Learning Ultra Fractal

Total Page:16

File Type:pdf, Size:1020Kb

Learning Ultra Fractal Learning Ultra Fractal by Chris Martin (Velvet--Glove) Introduction People frequently ask me about how they can learn to use the Ultra Fractal program or express an interest in learning. I thought I would put together this article to help people get started with this extraordinary and absorbing program. Ultra Fractal is a software program that is used to create fractal images like the ones you can see in my Deviant Art gallery. Now at version 5, UF comes in three flavours – a very basic Express Edition, the Creative Edition (my recommendation if you are not proposing to make animated fractals) and the rather more expensive Extended Edition which allows you to create animations of your fractal creations and use a network of computers for rendering tasks. All editions are now available for both Windows and Mac computers. A trial version of the software can be downloaded for free from the author's website at ultrafractal.com. The trial is fully functional but until you purchase a licence for the program your rendered images will have a watermark added to them. At first glance the program does appear to be rather complex to use and somewhat intimidating, there are so many tabs, functions and confusing concepts to understand. Try not to let this put you off, it takes a little time and study to understand what all the dialogs and controls are for and how to use them properly so you will need to find a few tutorials and other help resources to get you started on making some beautiful images. After that the rest is up to you – be prepared to put in a lot of practice if you really want to produce first class images, UF is just a tool and great results don’t happen straight out of the box, you have to work at it. However, once you gain a certain familiarity with the program and begin to develop your own pattern and style of working the rewards and possibilities of Ultra Fractal are unlimited. Beginning to learn UF Here is a short list of some of the tutorials, resources and tips that I think beginners will find especially helpful when starting out: First of all you really should work through the tutorials provided in the program's Help section to get an idea of the basics. The Help file in general is also an excellent source of information about how the program works and the program interface so do take some time to browse and study the information there. If you prefer to have a printed reference to work from, or want Spanish or German translations, then you can download the manual as a .pdf Acrobat file from ultrafractal.com Have a look through the UF tutorials here on DeviantArt. I have collected links to some of the best material here: UF Tutorials and a more extensive list of what's available on DA can be found in this group gallery: Ultra-Fractal-Redux: Tutorials and Resources. If video instruction is more your style then check out two users on You Tube who each have published 3 or 4 free video tutorials on various aspects of UF: Louise Wagstaff and The Danger Pig. For more professional and structured video instructional material there is also Z00reka’s extensive UF video course available here, for a modest price: Learning Ultra Fractal 5 (Creative Edition) One final resource to check out is the official Ultra Fractal Forum on the UF author’s website. Here you can ask questions about using UF and get help with any problems. The author of the program, Frederik Slijkerman, often answers questions personally. Occasionally other users share their image parameters here. Finally you can report any bugs or suggest features you would like to see in the program in future. Don’t forget that a good way to gain experience and learn new things is to examine and play with image parameters created by others; load the parameters into UF (more detail on this procedure is explained lower down if you are unsure how this works) and examine how the image was made. Make some changes yourself and see what happens. Where tweaking is allowed use shared parameters as a starting point for your own image but make the changes substantial, so the image is rather different and truly something to call your own. When publishing the results do please remember, as a courtesy, to credit the original artist in your comments. Free parameters are available all over Deviant Art if you search for them. Here is one group gallery where you can find a wide range of good parameters: Ultra-Fractal-Redux: Fractals with parameters and in my own gallery I have shared a great many good quality image parameters here: Parameters and Resources My own tutorials are not for complete beginners but some of you may find them approachable and useful if you work through them with care. I include them here for the sake of completeness: Tutorials and Guides A cautionary note about other Internet resources If you do a search online you will find dozens of Internet sites out there with information about Ultra Fractal, everything from highly technical mathematical information to more general articles, private formulas and help files, and the promise of exciting tutorials to explore. Find one site and you will invariably find links to a dozen more. However, when I was a new user in 2006, I found that much of this tutorial material was rather out of date and therefore unhelpful. I was frustrated by references to program controls and functions (especially refs. to UF v.2) that either no longer existed or had been renamed in the newer, updated version of the program that I had downloaded (which was v.4). Knowing nothing about UF at that time these experiences only served to confuse me further. I mention this only so that you will be prepared for what you might find out there. Bearing this caveat in mind, here are a few more links and resources that you may wish to investigate further: Ultra Fractal Resources is a list of some generally useful links to resources all over the Net. The tutorials are very dated now but there are still some nuggets of useful information to be gleaned from reading through some of these pages. www.fractalus.com/info has some very interesting and informative articles and tips by Damien Jones about fractals and fractal art in general. Worth reading for some background information. My top tips Here are a few tips for you, in no particular order: Make sure your program is always kept updated with the latest formulas and colourings in the public database. You can freely update your files any time from within the program via the Options menu – providing you are connected to the Internet at the time, UF will automatically download and install all files for you. Formulas can also be downloaded manually from this site: formulas.ultrafractal.com if preferred. Some formulas are not available in the public database but still freely available from the authors concerned. The most commonly used private formulas can be found and downloaded from these sites: o Ultra Fractal Resources o www.nahee.com/Software/+Formulas+Parameters/ o http://www.hiddendimension.com/futils.html These private files should be unzipped and placed in a new folder within UF’s Formulas folder structure e.g. Ultra Fractal 5\Formulas\Private. Just make sure you keep them separate from the public database files which are stored in the \Public folder. When starting out it is very tempting to take a pot-luck approach and randomly pick a formula and/or colouring to play with from the hundreds of files available in the Public formulas folder. My experience is that you actually learn very little from this approach as it is simply too random and the chances are that you will pick something far too specialised or exotic and get very disheartened at the apparent lack of progress. Unless you know something about how to use these (some are designed to work in combination with other specific files, for example) you will often find random choices yield nothing useful. My advice to complete beginners, therefore, would be to start by using a basic Mandelbrot or Julia formula (on the Formula tab) together with one of a basic “toolset” of colouring algorithms (on the Outside tab) and just play with these to start with – by restricting your choices and becoming very familiar with just a small number of colouring algorithms you will learn a great deal about what various parameters do and the effects of particular settings, knowledge that will serve you very well when you eventually begin to try other colourings or applying familiar colourings to new formulas. Here is a short list of colourings that I have found to be relatively easy to use and very flexible, giving interesting results almost straight away: o Orbit Traps (UF3) in dmj3.ucl o Doodads and Thingamajigs in ldm.ucl o DoodadsII, ThingamajigsII, Plane Curve Traps II and Thin Orbit TrapsII in tma.ucl o Gaussian Integer and Triangle Inequality Average in Standard.ucl If you find yourself in a position where you have loaded a random new formula and see nothing but a totally black or blue image here are a few things to try before giving up and trying something else: o Add a colouring to the Outside tab – some formulas do nothing unless there is a colouring algorithm applied. If this doesn’t seem to work at first then try changing a couple of parameters on the Outside tab and/or the Formula tab (NB.
Recommended publications
  • Fractal 3D Magic Free
    FREE FRACTAL 3D MAGIC PDF Clifford A. Pickover | 160 pages | 07 Sep 2014 | Sterling Publishing Co Inc | 9781454912637 | English | New York, United States Fractal 3D Magic | Banyen Books & Sound Option 1 Usually ships in business days. Option 2 - Most Popular! This groundbreaking 3D showcase offers a rare glimpse into the dazzling world of computer-generated fractal art. Prolific polymath Clifford Pickover introduces the collection, which provides background on everything from Fractal 3D Magic classic Mandelbrot set, to the infinitely porous Menger Sponge, to ethereal fractal flames. The following eye-popping gallery displays mathematical formulas transformed into stunning computer-generated 3D anaglyphs. More than intricate designs, visible in three dimensions thanks to Fractal 3D Magic enclosed 3D glasses, will engross math and optical illusions enthusiasts alike. If an item you have purchased from us is not working as expected, please visit one of our in-store Knowledge Experts for free help, where they can solve your problem or even exchange the item for a product that better suits your needs. If you need to return an item, simply bring it back to any Micro Center store for Fractal 3D Magic full refund or exchange. All other products may be returned within 30 days of purchase. Using the software may require the use of a computer or other device that must meet minimum system requirements. It is recommended that you familiarize Fractal 3D Magic with the system requirements before making your purchase. Software system requirements are typically found on the Product information specification page. Aerial Drones Micro Center is happy to honor its customary day return policy for Aerial Drone returns due to product defect or customer dissatisfaction.
    [Show full text]
  • Rendering Hypercomplex Fractals Anthony Atella [email protected]
    Rhode Island College Digital Commons @ RIC Honors Projects Overview Honors Projects 2018 Rendering Hypercomplex Fractals Anthony Atella [email protected] Follow this and additional works at: https://digitalcommons.ric.edu/honors_projects Part of the Computer Sciences Commons, and the Other Mathematics Commons Recommended Citation Atella, Anthony, "Rendering Hypercomplex Fractals" (2018). Honors Projects Overview. 136. https://digitalcommons.ric.edu/honors_projects/136 This Honors is brought to you for free and open access by the Honors Projects at Digital Commons @ RIC. It has been accepted for inclusion in Honors Projects Overview by an authorized administrator of Digital Commons @ RIC. For more information, please contact [email protected]. Rendering Hypercomplex Fractals by Anthony Atella An Honors Project Submitted in Partial Fulfillment of the Requirements for Honors in The Department of Mathematics and Computer Science The School of Arts and Sciences Rhode Island College 2018 Abstract Fractal mathematics and geometry are useful for applications in science, engineering, and art, but acquiring the tools to explore and graph fractals can be frustrating. Tools available online have limited fractals, rendering methods, and shaders. They often fail to abstract these concepts in a reusable way. This means that multiple programs and interfaces must be learned and used to fully explore the topic. Chaos is an abstract fractal geometry rendering program created to solve this problem. This application builds off previous work done by myself and others [1] to create an extensible, abstract solution to rendering fractals. This paper covers what fractals are, how they are rendered and colored, implementation, issues that were encountered, and finally planned future improvements.
    [Show full text]
  • Generating Fractals Using Complex Functions
    Generating Fractals Using Complex Functions Avery Wengler and Eric Wasser What is a Fractal? ● Fractals are infinitely complex patterns that are self-similar across different scales. ● Created by repeating simple processes over and over in a feedback loop. ● Often represented on the complex plane as 2-dimensional images Where do we find fractals? Fractals in Nature Lungs Neurons from the Oak Tree human cortex Regardless of scale, these patterns are all formed by repeating a simple branching process. Geometric Fractals “A rough or fragmented geometric shape that can be split into parts, each of which is (at least approximately) a reduced-size copy of the whole.” Mandelbrot (1983) The Sierpinski Triangle Algebraic Fractals ● Fractals created by repeatedly calculating a simple equation over and over. ● Were discovered later because computers were needed to explore them ● Examples: ○ Mandelbrot Set ○ Julia Set ○ Burning Ship Fractal Mandelbrot Set ● Benoit Mandelbrot discovered this set in 1980, shortly after the invention of the personal computer 2 ● zn+1=zn + c ● That is, a complex number c is part of the Mandelbrot set if, when starting with z0 = 0 and applying the iteration repeatedly, the absolute value of zn remains bounded however large n gets. Animation based on a static number of iterations per pixel. The Mandelbrot set is the complex numbers c for which the sequence ( c, c² + c, (c²+c)² + c, ((c²+c)²+c)² + c, (((c²+c)²+c)²+c)² + c, ...) does not approach infinity. Julia Set ● Closely related to the Mandelbrot fractal ● Complementary to the Fatou Set Featherino Fractal Newton’s method for the roots of a real valued function Burning Ship Fractal z2 Mandelbrot Render Generic Mandelbrot set.
    [Show full text]
  • Sphere Tracing, Distance Fields, and Fractals Alexander Simes
    Sphere Tracing, Distance Fields, and Fractals Alexander Simes Advisor: Angus Forbes Secondary: Andrew Johnson Fall 2014 - 654108177 Figure 1: Sphere Traced images of Menger Cubes and Mandelboxes shaded by ambient occlusion approximation on the left and Blinn-Phong with shadows on the right Abstract Methods to realistically display complex surfaces which are not practical to visualize using traditional techniques are presented. Additionally an application is presented which is capable of utilizing some of these techniques in real time. Properties of these surfaces and their implications to a real time application are discussed. Table of Contents 1 Introduction 3 2 Minimal CPU Sphere Tracing Model 4 2.1 Camera Model 4 2.2 Marching with Distance Fields Introduction 5 2.3 Ambient Occlusion Approximation 6 3 Distance Fields 9 3.1 Signed Sphere 9 3.2 Unsigned Box 9 3.3 Distance Field Operations 10 4 Blinn-Phong Shadow Sphere Tracing Model 11 4.1 Scene Composition 11 4.2 Maximum Marching Iteration Limitation 12 4.3 Surface Normals 12 4.4 Blinn-Phong Shading 13 4.5 Hard Shadows 14 4.6 Translation to GPU 14 5 Menger Cube 15 5.1 Introduction 15 5.2 Iterative Definition 16 6 Mandelbox 18 6.1 Introduction 18 6.2 boxFold() 19 6.3 sphereFold() 19 6.4 Scale and Translate 20 6.5 Distance Function 20 6.6 Computational Efficiency 20 7 Conclusion 2 1 Introduction Sphere Tracing is a rendering technique for visualizing surfaces using geometric distance. Typically surfaces applicable to Sphere Tracing have no explicit geometry and are implicitly defined by a distance field.
    [Show full text]
  • Computer-Generated Music Through Fractals and Genetic Theory
    Ouachita Baptist University Scholarly Commons @ Ouachita Honors Theses Carl Goodson Honors Program 2000 MasterPiece: Computer-generated Music through Fractals and Genetic Theory Amanda Broyles Ouachita Baptist University Follow this and additional works at: https://scholarlycommons.obu.edu/honors_theses Part of the Artificial Intelligence and Robotics Commons, Music Commons, and the Programming Languages and Compilers Commons Recommended Citation Broyles, Amanda, "MasterPiece: Computer-generated Music through Fractals and Genetic Theory" (2000). Honors Theses. 91. https://scholarlycommons.obu.edu/honors_theses/91 This Thesis is brought to you for free and open access by the Carl Goodson Honors Program at Scholarly Commons @ Ouachita. It has been accepted for inclusion in Honors Theses by an authorized administrator of Scholarly Commons @ Ouachita. For more information, please contact [email protected]. D MasterPiece: Computer-generated ~1usic through Fractals and Genetic Theory Amanda Broyles 15 April 2000 Contents 1 Introduction 3 2 Previous Examples of Computer-generated Music 3 3 Genetic Theory 4 3.1 Genetic Algorithms . 4 3.2 Ylodified Genetic Theory . 5 4 Fractals 6 4.1 Cantor's Dust and Fractal Dimensions 6 4.2 Koch Curve . 7 4.3 The Classic Example and Evrrvday Life 7 5 MasterPiece 8 5.1 Introduction . 8 5.2 In Detail . 9 6 Analysis 14 6.1 Analysis of Purpose . 14 6.2 Analysis of a Piece 14 7 Improvements 15 8 Conclusion 16 1 A Prelude2.txt 17 B Read.cc 21 c MasterPiece.cc 24 D Write.cc 32 E Temp.txt 35 F Ternpout. txt 36 G Tempoutmid. txt 37 H Untitledl 39 2 Abstract A wide variety of computer-generated music exists.
    [Show full text]
  • Bachelorarbeit Im Studiengang Audiovisuelle Medien Die
    Bachelorarbeit im Studiengang Audiovisuelle Medien Die Nutzbarkeit von Fraktalen in VFX Produktionen vorgelegt von Denise Hauck an der Hochschule der Medien Stuttgart am 29.03.2019 zur Erlangung des akademischen Grades eines Bachelor of Engineering Erst-Prüferin: Prof. Katja Schmid Zweit-Prüfer: Prof. Jan Adamczyk Eidesstattliche Erklärung Name: Vorname: Hauck Denise Matrikel-Nr.: 30394 Studiengang: Audiovisuelle Medien Hiermit versichere ich, Denise Hauck, ehrenwörtlich, dass ich die vorliegende Bachelorarbeit mit dem Titel: „Die Nutzbarkeit von Fraktalen in VFX Produktionen“ selbstständig und ohne fremde Hilfe verfasst und keine anderen als die angegebenen Hilfsmittel benutzt habe. Die Stellen der Arbeit, die dem Wortlaut oder dem Sinn nach anderen Werken entnommen wurden, sind in jedem Fall unter Angabe der Quelle kenntlich gemacht. Die Arbeit ist noch nicht veröffentlicht oder in anderer Form als Prüfungsleistung vorgelegt worden. Ich habe die Bedeutung der ehrenwörtlichen Versicherung und die prüfungsrechtlichen Folgen (§26 Abs. 2 Bachelor-SPO (6 Semester), § 24 Abs. 2 Bachelor-SPO (7 Semester), § 23 Abs. 2 Master-SPO (3 Semester) bzw. § 19 Abs. 2 Master-SPO (4 Semester und berufsbegleitend) der HdM) einer unrichtigen oder unvollständigen ehrenwörtlichen Versicherung zur Kenntnis genommen. Stuttgart, den 29.03.2019 2 Kurzfassung Das Ziel dieser Bachelorarbeit ist es, ein Verständnis für die Generierung und Verwendung von Fraktalen in VFX Produktionen, zu vermitteln. Dabei bildet der Einblick in die Arten und Entstehung der Fraktale
    [Show full text]
  • Working with Fractals a Resource for Practitioners of Biophilic Design
    WORKING WITH FRACTALS A RESOURCE FOR PRACTITIONERS OF BIOPHILIC DESIGN A PROJECT OF THE EUROPEAN ‘COST RESTORE ACTION’ PREPARED BY RITA TROMBIN IN COLLABORATION WITH ACKNOWLEDGEMENTS This toolkit is the result of a joint effort between Terrapin Bright Green, Cost RESTORE Action (REthinking Sustainability TOwards a Regenerative Economy), EURAC Research, International Living Future Institute, Living Future Europe and many other partners, including industry professionals and academics. AUTHOR Rita Trombin SUPERVISOR & EDITOR Catherine O. Ryan CONTRIBUTORS Belal Abboushi, Pacific Northwest National Laboratory (PNNL) Luca Baraldo, COOKFOX Architects DCP Bethany Borel, COOKFOX Architects DCP Bill Browning, Terrapin Bright Green Judith Heerwagen, University of Washington Giammarco Nalin, Goethe Universität Kari Pei, Interface Nikos Salingaros, University of Texas at San Antonio Catherine Stolarski, Catherine Stolarski Design Richard Taylor, University of Oregon Dakota Walker, Terrapin Bright Green Emily Winer, International Well Building Institute CITATION Rita Trombin, ‘Working with fractals: a resource companion for practitioners of biophilic design’. Report, Terrapin Bright Green: New York, 31 December 2020. Revised June 2021 © 2020 Terrapin Bright Green LLC For inquiries: [email protected] or [email protected] COVER DESIGN: Catherine O. Ryan COVER IMAGES: Ice crystals (snow-603675) by Quartzla from Pixabay; fractal gasket snowflake by Catherine Stolarski Design. 2 Working with Fractals: A Toolkit © 2020 Terrapin Bright Green LLC
    [Show full text]
  • Analysis of the Fractal Structures for the Information Encrypting Process
    INTERNATIONAL JOURNAL OF COMPUTERS Issue 4, Volume 6, 2012 Analysis of the Fractal Structures for the Information Encrypting Process Ivo Motýl, Roman Jašek, Pavel Vařacha The aim of this study was describe to using fractal geometry Abstract— This article is focused on the analysis of the fractal structures for securing information inside of the information structures for purpose of encrypting information. For this purpose system. were used principles of fractal orbits on the fractal structures. The algorithm here uses a wide range of the fractal sets and the speed of its generation. The system is based on polynomial fractal sets, II. PROBLEM SOLUTION specifically on the Mandelbrot set. In the research were used also Bird of Prey fractal, Julia sets, 4Th Degree Multibrot, Burning Ship Using of fractal geometry for the encryption is an alternative to and Water plane fractals. commonly solutions based on classical mathematical principles. For proper function of the process is necessary to Keywords—Fractal, fractal geometry, information system, ensure the following points: security, information security, authentication, protection, fractal set Generate fractal structure with appropriate parameters I. INTRODUCTION for a given application nformation systems are undoubtedly indispensable entity in Analyze the fractal structure and determine the ability Imodern society. [7] to handle a specific amount of information There are many definitions and methods for their separation use of fractal orbits to alphabet mapping and classification. These systems are located in almost all areas of human activity, such as education, health, industry, A. Principle of the Fractal Analysis in the Encryption defense and many others. Close links with the life of our Process information systems brings greater efficiency of human endeavor, which allows cooperation of man and machine.
    [Show full text]
  • Fractal-Bits
    fractal-bits Claude Heiland-Allen 2012{2019 Contents 1 buddhabrot/bb.c . 3 2 buddhabrot/bbcolourizelayers.c . 10 3 buddhabrot/bbrender.c . 18 4 buddhabrot/bbrenderlayers.c . 26 5 buddhabrot/bound-2.c . 33 6 buddhabrot/bound-2.gnuplot . 34 7 buddhabrot/bound.c . 35 8 buddhabrot/bs.c . 36 9 buddhabrot/bscolourizelayers.c . 37 10 buddhabrot/bsrenderlayers.c . 45 11 buddhabrot/cusp.c . 50 12 buddhabrot/expectmu.c . 51 13 buddhabrot/histogram.c . 57 14 buddhabrot/Makefile . 58 15 buddhabrot/spectrum.ppm . 59 16 buddhabrot/tip.c . 59 17 burning-ship-series-approximation/BossaNova2.cxx . 60 18 burning-ship-series-approximation/BossaNova.hs . 81 19 burning-ship-series-approximation/.gitignore . 90 20 burning-ship-series-approximation/Makefile . 90 21 .gitignore . 90 22 julia/.gitignore . 91 23 julia-iim/julia-de.c . 91 24 julia-iim/julia-iim.c . 94 25 julia-iim/julia-iim-rainbow.c . 94 26 julia-iim/julia-lsm.c . 98 27 julia-iim/Makefile . 100 28 julia/j-render.c . 100 29 mandelbrot-delta-cl/cl-extra.cc . 110 30 mandelbrot-delta-cl/delta.cl . 111 31 mandelbrot-delta-cl/Makefile . 116 32 mandelbrot-delta-cl/mandelbrot-delta-cl.cc . 117 33 mandelbrot-delta-cl/mandelbrot-delta-cl-exp.cc . 134 34 mandelbrot-delta-cl/README . 139 35 mandelbrot-delta-cl/render-library.sh . 142 36 mandelbrot-delta-cl/sft-library.txt . 142 37 mandelbrot-laurent/DM.gnuplot . 146 38 mandelbrot-laurent/Laurent.hs . 146 39 mandelbrot-laurent/Main.hs . 147 40 mandelbrot-series-approximation/args.h . 148 41 mandelbrot-series-approximation/emscripten.cpp . 150 42 mandelbrot-series-approximation/index.html .
    [Show full text]
  • Extending Mandelbox Fractals with Shape Inversions
    Extending Mandelbox Fractals with Shape Inversions Gregg Helt Genomancer, Healdsburg, CA, USA; [email protected] Abstract The Mandelbox is a recently discovered class of escape-time fractals which use a conditional combination of reflection, spherical inversion, scaling, and translation to transform points under iteration. In this paper we introduce a new extension to Mandelbox fractals which replaces spherical inversion with a more generalized shape inversion. We then explore how this technique can be used to generate new fractals in 2D, 3D, and 4D. Mandelbox Fractals The Mandelbox is a class of escape-time fractals that was first discovered by Tom Lowe in 2010 [5]. It was named the Mandelbox both as an homage to the classic Mandelbrot set fractal and due to its overall boxlike shape when visualized, as shown in Figure 1a. The interior can be rich in self-similar fractal detail as well, as shown in Figure 1b. Many modifications to the original algorithm have been developed, almost exclusively by contributors to the FractalForums online community. Although most explorations of Mandelboxes have focused on 3D versions, the algorithm can be applied to any number of dimensions. (a) (b) (c) Figure 1: Mandelbox 3D fractal examples: (a) Mandelbox exterior , (b) same Mandelbox, but zoomed in view of small section of interior , (c) Juliabox indexed by same Mandelbox. Like the Mandelbrot set and other escape-time fractals, a Mandelbox set contains all the points whose orbits under iterative transformation by a function do not escape. For a basic Mandelbox the function to apply iteratively to each point �" is defined as a composition of transformations: �#$% = ��ℎ�������1,3 �������6 �# ∗ � + �" Boxfold and Spherefold are modified reflection and spherical inversion transforms, respectively, with parameters F, H, and L which are described below.
    [Show full text]
  • Fractals: an Introduction Through Symmetry
    Fractals: an Introduction through Symmetry for beginners to fractals, highlights magnification symmetry and fractals/chaos connections This presentation is copyright © Gayla Chandler. All borrowed images are copyright © their owners or creators. While no part of it is in the public domain, it is placed on the web for individual viewing and presentation in classrooms, provided no profit is involved. I hope viewers enjoy this gentle approach to math education. The focus is Math-Art. It is sensory, heuristic, with the intent of imparting perspective as opposed to strict knowledge per se. Ideally, viewers new to fractals will walk away with an ability to recognize some fractals in everyday settings accompanied by a sense of how fractals affect practical aspects of our lives, looking for connections between math and nature. This personal project was put together with the input of experts from the fields of both fractals and chaos: Academic friends who provided input: Don Jones Department of Mathematics & Statistics Arizona State University Reimund Albers Center for Complex Systems & Visualization (CeVis) University of Bremen Paul Bourke Centre for Astrophysics & Supercomputing Swinburne University of Technology A fourth friend who has offered feedback, whose path I followed in putting this together, and whose influence has been tremendous prefers not to be named yet must be acknowledged. You know who you are. Thanks. ☺ First discussed will be three common types of symmetry: • Reflectional (Line or Mirror) • Rotational (N-fold) • Translational and then: the Magnification (Dilatational a.k.a. Dilational) symmetry of fractals. Reflectional (aka Line or Mirror) Symmetry A shape exhibits reflectional symmetry if the shape can be bisected by a line L, one half of the shape removed, and the missing piece replaced by a reflection of the remaining piece across L, then the resulting combination is (approximately) the same as the original.1 In simpler words, if you can fold it over and it matches up, it has reflectional symmetry.
    [Show full text]
  • Fast Visualisation and Interactive Design of Deterministic Fractals
    Computational Aesthetics in Graphics, Visualization, and Imaging (2008) P. Brown, D. W. Cunningham, V. Interrante, and J. McCormack (Editors) Fast Visualisation and Interactive Design of Deterministic Fractals Sven Banisch1 & Mateu Sbert2 1Faculty of Media, Bauhaus–University Weimar, D-99421 Weimar (GERMANY) 2Department of Informàtica i Matemàtica Aplicada, University of Girona, 17071 Girona (SPAIN) Abstract This paper describes an interactive software tool for the visualisation and the design of artistic fractal images. The software (called AttractOrAnalyst) implements a fast algorithm for the visualisation of basins of attraction of iterated function systems, many of which show fractal properties. It also presents an intuitive technique for fractal shape exploration. Interactive visualisation of fractals allows that parameter changes can be applied at run time. This enables real-time fractal animation. Moreover, an extended analysis of the discrete dynamical systems used to generate the fractal is possible. For a fast exploration of different fractal shapes, a procedure for the automatic generation of bifurcation sets, the generalizations of the Mandelbrot set, is implemented. This technique helps greatly in the design of fractal images. A number of application examples proves the usefulness of the approach, and the paper shows that, put into an interactive context, new applications of these fascinating objects become possible. The images presented show that the developed tool can be very useful for artistic work. 1. Introduction an interactive application was not really feasible till the ex- ploitation of the capabilities of new, fast graphics hardware. The developments in the research of dynamical systems and its attractors, chaos and fractals has already led some peo- The development of an interactive fractal visualisation ple to declare that god was a mathematician, because mathe- method, is the main objective of this paper.
    [Show full text]