSF gene, and are macrophages, mast cells, eosinophils and neutrophils. important or essential for transcriptional activity follow- GM ± CSF expression in activated T cells is ing T cell activation. ETS1 is a transcription factor of regulated by two mechanisms.
    [Show full text]
  • DNA Binding of USF Is Required for Specific E-Box Dependent Gene
    Oncogene (1999) 18, 7200 ± 7211 ã 1999 Stockton Press All rights reserved 0950 ± 9232/99 $15.00 http://www.stockton-press.co.uk/onc DNA binding of USF is required for speci®c E-box dependent gene activation in vivo Astrid Kiermaier1,5, Jonathan M Gawn2,5, Laurie Desbarats1, Rainer Sarich3, Wilhelm Ansorge3, Paul J Farrell2,4, Martin Eilers1 and Graham Packham*,2,4 1Institute for Molecular Biology and Tumour Research, University of Marburg, Emil-Mannkop-Str 2, 35033 Marburg, Germany; 2Ludwig Institute for Cancer Research, Imperial College School of Medicine, St. Mary's Campus, Norfolk Place, London, W2 1PG, UK; 3Biochemical Instrumentation Programme, EMBL, Meyerhofstr 1, 69117 Heidelberg, Germany; 4Virology and Cell Biology, Department of Medical Microbiology, Imperial College School of Medicine, St. Mary's Campus, Norfolk Place, London, W2 1PG, UK Although USF-1 and -2 are the major proteins that bind Repression requires an amino-terminal domain con- to Myc-regulated E-box (CACGTG) elements in many served in Mad-like proteins that recruits histone cells, there is no clear role for USF during Myc- deacetylases via an adapter protein, sin3 (e.g. Alland dependent gene regulation. Using dominant negative et al., 1997; Laherty et al., 1997; Sommer et al., 1997). alleles of USF-1 we now show that DNA binding by Little doubt exists that Myc exerts at least part of its USF at a Myc-regulated E-box limits the ability of biological eects through the transcriptional activation another E-box binding factor, TFE-3, to activate a of speci®c target genes although Myc has other target gene of Myc in vivo and to stimulate S phase functions that may contribute to its biological proper- entry in resting ®broblasts.
    [Show full text]
  • 4560.Full.Pdf
    HIV-1 Tat Inhibits IL-2 Gene Transcription Through Qualitative and Quantitative Alterations of the Cooperative Rel/AP1 Complex Bound to the CD28RE/AP1 This information is current as Composite Element of the IL-2 Promoter of September 29, 2021. Esther González, Carmen Punzón, Manuel González and Manuel Fresno J Immunol 2001; 166:4560-4569; ; doi: 10.4049/jimmunol.166.7.4560 Downloaded from http://www.jimmunol.org/content/166/7/4560 References This article cites 67 articles, 45 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/166/7/4560.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 29, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2001 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. HIV-1 Tat Inhibits IL-2 Gene Transcription Through Qualitative and Quantitative Alterations of the Cooperative Rel/AP1 Complex Bound to the CD28RE/AP1 Composite Element of the IL-2 Promoter1 Esther Gonza´lez, Carmen Punzo´n, Manuel Gonza´lez, and Manuel Fresno2 Dysregulation of cytokine secretion plays an important role in AIDS pathogenesis.
    [Show full text]
  • Interaction of the Human Androgen Receptor Transactivation Function with the General Transcription Factor TFIIF
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 8485–8490, August 1997 Biochemistry Interaction of the human androgen receptor transactivation function with the general transcription factor TFIIF IAIN J. MCEWAN* AND JAN-ÅKE GUSTAFSSON Department of Biosciences, Novum, Karolinska Institute, S-141 57 Huddinge, Sweden Communicated by Elwood V. Jensen, University of Hamburg, Hamburg, Germany, May 27, 1997 (received for review January 28, 1997) ABSTRACT The human androgen receptor (AR) is a tion factors, and thus the polymerase, to the promoter (re- ligand-activated transcription factor that regulates genes im- viewed in refs. 17–19). This can be achieved by direct contact portant for male sexual differentiation and development. To between the activator and the general transcription factors better understand the role of the receptor as a transcription andyor interactions by means of coactivator proteins (refs. 17 factor we have studied the mechanism of action of the N- and 19–21 and references therein). terminal transactivation function. In a protein–protein inter- In recent years a number of interactions have been described action assay the AR N terminus (amino acids 142–485) between members of the steroid–thyroid hormone receptor selectively bound to the basal transcription factors TFIIF and superfamily and basal transcription factors and co–activator the TATA-box-binding protein (TBP). Reconstitution of the proteins (see ref. 22 and references therein). However, very transactivation activity in vitro revealed that AR142–485 fused to little is known concerning the identity of interacting proteins the LexA protein DNA-binding domain was competent to with the human AR. To better understand the mechanism of activate a reporter gene in the presence of a competing DNA gene regulation by the human AR we have screened a panel of template lacking LexA binding sites.
    [Show full text]
  • Cellular and Viral Trans-Acting Factors Modulate N-Myc2 Promoter Activity in Woodchuck Liver Tumors
    Oncogene (1997) 15, 1103 ± 1110 1997 Stockton Press All rights reserved 0950 ± 9232/97 $12.00 SHORT REPORT Cellular and viral trans-acting factors modulate N-myc2 promoter activity in woodchuck liver tumors Marc Flajolet1, Anne Gegonne2, Jacques Ghysdael2, Pierre Tiollais1, Marie-Annick Buendia1 and GenevieÁ ve Fourel1,3 1Unite de Recombinaison et Expression GeÂneÂtique (INSERM U163), Institut Pasteur, Paris and 2CNRS-URA 1443, Institut Curie, Centre Universitaire, BaÃtiment 110, Orsay, France Activation of the N-myc2 oncogene by integration of of the N-myc gene. Like other myc oncogenes, N-myc2 woodchuck hepatitis virus (WHV) DNA is a central cooperates with activated H-ras in the transformation event in woodchuck liver oncogenesis. In this study, we of rat embryo ®broblasts (Fourel et al., 1990), and its have evaluated the in¯uence of several cellular and viral targeted expression in liver cells induces hepatocellular trans-acting factors and mediators of in¯ammation on N- carcinoma in transgenic mice (CA Renard and G myc2 promoter activity in hepatoma cell lines. Ets Fourel, unpublished results). In addition, forced oncoproteins, including Ets1, Ets2 and PEA3 eciently expression of N-myc2 in rodent hepatic cells triggers activated a chimeric N-myc2 promoter/luciferase repor- a strong proliferative response and an increased ter gene. By electrophoretic mobility shift assays, we propensity to undergo apoptosis, which is inhibited show that Ets1 and Ets2 proteins can eciently bind two by insulin-like growth factor II (Dandri et al., 1996; consensus Ets sites located within a 59 bp sequence Ueda and Ganem, 1996). While N-myc2 transcripts are upstream of the N-myc2 transcription start site.
    [Show full text]
  • AML1 Stimulates G1 to S Progression Via Its Transactivation Domain
    Oncogene (2002) 21, 3247 ± 3252 ã 2002 Nature Publishing Group All rights reserved 0950 ± 9232/02 $25.00 www.nature.com/onc AML1 stimulates G1 to S progression via its transactivation domain Florence Bernardin1 and Alan D Friedman*,1 1The Johns Hopkins Oncology Center, Division of Pediatric Oncology, Baltimore, Maryland, MD 21231, USA Inhibition of AML1-mediated transactivation potently Mice lacking either AML1 (RUNX1) or CBFb do slows G1 to S cell cycle progression. In Ba/F3 cells, not develop de®nitive hematopoiesis, indicating a activation of exogenous AML1 (RUNX1)-ER with 4- critical role for these factors in pluripotent hemato- hydroxytamoxifen prevents inhibition of G1 progression poietic stem cells (Okuda et al., 1996; Sasaki et al., mediated by CBFb-SMMHC, a CBF oncoprotein. We 1996; Wang et al., 1996a,b; Niki et al., 1997). The most expressed three AML1-ER variants with CBFb- potent AML1 transactivation domain, corresponding SMMHC in Ba/F3 cells. In these lines, CBFb-SMMHC to residues 318 ± 398 of the human protein (Kanno et expression is regulated by the zinc-responsive metal- al., 1998), is required to rescue the hematopoietic lothionein promoter. Deletion of 72 AML1 C-terminal potential of AML1(7/7) ES cells (Okuda et al., residues, which includes a transrepression domain, did 1999). On the other hand, the C-terminus of AML1, not alter the activity of AML1-ER, whereas further containing a VWRPY motif capable of mediating deletion of 98 residues, removing the most potent AML1 transrepression via interaction with TLE (Aronson et transactivation domain (TAD), prevented rescue of cell al., 1997; Imai et al., 1998; Levanon et al., 1998), is not cycle inhibition.
    [Show full text]
  • Enhancing IL-2 Gene Transactivation Cells by Increasing Mrna Stability
    CD28 Costimulation Augments IL-2 Secretion of Activated Lamina Propria T Cells by Increasing mRNA Stability Without Enhancing IL-2 Gene Transactivation This information is current as of September 29, 2021. Rivkah Gonsky, Richard L. Deem, Doo Han Lee, Alice Chen and Stephan R. Targan J Immunol 1999; 162:6621-6629; ; http://www.jimmunol.org/content/162/11/6621 Downloaded from References This article cites 36 articles, 24 of which you can access for free at: http://www.jimmunol.org/content/162/11/6621.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 29, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 1999 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. CD28 Costimulation Augments IL-2 Secretion of Activated Lamina Propria T Cells by Increasing mRNA Stability Without Enhancing IL-2 Gene Transactivation1 Rivkah Gonsky,* Richard L. Deem,* Doo Han Lee,† Alice Chen,* and Stephan R. Targan2* The pathways leading to activation in lamina propria (LP) T cells are different from peripheral T cells.
    [Show full text]
  • Β-Catenin-Mediated Transactivation and Cell
    Oncogene (2002) 21, 8414 – 8427 ª 2002 Nature Publishing Group All rights reserved 0950 – 9232/02 $25.00 www.nature.com/onc b-Catenin-mediated transactivation and cell – cell adhesion pathways are important in curcumin (diferuylmethane)-induced growth arrest and apoptosis in colon cancer cells Aruna S Jaiswal1,2, Benjamin P Marlow1,2, Nirupama Gupta1,2 and Satya Narayan*,1,2 1Department of Anatomy and Cell Biology, College of Medicine, The University of Florida, Gainesville, Florida, FL 32610, USA; 2UF Shands Cancer Center, College of Medicine, The University of Florida, Gainesville, Florida, FL 32610, USA The development of nontoxic natural agents with Introduction chemopreventive activity against colon cancer is the focus of investigation in many laboratories. Curcumin Dysregulation of the Wingless/Wnt (Wnt) signaling (feruylmethane), a natural plant product, possesses such pathway is believed to play an important role in the chemopreventive activity, but the mechanisms by which it pathogenesis of colorectal cancer (Polakis, 2000). In a prevents cancer growth are not well understood. In the simple model, Wnt signaling regulates the assembly of present study, we examined the mechanisms by which a complex consisting of Axin (and its homolog Axil curcumin treatment affects the growth of colon cancer and conductin), adenomatous polyposis coli (APC), b- cells in vitro. Results showed that curcumin treatment catenin, and glycogen synthase-3b kinase (GSK3b). causes p53- and p21-independent G2/M phase arrest and Axin binds to APC, b-catenin, and GSK3b and thereby apoptosis in HCT-116(p53+/+), HCT-116(p537/7) and promotes b-catenin phosphorylation and subsequent HCT-116(p217/7) cell lines.
    [Show full text]