Conversion of Cellulose, Hemicellulose And
Total Page:16
File Type:pdf, Size:1020Kb
Conversion of cellulose, hemicellulose and lignin into platform molecules: biotechnological approach Anders Frölander Gudbrand Rødsrud EuroBioRef Summer school Borregaard Industries Ltd, Lecce, Italy Norway 18-24 September 2011 Outline 1. Introduction 2. History of second generation bioethanol production 3. World’s most advanced biorefinery – history and learning points 4. Lignocellulosic biomass 5. Biorefinery options 6. The biochemical route (sugar plattform) 7. Pretreatment processes 8. Hydrolysis of cellulose 9. Anaerobic and aerobic fermentation 10. Lignin options 11. Hemicellulose/pentose options 12. Process integration & closing remarks Critical sources to replace fossile sources and reduce CO2 footprint Agricultural products Food Lignocellulose Feed Algae Organic waste Plastics (Materials) Metals & minerals Chemicals Green electricity • Hydropower Transport • Solar Power • Wind power Building materials Geo-thermal Mechanical power Nuclear power Gas and petroleum Heat Coal Outline 1. Introduction 2. History of second generation bioethanol production 3. World’s most advanced biorefinery – history and learning points 4. Lignocellulosic biomass 5. Biorefinery options 6. The biochemical route (sugar plattform) 7. Pretreatment processes 8. Hydrolysis of cellulose 9. Anaerobic and aerobic fermentation 10. Lignin options 11. Hemicellulose/pentose options 12. Process integration & closing remarks Sulfite ethanol production all started in Sweden The worlds first sulfite ethanol plant The inventors of sulfite ethanol production Gösta Ekström Hugo Wallin • Experimentation with fermentation of spent sulfite liquor (SSL) started around 1903 Skutskär sulfite ethanol plant in • They soon found out they had to Sweden started operation 1909 neutralize with lime Source: Persson, Bertil. Sulfitsprit. Förhoppningar och besvikelser under 100 år. Bjästa : DAUS Tryck & Media, 2007. ISBN: 91 7542 258-1. Sugar composition of spent sulfite liquor (SSL) from sulfite pulping % of DM in % of DM in Monosaccharide SSL from SSL from Sulfite Eucalyptus Spruce cooking Arabinose (C5) 0,3 0,8 Xylose (C5) 21,9 5,3 Filtration Galactose (C6) 1,6 2,1 Rhamnose (C6) 0,6 0,2 Glucose (C6) 1,6 3,7 Mannose (C6) 1,0 14,6 1 Spruce SSL • 20,6% of DM is C6 sugars • 77% of sugars are C6 sugars Eucalyptus SSL Fibre SSL • 22,1% of DM is C5 sugars • 82% of sugars are C5 sugars 33 sulfite ethanol plants in Sweden from 1909 until today • First sulfite ethanol plant ever opened 1909 in Skutskär, Sweden • 33 plants have been in operation in Sweden • Only one in operation after 1983: Domsjö, capacity of 15 000 m3/y Source: Persson, Bertil. Sulfitsprit. Förhoppningar och besvikelser under 100 år. Bjästa : DAUS Tryck & Media, 2007. ISBN: 91 7542 258-1. 17 sulfite ethanol plants in Finland 1927 - 1977 • Sulfite ethanol production was stopped in 1977 • The last sulfite mill in Finland stopped production in the early 1990’ies Source: 1. Biorefining in the pulp and paper industry. Niemelä, Klaus. Flensburg : s.n., 2008. 5th European Biorefinery Symposium. 2. Kaukoranta, Antti. Sulfittispiriteollisuus Suomessa vuosina 1918-1978 (Eng:"Sulphite alcohol industry in Finland in 1918-1978"). s.l. : Paino Polar Oy, 1981. ISBN 951-9479-25-2. 3. Niemelä, Klaus. Private communication. s.l. : VTT TECHNICAL RESEARCH CENTRE OF FINLAND , 2010. Sulfite ethanol plants in Central Europe • Attizholts (later Borregaard) in Switzerland – Production from 1912 to 2008 – Capacity 13 mill litres – Also produced yeast and yeast extracts • M-Real in Hallein in Austria – Sulfite ethanol production 1941 – 1988 – Capacity 6 mill litres – Evaluating to restart production in 2016 • Kirov only plant still in operation in Russia Source: 1) Borregaard internal files 2) Conference Austria April 2011 3) IEA Report: Status of 2nd Generation Biofuels Demonstration Facilities in June 2010, A REPORT TO IEA BIOENERGY TASK 39 Sulfite ethanol plants in USA • Georgia Pacific – Bellingham mill produced ethanol from 1976 – 2001 – Capacity 24 million liters Source: 1) Katzen customer reference list (http://www.katzen.com/projects.html) 2) Borregaard internal files 3) Graf and Koehler, June 2000, OREGON CELLULOSE-ETHANOL STUDY, An evaluation of the potential for ethanol production in Oregon using cellulose-based feedstocks. Hydrolysis of wood for ethanol, SCP and furfural • Initially developed in Germany around 1900. Yields up to 190 L/mt dry wood • Used in the USA during World War I and II – Converted further to butadien for rubber during WW II • USSR 1935 – 1985: Construction of – 18 Ethanol plants, – 16 SCP yeast plants – 15 furfural/xylitol plants – Feedstock hardwood:softwood 6:4 • Technology: weak sulfuric acid (130 – 150°C), 1 or 2 step hydrolysis • None are profitable without subsidies Sources: Wood hydrolysis industry in the Soviet Union and Russia: What can be learned from the history? Rabinovich, M.L. Helsinki, September 2009. The 2nd Nordic Wood Biorefinery Conference (NWBC-2009), 111-120. Wikipedia contributors. Cellulosic ethanol. Wikipedia, The Free Encyclopedia. March 2, 2011, 16:08 UTC. Available at: http://en.wikipedia.org/w/index.php?title=Cellulosic_ethanol&oldid=416750931. Accessed March 8, 2011. USSR wood hydrolysis plants 1935 - Production of ethanol, SCP and furfural Borregaard – world’s largest producer of 2nd gen bioethanol BRG capacity 20 mill litres of bioethanol pr year 1/3 as 99,5% and 2/3 as 96% From hemicellulose from spruce in SSL (spent sulfite liquor) Production started 1938 Yeast strain: Baker’s yeast, Saccharomyces cerevisiae Adapted to industrial SSL continuously since 1938 Comparison of CO2 footprint of ethanol produced in different ways Source: 1. Brekke, A., Modahl, I.S. and Raadal, H.L. Konkurrentanalyser for cellulose, etanol, lignin og vanillin fra Borregaard (Eng: Competitive CO2 footprint analysis for cellulose, ethanol, lignin and vanillin from Borregaard). Fredrikstad : Ostforld Research, Des. 2008. Confidential report. Will be published. 2. Sutter, J. Life cycle inventories of petrochemical solvents. [red.] H.-J., Chudacoff, M., Hischier, R. Jungbluth, N., Osses, M. and Primas, A. Althaus. Life cycle inventories of chemicals. Final report ecoinvnet data v2.0. Duebendorf and St. Gallen : Swiss Centre for LCI, Empa - TSL, 2007, Vol. 8 / 22. 3. Jungbluth, N., Chudacoff, M., Dauriat, A., Dinkel, F., Doka, G., Faist Emmenegger, M., Gnansounou, E., Kljun, N., Speilmann, M., Stettler, C. and Sutter, J. Life cycle inventories of bioenergy. Final report ecoinvnet v2.0. Volume 17. Duebendorf and Uster : Swiss Centre for LCI, ESU, 2007. Sulfite ethanol production 2011 Outline 1. Introduction 2. History of second generation bioethanol production 3. World’s most advanced biorefinery – history and learning points 4. Lignocellulosic biomass 5. Biorefinery options 6. The biochemical route (sugar plattform) 7. Pretreatment processes 8. Hydrolysis of cellulose 9. Anaerobic and aerobic fermentation 10. Lignin options 11. Hemicellulose/pentose options 12. Process integration & closing remarks Borregaard – world’s most advanced biorefinery in operation • Leading supplier of specialty cellulose • Global leader in lignin performance chemicals, 50%+ market share • Only producer of vanillin from lignocellulosics • Production of lignocellulosic bioethanol since 1938 • World’s most advanced biorefinery in operation Borregaard product tree Prodction cont Production stopped Product tree from 2G bioethanol 1950 - 1980 n Outline 1. Introduction 2. History of second generation bioethanol production 3. World’s most advanced biorefinery – history and learning points 4. Lignocellulosic biomass 5. Biorefinery options 6. The biochemical route (sugar plattform) 7. Pretreatment processes 8. Hydrolysis of cellulose 9. Anaerobic and aerobic fermentation 10. Lignin options 11. Hemicellulose/pentose options 12. Process integration & closing remarks Composition of lignocellulosics LIGNOCELLULOSICS contain: Lignin LIGNIN Cellulose CELLULOSE Binder Hemicellulose Fiber 20- 30% 35 - 45% HEMICELLULOSE Various sugars 25-30% Lignocellulosic biomass structure Cellulose fibres for chemicals Width: μm Micro fibrillar cellulose Logs Length: mm Width: nm Meters, m Length: μm - mm Plant cells Width: μm - mm Length: mm Planks M and cm Polymer chains 10 – 100 Å Glucose monomers A few Ångstrøm Cellulose LIGNIN CELLULOSE Binder Fiber 30% 40% HEMICELLULOSE Various sugars 25% Cellulose – Long chains of ONE type of ”beads” (polymer of glucose) – Forming crystals - crystalline – Same chemical structure in every plant Hemicellulose LIGNIN CELLULOSE Binder Fiber 30% 45% HEMICELLULOSE Various sugars 25% Hemicellulose – Long branched sugar chains (polymer, polysaccharide) – Amorphous – Composition varies largely from species to species – C6 and/or C5 sugars Lignin LIGNIN CELLULOSE Binder Fiber 30% 45% HEMICELLULOSE Various sugars 25% Lignin – Branched long-chain molecule (polymer) made up of 3 types of HO monomers OH HO Carb. O – Amorphous (non-crystalline) Carb. HO OH H3CO O O OH OH – Composition varies from species to OCH OH CH 3O 3 H3CO O species HO OH H3CO OH HO OCH O OH 3 O HO O O – Is the binder in all plants gluing the OH HO cellulose fibres together HO O O OCH 3 OH H3CO O OCH 3 OH O H3CO HO OCH O 3 HO O HO OH H3CO H3CO O O OH O (Adler, 1977) H3CO OCH 3 OH O Composition of some lignocellulosic feedstocks Outline 1. Introduction 2. History of second generation bioethanol production 3. World’s most advanced biorefinery – history and learning points 4. Lignocellulosic biomass 5. Biorefinery options 6. The biochemical route (sugar plattform)