Behavior of Opposing Pathways of Thymidine Utilization in Differentiating, Regenerating, and Neoplastic Liver1

Total Page:16

File Type:pdf, Size:1020Kb

Behavior of Opposing Pathways of Thymidine Utilization in Differentiating, Regenerating, and Neoplastic Liver1 CANCER RESEARCH 31, 550-556, May 1971) Behavior of Opposing Pathways of Thymidine Utilization in Differentiating, Regenerating, and Neoplastic Liver1 John A. Ferdinandus, Harold P. Morris, and George Weber2 Department of Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana 46202 /J. A. F., G. W.¡,and Department of Biochemistry, Howard University College of Medicine, Washington, D. C. 2000 ÃŒ[H.P. M.¡ SUMMARY expression in cancer cells (20, 24). The identification of the pattern should provide the investigator with an understanding The behavior of opposing pathways of thymidine utilization of the progressive metabolic changes that relate to neoplastic was compared in proliferating normal liver (from developing proliferation rate. The Molecular Correlation Concept rats and from partially hepatectomized rats) and in neoplastic developed in this laboratory postulated the existence of a liver (spectrum of hepatomas of different growth rates). The meaningful biochemical pattern, which may be understood studies were carried out by assaying simultaneously the when a number of preconditions are satisfied (21). Among incorporation of labeled thymidine into DNA (synthetic these preconditions is the need to obtain an insight into the pathway) and the degradation to C02 (catabolic pathway) in regulation of opposing synthetic and catabolic pathways and tissue slices in an in vitro system. key enzymes and to elucidate their relationship with tumor In the liver of newborn rats, the incorporation of thymidine growth rate. For example, it was recognized that the activity into DNA is very high and gradually decreases during of the key glycolytic enzymes increased and concurrently the differentiation to very low levels in the adult. The catabolic activity of the key gluconeogenic enzymes decreased in utilization of thymidine is high in the newborn rat liver, and it hepatomas parallel with the increase in the hepatoma growth further increases during differentiation, being approximately rate (20-25). twice as high in the adult as in the newborn. The rise in the This paper describes the behavior of the opposing pathways activity of the catabolic pathway is blocked by administration of synthetic utilization and catabolism of thymidine in of actinomycin. differentiating, regenerating, and neoplastic liver. The results Partial hepatectomy results in marked changes in the demonstrate that the incorporation of thymidine into DNA behavior of thymidine metabolism. The activity of the increases and concurrently the degradation to CO2 decreases synthetic pathway increases, while the activity of the catabolic parallel with hepatoma growth rate. The ratio of the activities pathway decreases. The increased activity of the synthetic of the synthetic:catabolic pathways correlates closely with pathway decreases to normal range and the decreased activity hepatoma growth rate. These observations are further evidence of the catabolic pathway returns to high levels about 96 hr in support of the Molecular Correlation Concept. after the operation. In the hepatoma spectrum, the activity of the synthetic pathway increases and that of the catabolic pathway decreases parallel with the increase in tumor growth rate. As a result, MATERIALS AND METHODS there is a pronounced increase in the ratio of synthetic: catabolic utilization of thymidine, which shows a close The animals were kept in separate cages and illuminated correlation with hepatoma growth rate. The close linking of daily from 6 a.m. to 7 p.m. Purina laboratory chow and water hepatoma growth rate with the behavior of the activities of were available ad libitum to the experimental animals. opposing pathways of thymidine utilization and of the key Studies on Regenerating Liver. For studies on regenerating enzymes of the pathways provides further evidence in support purchased from Harían Industries, Cumberland, Ind. The of the Molecular Correlation Concept. litters were allowed to stay in the same cage with the mother for 18 days after birth; then they were placed in individual cages. INTRODUCTION Studies on Regenerating Liver. For studies on regenerating Investigations in this laboratory have been directed to liver, male, albino Wistar rats weighing 180 to 200 g were uncovering the underlying pattern in the alteration of gene obtained from Harían Industries. The rats were partially hepatectomized under light ether anesthesia by removal of 1Supported by USPHS Grant CA-05034, an American Cancer Society 66% of the liver (3). The remaining liver lobes were examined Grant, a Damon Runyon Memorial Fund, Inc., grant (G. W.), and at different time intervals after operation. Sham-operated USPHS Grant CA-10729 (H. P. M.). 2To whom requests for reprints should be sent, at the Department of animals were used as controls. Tumor-bearing and Control Animals. Male Buffalo and Pharmacology, Indiana University School of Medicine, Indianapolis, ACI/N rats were used in these experiments. The tumor-bearing Ind. 46202. Received September 2, 1970; accepted January 4, 1971. and control rats were shipped by air express from Dr. H. P. 550 CANCER RESEARCH VOL.31 Downloaded from cancerres.aacrjournals.org on September 27, 2021. © 1971 American Association for Cancer Research. Opposing Pathways of Thymidine Metabolism Morris, Washington, D. C., to our laboratories at Indiana Experiments with Actinomycin. For these studies, University School of Medicine, Indianapolis, Ind. Normal rats actinomycin D was purchased as dactinomycin in vials of the same strain, sex, age, and weight were used for controls containing 500 ^g (Merck Sharp and Dohme, West Point, Pa.). and were sacrificed along with the tumor-bearing rats under Further conditions are described in "Results and Discussion" the same conditions. We used a number of tumor lines but and in Table 3, where the data obtained with this drug are concentrated on hepatomas, which included the slow-growing presented. 9618-A and 9618-B; 7800 and 5123-D, which now are Expression and Evaluation of Results. The incorporation of considered of intermediate growth rate; and rapidly growing thymidine into DNA and the degradation of thymidine to CO2 3924-A, 7288-C, 7777, 3683-F, and 9618-A2. The tumors were expressed as dpm/g of tissue/hr. The counts obtained for were transplanted bilaterally in a s.c. position, and they were incorporation of thymidine into DNA were corrected for allowed to grow to a diameter of about 1 inch before they self-absorption by extrapolating cpm/g of tissue to infinite were harvested. The biological and growth properties of the dilution (13). hepatoma spectrum were previously described (9). The results were subjected to statistical evaluation by means Experimental Procedures. The rats were stunned, of the t test for small samples. Differences between means decapitated, and exsanguinated. Livers and tumors were giving a probability of less than 5% were considered to be rapidly removed and placed in beakers, which stood on significant. crushed ice. Tissues were carefully dissected free of necrotic, hemorrhagic, and nontumorous material. For routine studies on thymidine metabolism, the tissues RESULTS AND DISCUSSION were sectioned into 1- to 2-cm cubes, and slices were cut to a uniform thickness of about 1 to 2 mm by a Stadie-Riggs slicer. Behavior of the Activity of Opposing Pathways of Synthetic Tissue slices, 50 mg, were placed in separate 25-ml Erlenmeyer and Degradative Utilization of Thymidine in Differentiation. flasks, each containing 5 ml of Krebs-Ringer phosphate buffer For an understanding of the pattern of thymidine metabolism (pH 7.4), 12.5 mM glucose, 20 mM glycylglycine, and 0.5 ¡id during development, the behavior of the activity of the of thymidine-2-14C (specific activity, 43.7 mCi/mmole; New synthetic and degradative pathways was examined in the liver England Nuclear, Boston, Mass.). Each flask was capped with a of rats of different age groups from the early postnatal time to rubber stopper (No. 8826 rubber stoppers, 13 mm; Arthur H. adulthood. The results in Table I indicate that the Thomas Co., Philadelphia, Pa.) from which was suspended, by incorporation of thymidine into DNA is high in the liver of a straight pin, a glass fiber filter strip (934AH glass fiber filter. newborn rats, and during subsequent development the activity 2.4 cm; H. Reeve Angel and Co., Inc., Clifton, N. J.) cut to 1 x of the thymidine biosynthetic pathway decreases to very low 2.4 cm. levels in the liver of the adult. The incorporation of thymidine Flasks were incubated at 37°and shaken at 72 rpm in a into DNA is 30 times higher in the 1-day-old rat than in the Dubnoff metabolic shaker. The reaction was terminated after adult. incubations of 0, 30, and 60 min by injections of 50 jul of The behavior of the activity of the degradative pathway Hyamine hydroxide (hydroxide of Hyamine 10-X, Packard contrasts with that of the synthetic one. The catabolism of Instrument Co., Downers Grove, 111.) through the rubber thymidine to C02 is active in the newborn rat liver, and in stopper onto the glass fiber filter strip and then injection of 1 subsequent development the activity increases to the high ml of 50% TCA3 into the bottom of the flask. The flasks were levels observed in adult liver (Table 1). As a consequence of shaken an additional 30 min at 37°,after which time the the opposing behavior of the activity of the synthetic and rubber stoppers were removed and the filter strips were placed catabolic pathways, the ratios of the activity of the opposing in scintillation vials. Immediately, 10 ml of scintillator fluid pathways are of interest. The ratios are near 1 in the newborn (0.03% POPOP and 0.5% PPO in toluene from New England rat liver, and subsequently they gradually decrease, reaching a Nuclear) were added to each vial. The vials were counted for very small fraction in the adult liver. Thus, in the adult liver radioactive C02 on a Packard Tri-Carb liquid scintillation the activity of the degradative pathway is overwhelmingly spectrometer (Model 314 EX).
Recommended publications
  • The Regulation of Carbamoyl Phosphate Synthetase-Aspartate Transcarbamoylase-Dihydroorotase (Cad) by Phosphorylation and Protein-Protein Interactions
    THE REGULATION OF CARBAMOYL PHOSPHATE SYNTHETASE-ASPARTATE TRANSCARBAMOYLASE-DIHYDROOROTASE (CAD) BY PHOSPHORYLATION AND PROTEIN-PROTEIN INTERACTIONS Eric M. Wauson A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Pharmacology. Chapel Hill 2007 Approved by: Lee M. Graves, Ph.D. T. Kendall Harden, Ph.D. Gary L. Johnson, Ph.D. Aziz Sancar M.D., Ph.D. Beverly S. Mitchell, M.D. 2007 Eric M. Wauson ALL RIGHTS RESERVED ii ABSTRACT Eric M. Wauson: The Regulation of Carbamoyl Phosphate Synthetase-Aspartate Transcarbamoylase-Dihydroorotase (CAD) by Phosphorylation and Protein-Protein Interactions (Under the direction of Lee M. Graves, Ph.D.) Pyrimidines have many important roles in cellular physiology, as they are used in the formation of DNA, RNA, phospholipids, and pyrimidine sugars. The first rate- limiting step in the de novo pyrimidine synthesis pathway is catalyzed by the carbamoyl phosphate synthetase II (CPSase II) part of the multienzymatic complex Carbamoyl phosphate synthetase, Aspartate transcarbamoylase, Dihydroorotase (CAD). CAD gene induction is highly correlated to cell proliferation. Additionally, CAD is allosterically inhibited or activated by uridine triphosphate (UTP) or phosphoribosyl pyrophosphate (PRPP), respectively. The phosphorylation of CAD by PKA and ERK has been reported to modulate the response of CAD to allosteric modulators. While there has been much speculation on the identity of CAD phosphorylation sites, no definitive identification of in vivo CAD phosphorylation sites has been performed. Therefore, we sought to determine the specific CAD residues phosphorylated by ERK and PKA in intact cells.
    [Show full text]
  • Association Between the Gut Microbiota and Blood Pressure in a Population Cohort of 6953 Individuals
    Journal of the American Heart Association ORIGINAL RESEARCH Association Between the Gut Microbiota and Blood Pressure in a Population Cohort of 6953 Individuals Joonatan Palmu , MD; Aaro Salosensaari , MSc; Aki S. Havulinna , DSc (Tech); Susan Cheng , MD, MPH; Michael Inouye, PhD; Mohit Jain, MD, PhD; Rodolfo A. Salido , BSc; Karenina Sanders , BSc; Caitriona Brennan, BSc; Gregory C. Humphrey, BSc; Jon G. Sanders , PhD; Erkki Vartiainen , MD, PhD; Tiina Laatikainen , MD, PhD; Pekka Jousilahti, MD, PhD; Veikko Salomaa , MD, PhD; Rob Knight , PhD; Leo Lahti , DSc (Tech); Teemu J. Niiranen , MD, PhD BACKGROUND: Several small-scale animal studies have suggested that gut microbiota and blood pressure (BP) are linked. However, results from human studies remain scarce and conflicting. We wanted to elucidate the multivariable-adjusted as- sociation between gut metagenome and BP in a large, representative, well-phenotyped population sample. We performed a focused analysis to examine the previously reported inverse associations between sodium intake and Lactobacillus abun- dance and between Lactobacillus abundance and BP. METHODS AND RESULTS: We studied a population sample of 6953 Finns aged 25 to 74 years (mean age, 49.2±12.9 years; 54.9% women). The participants underwent a health examination, which included BP measurement, stool collection, and 24-hour urine sampling (N=829). Gut microbiota was analyzed using shallow shotgun metagenome sequencing. In age- and sex-adjusted models, the α (within-sample) and β (between-sample) diversities of taxonomic composition were strongly re- lated to BP indexes (P<0.001 for most). In multivariable-adjusted models, β diversity was only associated with diastolic BP (P=0.032).
    [Show full text]
  • Supplementary Table S1. Table 1. List of Bacterial Strains Used in This Study Suppl
    Supplementary Material Supplementary Tables: Supplementary Table S1. Table 1. List of bacterial strains used in this study Supplementary Table S2. List of plasmids used in this study Supplementary Table 3. List of primers used for mutagenesis of P. intermedia Supplementary Table 4. List of primers used for qRT-PCR analysis in P. intermedia Supplementary Table 5. List of the most highly upregulated genes in P. intermedia OxyR mutant Supplementary Table 6. List of the most highly downregulated genes in P. intermedia OxyR mutant Supplementary Table 7. List of the most highly upregulated genes in P. intermedia grown in iron-deplete conditions Supplementary Table 8. List of the most highly downregulated genes in P. intermedia grown in iron-deplete conditions Supplementary Figures: Supplementary Figure 1. Comparison of the genomic loci encoding OxyR in Prevotella species. Supplementary Figure 2. Distribution of SOD and glutathione peroxidase genes within the genus Prevotella. Supplementary Table S1. Bacterial strains Strain Description Source or reference P. intermedia V3147 Wild type OMA14 isolated from the (1) periodontal pocket of a Japanese patient with periodontitis V3203 OMA14 PIOMA14_I_0073(oxyR)::ermF This study E. coli XL-1 Blue Host strain for cloning Stratagene S17-1 RP-4-2-Tc::Mu aph::Tn7 recA, Smr (2) 1 Supplementary Table S2. Plasmids Plasmid Relevant property Source or reference pUC118 Takara pBSSK pNDR-Dual Clonetech pTCB Apr Tcr, E. coli-Bacteroides shuttle vector (3) plasmid pKD954 Contains the Porpyromonas gulae catalase (4)
    [Show full text]
  • Genome-Scale Fitness Profile of Caulobacter Crescentus Grown in Natural Freshwater
    Supplemental Material Genome-scale fitness profile of Caulobacter crescentus grown in natural freshwater Kristy L. Hentchel, Leila M. Reyes Ruiz, Aretha Fiebig, Patrick D. Curtis, Maureen L. Coleman, Sean Crosson Tn5 and Tn-Himar: comparing gene essentiality and the effects of gene disruption on fitness across studies A previous analysis of a highly saturated Caulobacter Tn5 transposon library revealed a set of genes that are required for growth in complex PYE medium [1]; approximately 14% of genes in the genome were deemed essential. The total genome insertion coverage was lower in the Himar library described here than in the Tn5 dataset of Christen et al (2011), as Tn-Himar inserts specifically into TA dinucleotide sites (with 67% GC content, TA sites are relatively limited in the Caulobacter genome). Genes for which we failed to detect Tn-Himar insertions (Table S13) were largely consistent with essential genes reported by Christen et al [1], with exceptions likely due to differential coverage of Tn5 versus Tn-Himar mutagenesis and differences in metrics used to define essentiality. A comparison of the essential genes defined by Christen et al and by our Tn5-seq and Tn-Himar fitness studies is presented in Table S4. We have uncovered evidence for gene disruptions that both enhanced or reduced strain fitness in lake water and M2X relative to PYE. Such results are consistent for a number of genes across both the Tn5 and Tn-Himar datasets. Disruption of genes encoding three metabolic enzymes, a class C β-lactamase family protein (CCNA_00255), transaldolase (CCNA_03729), and methylcrotonyl-CoA carboxylase (CCNA_02250), enhanced Caulobacter fitness in Lake Michigan water relative to PYE using both Tn5 and Tn-Himar approaches (Table S7).
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • High Coverage Metabolomics Analysis Reveals Phage-Specific Alterations to Pseudomonas Aeruginosa Physiology During Infection
    The ISME Journal (2016) 10, 1823–1835 © 2016 International Society for Microbial Ecology All rights reserved 1751-7362/16 www.nature.com/ismej ORIGINAL ARTICLE High coverage metabolomics analysis reveals phage-specific alterations to Pseudomonas aeruginosa physiology during infection Jeroen De Smet1, Michael Zimmermann2, Maria Kogadeeva2, Pieter-Jan Ceyssens1,3, Wesley Vermaelen1, Bob Blasdel1, Ho Bin Jang1, Uwe Sauer2 and Rob Lavigne1 1Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Heverlee, Belgium; 2Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland and 3Unit Bacterial Diseases, Scientific Institute of Public Health (WIV-ISP), Brussels, Belgium Phage-mediated metabolic changes in bacteria are hypothesized to markedly alter global nutrient and biogeochemical cycles. Despite their theoretic importance, experimental data on the net metabolic impact of phage infection on the bacterial metabolism remains scarce. In this study, we tracked the dynamics of intracellular metabolites using untargeted high coverage metabolomics in Pseudomo- nas aeruginosa cells infected with lytic bacteriophages from six distinct phage genera. Analysis of the metabolomics data indicates an active interference in the host metabolism. In general, phages elicit an increase in pyrimidine and nucleotide sugar metabolism. Furthermore, clear phage-specific and infection stage-specific responses are observed, ranging from extreme metabolite depletion (for example, phage YuA) to complete reorganization of the metabolism (for example, phage phiKZ). As expected, pathways targeted by the phage-encoded auxiliary metabolic genes (AMGs) were enriched among the metabolites changing during infection. The effect on pyrimidine metabolism of phages encoding AMGs capable of host genome degradation (for example, YuA and LUZ19) was distinct from those lacking nuclease-encoding genes (for example, phiKZ), which demonstrates the link between the encoded set of AMGs of a phage and its impact on host physiology.
    [Show full text]
  • SUPPY Liglucosexlmtdh
    US 20100314248A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0314248 A1 Worden et al. (43) Pub. Date: Dec. 16, 2010 (54) RENEWABLE BOELECTRONIC INTERFACE Publication Classification FOR ELECTROBOCATALYTC REACTOR (51) Int. Cl. (76) Inventors: Robert M. Worden, Holt, MI (US); C25B II/06 (2006.01) Brian L. Hassler, Lake Orion, MI C25B II/2 (2006.01) (US); Lawrence T. Drzal, Okemos, GOIN 27/327 (2006.01) MI (US); Ilsoon Lee, Okemo s, MI BSD L/04 (2006.01) (US) C25B 9/00 (2006.01) (52) U.S. Cl. ............... 204/403.14; 204/290.11; 204/400; Correspondence Address: 204/290.07; 427/458; 204/252: 977/734; PRICE HENEVELD COOPER DEWITT & LIT 977/742 TON, LLP 695 KENMOOR, S.E., PO BOX 2567 (57) ABSTRACT GRAND RAPIDS, MI 495.01 (US) An inexpensive, easily renewable bioelectronic device useful for bioreactors, biosensors, and biofuel cells includes an elec (21) Appl. No.: 12/766,169 trically conductive carbon electrode and a bioelectronic inter face bonded to a surface of the electrically conductive carbon (22) Filed: Apr. 23, 2010 electrode, wherein the bioelectronic interface includes cata lytically active material that is electrostatically bound directly Related U.S. Application Data or indirectly to the electrically conductive carbon electrode to (60) Provisional application No. 61/172,337, filed on Apr. facilitate easy removal upon a change in pH, thereby allowing 24, 2009. easy regeneration of the bioelectronic interface. 7\ POWER 1 - SUPPY|- LIGLUCOSEXLMtDH?till pi 6.0 - esses&aaaas-exx-xx-xx-xx-xxxxixax-e- Patent Application Publication Dec. 16, 2010 Sheet 1 of 18 US 2010/0314248 A1 Potential (nV) Patent Application Publication Dec.
    [Show full text]
  • The Microbiota-Produced N-Formyl Peptide Fmlf Promotes Obesity-Induced Glucose
    Page 1 of 230 Diabetes Title: The microbiota-produced N-formyl peptide fMLF promotes obesity-induced glucose intolerance Joshua Wollam1, Matthew Riopel1, Yong-Jiang Xu1,2, Andrew M. F. Johnson1, Jachelle M. Ofrecio1, Wei Ying1, Dalila El Ouarrat1, Luisa S. Chan3, Andrew W. Han3, Nadir A. Mahmood3, Caitlin N. Ryan3, Yun Sok Lee1, Jeramie D. Watrous1,2, Mahendra D. Chordia4, Dongfeng Pan4, Mohit Jain1,2, Jerrold M. Olefsky1 * Affiliations: 1 Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA. 2 Department of Pharmacology, University of California, San Diego, La Jolla, California, USA. 3 Second Genome, Inc., South San Francisco, California, USA. 4 Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA. * Correspondence to: 858-534-2230, [email protected] Word Count: 4749 Figures: 6 Supplemental Figures: 11 Supplemental Tables: 5 1 Diabetes Publish Ahead of Print, published online April 22, 2019 Diabetes Page 2 of 230 ABSTRACT The composition of the gastrointestinal (GI) microbiota and associated metabolites changes dramatically with diet and the development of obesity. Although many correlations have been described, specific mechanistic links between these changes and glucose homeostasis remain to be defined. Here we show that blood and intestinal levels of the microbiota-produced N-formyl peptide, formyl-methionyl-leucyl-phenylalanine (fMLF), are elevated in high fat diet (HFD)- induced obese mice. Genetic or pharmacological inhibition of the N-formyl peptide receptor Fpr1 leads to increased insulin levels and improved glucose tolerance, dependent upon glucagon- like peptide-1 (GLP-1). Obese Fpr1-knockout (Fpr1-KO) mice also display an altered microbiome, exemplifying the dynamic relationship between host metabolism and microbiota.
    [Show full text]
  • 1611 REGULATION of PYRIMIDINE METABOLISM in PLANTS Chris
    [Frontiers in Bioscience 9, 1611-1625, May 1, 2004] REGULATION OF PYRIMIDINE METABOLISM IN PLANTS 1, 2 1, 3 1, 4 1, 5 1, 6 1, 7 Chris Kafer , Lan Zhou , Djoko Santoso , Adel Guirgis , Brock Weers , Sanggyu Park and Robert Thornburg 1 1 Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, 2 BASF Plant Science LLC, 2901 South Loop Drive, Ste 3800, Ames, Iowa 50014, 3 Lan Zhou, Pioneer Hi-Bred International, Inc. 7300 NW 62nd Avenue, PO Box 1004, Johnston, Iowa 50131-1004, 4 Indonesian Biotechnology Research Institute for Estate Crops, Jl, Taman Kencana No 1, Bogor 16151 Indonesia, 5 Institute of Genetic Engineering and Biotechnology, Menofiya University, PO Box 79/22857, Sadat City, Egypt, 6 Department of Biochemistry, University of Iowa, 4/511 Bowen Science Building, Iowa City, Iowa 52242-1109, 7 Division of Life and Environment, College of Natural Resources, Daegu University, Gyongsan City, Gyongbuk, Korea 712-714 TABLE OF CONTENTS 1. Abstract 2. Introduction 3. Pyrimidine metabolic pathways 3.1. De novo pyrimidine biosynthesis 3.1.1. CPSase 3.1.2. ATCase 3.1.3. DHOase 3.1.4. DHODH 3.1.5. UMPS 3.1.6. Intracellular Organization of the de novo Pathway 3.2. Pyrimidine Salvage and Recycling 3.2.1. Cytosine deaminase 3.2.2. Cytidine deaminase 3.2.3. UPRTase 3.3. Pyrimidine Modification 3.3.1. UMP/CMP kinase 3.3.2. NDP kinase 3.3.3. CTP synthase, NDP reductase, dUTPase 3.3.4. Thymidylate synthase/Dihydrofolate reductase 3.4. Pyrimidine Catabolism 4. Regulation of pyrimidine metabolism 4.1.
    [Show full text]
  • Nucleotide Metabolism Pathway: the Achilles' Heel for Bacterial Pathogens
    REVIEW ARTICLES Nucleotide metabolism pathway: the achilles’ heel for bacterial pathogens Sujata Kumari1,2,* and Prajna Tripathi1,3 1National Institute of Immunology, New Delhi 110 067, India 2Present address: Department of Zoology, Magadh Mahila College, Patna University, Patna 800 001, India 3Present address: Institute of Molecular Medicine, Jamia Hamdard, New Delhi 110 062, India de novo pathway, the nucleotides are synthesized from Pathogens exploit their host to extract nutrients for their survival. They occupy a diverse range of host simple precursor molecules. In the salvage pathway, the niches during infection which offer variable nutrients preformed nucleobases or nucleosides which are present accessibility. To cause a successful infection a patho- in the cell or transported from external environmental gen must be able to acquire these nutrients from the milieu to the cell are utilized to form nucleotides. host as well as be able to synthesize the nutrients on its own, if required. Nucleotides are the essential me- tabolite for a pathogen and also affect the pathophysi- Purine biosynthesis pathway ology of infection. This article focuses on the role of nucleotide metabolism of pathogens during infection The purine biosynthesis pathway is universally conserved in a host. Nucleotide metabolism and disease pathoge- in living organisms (Figure 1). As an example, we here nesis are closely related in various pathogens. Nucleo- present the pathway derived from well-studied Gram- tides, purines and pyrimidines, are biosynthesized by positive bacteria Lactococcus lactis. In the de novo the de novo and salvage pathways. Whether the patho- pathway the purine nucleotides are synthesized from sim- gen will employ the de novo or salvage pathway dur- ple molecules such as phosphoribosyl pyrophosphate ing infection is dependent on various factors, like (PRPP), amino acids, CO2 and NH3 by a series of enzy- availability of nucleotides, energy condition and pres- matic reactions.
    [Show full text]
  • Mammalian Dihydroorotase: Nucleotide Sequence, Peptide
    Proc. Natl. Acad. Sci. USA Vol. 87, pp. 174-178, January 1990 Biochemistry Mammalian dihydroorotase: Nucleotide sequence, peptide sequences, and evolution of the dihydroorotase domain of the multifunctional protein CAD (aspartate transcarbamylase/expression/pyrimidine biosynthesis/protein domains) JAMES P. SIMMER, RUTH E. KELLY*, AUSTIN G. RINKER, JR., BARBARA H. ZIMMERMANN, JOSHUA L. SCULLY, HYESOOK KIM, AND DAVID R. EVANS Department of Biochemistry, Wayne State University, Detroit, MI 48201 Communicated by Mary Ellen Jones, August 24, 1989 (received for review July 5, 1989) ABSTRACT Mammalian DHOase (S-dihydroorotate ami- Saul ull Ps, Puli P'jII KI)Er dohydrolase, EC 3.5.2.3) is part of a large multifunctional protein called CAD, which also has a carbamoyl-phosphate 3 8 40% 4 44 4 synthetase [carbon-dioxide:L-glutamine amido-ligase (ADP- forming, carbamate-phosphorylating), EC 6.3.5.5] and aspar- tate transcarbamoylase (carbamoyl-phosphate:L-aspartate carbamoyltransferase, EC 2.1.3.2) activities. We sequenced FIG. 1. Nucleotide sequencing strategy. The region of the selected restriction fragments of a Syrian hamster CAD cDNA. pCAD142 sequenced is shown schematically: the CPSase domain The deduced amino acid sequence agreed with the sequence of (stippled bar), the DHOase domain (shaded bar), and the DHOase- tryptic peptides and the amino acid composition ofthe DHOase ATCase linker (clear bar). Map units represent the distance in domain isolated by controlled proteolysis of CAD. Escherichia kilobases from the start of the cDNA insert. Clones sequenced are coli transformed with a recombinant plasmid containing the indicated by arrows. cDNA segment 5' to the aspartate transcarbamoylase coding respectively, may participate in catalysis.
    [Show full text]
  • Using Peptides to Examine the Interaction Interface Between Aspartate Transcarbamoylase and Dihydroorotase in Pyrimidine Biosynthesis in Aquifex Aeolicus Nouf Alyami
    Eastern Michigan University DigitalCommons@EMU Master's Theses, and Doctoral Dissertations, and Master's Theses and Doctoral Dissertations Graduate Capstone Projects 7-14-2015 Using peptides to examine the interaction interface between Aspartate transcarbamoylase and Dihydroorotase in pyrimidine biosynthesis in Aquifex aeolicus Nouf Alyami Follow this and additional works at: http://commons.emich.edu/theses Part of the Chemistry Commons Recommended Citation Alyami, Nouf, "Using peptides to examine the interaction interface between Aspartate transcarbamoylase and Dihydroorotase in pyrimidine biosynthesis in Aquifex aeolicus" (2015). Master's Theses and Doctoral Dissertations. 641. http://commons.emich.edu/theses/641 This Open Access Thesis is brought to you for free and open access by the Master's Theses, and Doctoral Dissertations, and Graduate Capstone Projects at DigitalCommons@EMU. It has been accepted for inclusion in Master's Theses and Doctoral Dissertations by an authorized administrator of DigitalCommons@EMU. For more information, please contact [email protected]. Using Peptides to Examine the Interaction Interface between Aspartate transcarbamoylase and Dihydroorotase in Pyrimidine Biosynthesis in Aquifex aeolicus by Nouf Alyami Thesis Submitted to the Department of Chemistry Eastern Michigan University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Chemistry Thesis Committee: Hedeel Evans, Ph.D., Chair Deborah Heyl-Clegg, Ph.D. Vance Kennedy, Ph.D. July 14, 2015 Ypsilanti, Michigan ii DEDICATION This work is dedicated to my parents, without whose support it would not have been possible. A special feeling of gratitude to my loving siblings Nada, Bayan, and Bader whose laughter is like music to my soul. Also, I dedicate this work to my two grandmothers whose hearts are full of prayers for me.
    [Show full text]