APPENDIX Guide to the Exercises ty RuthLawrence Oxford University

The purpose of this appendix is to give, for each exercise, a comment, a hint, a sketch, or in a few cases, a complete solution. Pure algebra has not been worked. Exercises which are merely a matter of applying techniques given in the text to particular examples for the purpose of drill have not generally been solved fully here-the answers only being given. When there is -a batch of somewhat similar questions a representative question has been selected to be completely solved and answers only have been given to the rest. A few questions involve rather tedious numerical calculations not reducible by technique. Readers who have c:arried these out can, by checking their answers against the given ones, gain confidence. They mayaiso be comforted to discover that they have not missed some subtle point or ingeniously simple route to a solution. In a few cases a link is suggested to oonnected problems which the interested reader may like to pursue. I hope that this appendix will fulfill its purpose of helping readers who experience any difficulties with the problems to overcome them; thus gaining the maximum understanding and insight which the author intended by his carefully chosen incorporation into the text. I wish to acknowledge the help received from Professor Husemöller whilst compiling this appendix, by way of some useful discussions and suggestions.

CHAPTER 1, §1

1. TedioUl calculation gives:

7P = ( - 5/9, 8/27), 8P = (21/25, -69/125),

9P = (-20/49, -435/343), 10P = (161/16, -2065/64), 316 Appendix. Guide to the Exercises

-7P = (-5/9, -35/27), 8P = (21/25, -56/125),

-9P = (-20/49,97/343), -lOP = (161/16, 2001/64). Mazur's theorem then implies P has infinite order. For, 7P, 8P, 9P, lOP # 0 and none of the above eight points coincide, i.e., p's order does not divide any integer 14 to 20 inclusive. Thus P cannot have order 2, 3, 4, 5, 6, 7, 8, 9, 10, or 12 (the laUer since 6P # - 6P).

2. Very straightforward. Here - 2P = p. P = (0, 2), i.e., - 2P = Pas required.

3. As in Exercise 2, we work out - 2P = p. P = (0, 0). Clearly, (0,0) has order 2, and so P has order 4.

4. It is found that 2P = (0, 1), 3P = (-1,0). Thus 3P has order 2. So p's order is 2 or 6 (divides 6 and does not divide 3). As 2P # 0, thus p's order is 6.

5. Here - 2P = (24, 108), and 2P = (24, - 108). From P, 2P we obtain - 3P. It is found that - 3P = (24, -108) = 2P. So P has order s. 6. A suitable subgroup is {O, (0, 0), (1, 0),( - 9,0)}. The calculations for nP (n = -7, ... , + 7) get very tedious! Here are the first few: -14161 -466004) P = (-1,4), 2P = (25 195) 3P= ( ------16' 64 ' 1681 '68921 '

14421367921 - 67387812533791) 4P= ( 4090881600' 6381775296000 '

-P=(-l, -4), _ 2P = (25 - 195)" 3 (-14161 466004) 16' 64 ' - P = l681' 68921 '

-4P = (14421367921 67387812533791). 4090881600 ' 6381775296OöO

Now use Mazur's theorem. Since P has infinite order, no finite subgroup contains P. It helps in the calculations to realize that if PI' P2 , P3 are collinear points on the curve, then XI + X 2 + x 3 = (slope of line)2 - 8, and thus for any Q, R on the curve, Q. R (and hence Q + R) can be determined.

CHAPTER 1, §2

1. Answers:

6P = ( - 2/9, - 28/27), 7 P = (21, -99), 8P = (11/49, 20/343),

- 6P ~ ( - 2/9, 1/27), - 7 P = (21, 98)' - 8P = (11/49, - 363/343). Use Mazur's theorem-very similar to §1, Exercise 1.

2. Straightforward algebra gives u = (w/3x)(y + 4), u = (w/3x)(5 - y). 3. For c = 1, the group is {O, (12, 36), (12, -36)}, ie., Z/3Z. For c = 2, the group is {O, (3, On, i.e., Z/2Z. The complexit) increases rapidly for c ~ 8. The interested reader may Iike to consider c = 3, 4, .... Appendix. Guide to the Exercises 317

4. Here 2P = (9, -18), 4P = (0, 0). So 4P = -4P, i.e., P has order 8.

5. One easily computes 2P = (-1, -2), -3P = (3, 6), -4P = (3,.-6). Thus P has order 7. 6. Multiples are 0, (3, 8),( - 5, -16),(11, - 32),(11,32),( - 5, 16),(3, -8)in that order. Thus (3, 8), (11, 32) both have order 7, since (11, 32) = 4(3, 8) and 4,7 are coprime.

7. Here E(Q) = {(O, 0), (0, -I)} (i.e., Z/2Z).

8. The giyen cubic in P follows since P = (x, y) gives - P = (x, y') where y, y' are two roots, for Y, of

y 2 + (a\x + a3)Y - (x3 + a2x2 + a4 x + a;;) = 0

and so -(y + y') = (a\x + a3). Thus 2P = 0 iff y = -t(a1x + a3) and thi.. reduces to the given condition on x. Thus there are zero, one, or·three solutions for x. In every case 0 is a solution of 2P = O. So, the group consists of one, two, or four elements. In the fir;;t two cases, the groups must be 0, Z/2Z, respectively. In the last case, there are three elements of order 2, and so we get (Zj2Z x Z/2Z).

CHAPTER t §3

1. We get (-1,0) (order 2); (0,1), (0, -1) (order 3); and (2, 3), (2, -3) (order 6). The laUer two are possible r:enerators. 2. (a) The condition is that there are three points of order 2. Hence· we need x2 + ax + b to have two roots in k, i.e., a2 - 4b must be a square. (b) The condition is that there exists a point, P, on the curve, of order 4. Thus 2P has order 2 and is thus (cx, 0) some cx. Since a2 - 4b is not a square, so x 2 + ax + b #- 0 for an x E k. Therefore cx = 0, and so 2P = (0, 0). This gives us a condition that there exists A such that y = AX intersects the cubic curve in a double point. So 4b = (a - A2 )2

and so b = c2 with a - A2 = ±2c. So one of a ± 2c must be a square. (c) If a + 2c, a - 2c are squares (with b = c2 ), then from (b), (0,0) = 2P some P. Hence the group E(k) contains a subgroup generated by P and (cx i, 0) where CXi are the two roots of x 2 + ax + b = O. Thus Zj4Z x Z/2Z s; E(k). Conversely, if Z/4Z x Z/2Z s; E(k), then (0,0) E 2E(k) gives, from (b), that one of a ± 2c must be a square. From (a), a2 ._ 4b = (a + 2c)(a - 2c) is a square. So a + 2c and a - 2c are squares. Note that in this question, the extra conditions, which are apparently asymmetric, are required since·the equation of the cubic curve has fixed (0, 0) as a point of order 2.

3. Points of infinite order are (l, 2), (2, 3~ (~1, 1), (3, 5), respectively. To check this, use Theorem (3.2).

4. Consider the canonicaI map E(k).!. E(k)/2E(k). Then, if P, Q a;e Iinearly dependent, say nP = mQ with m, nEZ, we get

n'[P] = m'[Q], 318 Appendix. Guide to the Exercises

where [P] is the equivalence c1ass of'P (i.e., O(P» and n' == n(mod 2). Thus, if P = (3,41. Q = (15, 58), then P, Q have infinite order. We thus only need to check that [P], [Q!O are alI distinct. In fact Q - P = (313/36, -5491j216). ;So, we now evaluate 2(x, y). The condition that 2(x, y) = (IX, ß) on y2 = x 3 - 11 is that 0 = x 4 - 4IXX3 + 88x + 44IX. SO we use IX = 3, 15,313/36 to show that P, Q, Q - Prt2E(k).* Thus [P], [Q], 0 are aII distinct. Hence nP '" mQ, "Vm, neZ, not both zero.

5. This is similar to Exercise4. If P = (0, 2), Q = (I, 0), R = (2, 0) then we check: (i) P, Q, R have infinite order. (ii) [P], [Q], [R], 0 are aII distinct. (iii) [P + Q + R] '" O.

CHAPTER I, §4

1. This is very straightforward: define K ;= P' - P and then show that K e .A. 2. In (4.1) the conditions are that -IX, -ß are squares. In §3, 2(c) the conditions are

IXß = c2, some.c, and 2c - (IX + ß) or - 2c - (IX + ß) is a square. Here

±2c - (IX + ß) = ±2~ - IX - C2/IX = -(0: + C)2/a.. SO -IX (and hence also -ß) is a square.

3. When 2E(k) = 0, 4E(k) = o. When zE(k) = Z/2Z x Z/2Z, 4E(k) is Z/2Z x Z/2Z or Z/4Z x Z/2Z or Z/4Z x Z/4Z. When 2E(k) = Z/2Z, 4E(k) is Z/2Z or Z/4Z. The numbers of elements of order 4 are: 0; 0, 4, 12; 0, 2, respectively.

4. Suppose otherwise, that (Z/4Z)2 s; E(Q), by an inc1usion map j. Then the elements of order 2 are j«2, 0», j«(O, 2)), j«2, 2». Thus in normal form we get

y2 = (x - IX)(X - ß)(x - y),

where (IX, 0) = j«2, 0», ete. Hence (IX, 0) = 2P where

P = j«I, 0», j«(1, 2», j«3, 0» or j«3, 2».

Thus IX - ß, IX - Y are squares. Similarly ß - IX, ß - y, y - IX, Y - ß are squares. This leads to - I as a square, a contradiction.

CHAPTER 1, §5

1. A occurs if az + af!4 = O. A double point occurs if and only if(az + aU4) > O. Theseeonditionsareeasilyobtainedfromy = x(-a1/2 ± Jx + (a 2 + aU4». The grapht; below indicate the forms ofthe eurve for a 1 < O.

.. One checks that the quartic equation has no solution in Q, by Eisenstein's irreducibility criterion. Appendix. Guidc to thc Excrcises 319

x x

(i) a2 > 0 (double point) (ii) a2 < 0, a2 + aV4 > 0 (double point)

y y

"", y = -ta,x .-.",,--'"

x (0,0) is an isolated point .

(iii) a2 + aV4 = 0 (iv) a2 + aV4 < 0

CHAPTER 2, §1 1. There are (q + 1) points on a line and (q2 + q + 1) lines in P1(k). There are (q' _ l) ... (q' _ q'-I) (q' -l) ... (q' _ q'-I)

s-dimensional subspaces in P,(k).

2. Any dimension from mu(O, SI + S2 - r)to min(sl' 52) can occur.

3. Each (r + 1)-dimensional subspac:e, M, or Pn(k) corresponds to M+ ~ kn+1 containing Mri and of dimension (r + 2). Such a subspace is specified by that vector 'E M+ n (Mri).l (unique up to scalar multiplicatlon). However (Mri).l has dimension (n + 1) - (r + 1) = n - r. So, we parametrize the (r + 1)-dimensional subspaces of P.(k) containing Mo by vectors in kn-, up to scalar multiplication, i.e., by elements of a projective space of dimension n - r - 1. 320 Appendix. Guide to the Exercises

CHAPTER 2, §2

1. This is a straightforward calculation.

2. From Exercise 1, H~ is five-dimensional. Conics which pass through PI' P2 , P3 have equations with six coefficients (up to seal ar multiplication) which must satisfy three' relations. This leaves us with two de~ees of freedom. If (1, 0, 0), (0, 1,0), (0,0, 1) are the given points, then the possible conics are axy + bwx + cwy = ° with a, b, c specifying the conic (up to scalar multiplication). The subfamily of S containing w': x': y' is orte-dimensional as long as at most one of x', y', w' is zero. The subfamily of S containing w':x':y' and w":x":y" is: two-dimensional if

(w':x':y'), (w":X":y")E {(I, 0, 0), (0,1,0), (0, 0, I)};

one-dimensional if precisely one of (w':x':y'), (w":.x:':y") has two zero components or w = w' = °or x = x' = °or y = y' = 0; zero-dimensional (i.e., one conic) otheFWise.

CHAPTER 2, §3

1. Similar to Proposition (3.1).

2. We give a sketch ofthe proof. Suppose ABCDEF is the hexagon, and A = (1,0,0), B = (0, 1,0), C = (0, 0, 1). Let R = AB n DE, Q = AF n DC, P = BC n EF. Then if D = (dl> d2, d3), etc.,

R = (d t e3 - d3e.l , d2e3 - d3e2, 0),

P = (0, ed2 - e2fl' ed3 - eJitl, and

Since

i l f2(ed3 - e3ftlR + dd3(dt e3 - d3e t )P + (d l e3 - d3etl(ft e3 - f3etlQ = ° thus P, Q, Rare collinear. 3. The same techniques as in Exercise 2 are used. This is somewhat more straight• forward than Exercise 2.

CHAPTER 2, §4

1. Follows from the definitions in a straightforward way.

2. Family of curves through P with order :Sr in H~ has dimension t(r + l)(r + 2). The subfamily of H~ consisting of curves through P; with order sr; at P; for i = 1, 2, ... , t has dimension at least L::=I (t(rj + t)(r; + 2)) - !m(m + 3). 3. Transform so that (w, x, y) is at (1, 0, 0). Then (I, 0, 0) has order t on Cf and s on Cg • TlHis, am , has terms of degree ;?; r + m' - ltI only waen m' = m - r + 1, ... , m. Appendix. Guide to the Exercises 321

Similarly forthebi' So R(j; g) is homogeneous in w, x and of degree mn and divisible by x". Hence result. 4. Use Exercise 3. 5. Apply Exercise 4 to 1'. For the last part, the case in which we get n lines through

one point, gives only one rl , namely n; and m = n. 6. Co.1sider the family of curves of degree rn-I (containing 1') and the subfamilies ofthose eurves of degree rl - 1 at PI' Thus subfamily has dimension trl(rl + 1) and the original family has dimension t(m - l)(m + 2). 7. If f is redueible, then f = gh where g, h are of degree 1. Recall the formula Vf = hVg + gVh. So Vf is a linear combination of Vg, Vh. Note that Vg, Vh are eonstant vectors. Thus of/ox I' iJiliJX2' iJflcx 3 satisfy a linear relation with eonstant coefficients, namely Vf' (Vg /\ Vh) = O. Hence (f-f/ox i oXj with i = 1,2,3 satisfy a

comm~ relation for all j, and thll.s det(02flox l OXj) = O. Conversely, suppose det(02f/oXI'O:I) = O. Let ßij = 02flj).~,.oxj' Now diagonalize ßij (possible since ßu = ßj ;). One of the diagonal elements is zero, since the deter• minan! is zew, Thus we get a diagonal form o 0) ßZ2 0 . o O. However, by aversion of Euler's theorem for second derivatives,

2f = 'i. ßijxiXj i,i

= ßIIXt + ß'2X~ = (,/jj;;x 1 + J -ß22X2)(~Xl - J -ß22X2)' This factorization shows that f is reducible. 8. The assertion does not hold in general for characteristics p unless we impose a condition on f, e.g., it has degree :5 (p - 1). 9. Same answer as for Exercise 8.

10. If Ais the matrix of 02floxi oXj then det Ais homogeneous of degree 2:: 3 (it cannot be identically 0 by Exercise 7). Thus det A = 0, f = 0 has at least one common solution, and hence we get at least one Ilex by Exercise 9.

ApPENDIX TO CHAPTER 2 Exercises I, 2, and 3 are straightforward verifications. 4. If f has a repeated root in an extension field k' of k then f, I' have a common root in k' and so RU, 1') = 0 since f, I' have a common factor in k'(X). Thus DU) = O. Conversely, if DU) = 0, then RU, 1') = 0 and so f, I' have a common faetor gE k[X] with og > O. Let k' be an extension of k over which 9 splits completely. Then f, I' have a common linear faetor over k'[X]. So f, I' have a common root in k', i.e., f has a repeated root -in k'. 322 Appendix. Guide to the Exercises

5. A straightforward calculation givcs

D(ax2 + bx + c) = -a(b2 - 4ac) and D(x2 + px + q) = 27q2 + 4p3.

CHAPTER 3, §1 These qucstions are quite tedious to do completeJy. They just consist of many cases. For Exercise 2, we consider 0, P, Q, PP, PQ, P + P, P + Q, pcp + Q), (P + P)Q. The latter two are to j)e shown equal. Using Theorem (3.3), (P + P)Q is one of the other eight points. We must eliminate all other possibilities. For example, (P + P)Q = P implies P + P = PQ. Tben P(P + Q) = prO' PQ) = P(O'(P + P» = P(PP) = P, as required.

CHAPTER 3, §2 80th· follow by straightforward algebra. Substitute the relations in (2.3) into the equation in (2.4).

CHAPTER 3, §3

1. Discriminant is 27c2 - 18abc + 4a3c + 4b 3 - a2b2 (obtained by evaluating a 5 x 5 determinant).

2. Discriminant is (Oll - 1(2)2(1X2 - 1(3 )2(0I3 - IXd2• This is obtained as follows. It is a homogeneous polynomial of degree 6 which vanishes whenever two of OI,'S coincide. Thus it is divisible by (lXI - 0(2)(012 - 0(3)(1X3 - lXil. It is zero only if two OI,'S coincide, giving D(f) = C(lX t - 0(2)2(1X2 - 1(3)2(0I3 - IXI)2 some constant c. Use the special case f = x 3 - X to get c = 1. 3. Evaluation of a 7 x 7 determinant gives discriminant

256c3 - 51b4 - 20a3b2 + 80ab2c + 96a 2c2 - 32a4c -16a3c + 16ab3c - 48a 2bc2• 4. (a) j = -4906/11, A = -11. (b) j = 4096/43, A = -43. (c) j = (27/37)(4096), A = 37. (d) f = (27/91)(4096), A = -91. (e) j = (27 x W/79634), A = -28. (f) j=O,A= _39 •

5. General formula: 16b 2(a 2 - 4b). So we get (a) 80; (b) -48; (c) 128; (d) 230400.

CHAPTER 3, §5

1. A = -16D. To simplify algebra, shifting to give a2 = 0 is convenient. Then D = 27a~ + 4al alld A = 9b2 b4 b6 - 27bt, - 8bl-: bibs reducing to -16D. Appendix. Guide to the Exercises 323

2. A suitable elhptic curve is y2 = xJ - x. It has A = -1, j = O. In F3 , it has graph:

2

o * o 2

CHAPTER 3, §6

1. It is found that E3 , E4 have four points while Es has eight points. So E3 *Es while EJ ;;:; E4 under a shift.

2. The only part that needs checking is invt!rses. In F16, the relation given leads to (a + bvrl = (a' + b'v) where

a' = (b - 1)j(wb2 + ab - a2 ),

b' = bj(wb2 + ab - a2 ), and wb2 + ab - a2 "# 0, as can be easily verified. A slightiy more complicated version ofthis holds in F256.

3. Going back to (2.4) gives us that for an isomorphism betweeu E3 and Es, t 2 + t + v3 = 0 must be soluble. In F2S6 , t = w is a solution. In F16 , there are no such solutions.

4. This question is best answered by writing down (2.4) with ai = ai in each of the cases Ei (i = 1,2,3,4,5) separately. We then find that EI' E 2 give automorphism groups Zj2Z over any field of characteristic 2, of the identity and x=x } y=x+Y

However E3 , E4 , Es are more complicated, and the different k fields must be

considered separately. In fact, EJ , E4 give an identical set of equations and thus the same automorphism groups,

over F2 , F4 : Zj4Z,

over F16 , F2S6: 24-element group. Also Es gives automorphism groups,

over F2 : Zj2Z,

over F4 , F16• F2S6 : 24-element group, G. In this latter case, (2.4) gives: x = vx + r, y = y + r2 vx + t, 324 Appendix. Guide to the Exercises

where v = u2, S = r2• Here, U = 1, w, w' and either r=O, t = 0,1 or

reFt, t = w,w'.

Let av•r •• be the above transformation. Then

Ci v. r. t 0 (J.v',,' .t' =" (luv'. ur'+r,t+t'+,l,'v'

When v = I, we get a subgroup of eight elements isomorphie to H (the quaternion group {± I, ± i, ±j, ± k}). In this isomorphism:-

j -+ a t •w•w - j -+ a t •w•w•

-k -+ 1X1 ...... and

a 1.0,1 0:% V,r,t --av.r,t+l - -av,r,t oa 1.0.1"

In fact, the group of 24 elements in the Es cas~ is isomorphie to {± 1, ±i, ±j, ±k, i(± 1 ± i ± j ± lc)} (all are units). This ean be seen as folIows. If

I = HI + i + j + k) then I has order 6. Also a •. o.OOat.r .• oa;;:~.o = a t .•r .•. Thus the subgroup,. H, of our 24-element group G isomorphie to H, given by H = {at.r..• lr = 0, te{O, I} or reFt and te{w, w'}}, is anormal subgroup of G. Now r1j[ = -k can easily be verified. Thus eonjugation by [2 permutes i, j, k eyelieally, and.we ean thus eorrespond

[2 ...... a ..•• o•o

and since a;.r•• = IXv'.(v+IJr.vr3, thus [ean eorrespond to a w•o.o or to a w•o. t ' Thus G is a semidirect product of H with Z/3Z. There are four 3-Sylow subgroups of G; namely those generated by

!( - 1 + i + j + k), t( - 1 + i - j - k), i( - 1 - i - j + k), t( - 1 - i + j - k). These are eorresponded to

(lw'.o,O I%w',w',w and t( - 1 - i - j - k), t( - 1 - i + j + k), t( - 1 + i + j - k), t( -1 + i - j + k) are their squares (= conjugates) and are thus eorr.esponded to

Clw,W'.w' IXw,w,w' (Xw,I,w' Appendix. Guide to tbe Exercises 325

So, in the fuH eorrespondence,

1 +-+ IXI.O,o

- j +-+ IX I , w, w' -k+-+IXI ,,..,,.,

t(1 + i + j + k)+-+lXw,O,1 t( -1 - i'-j - k)+-+IX,.,o,o t(1 + i + j - k)+-+ IX,.., I,w' t( -1 - i - j + k) +-+ IX,.., I,,. t(1 + i - j + k)+-+IX,."w',w' t( -1 - i + j - k)+-+lXw',,.,,,. t(1 + i - j - k)+-+lXw,,.,,,. t( -1 - i + j + k)+-+IX,.,w',w' t

5. Tbe elliptie eurves over F4 up to ilOmorphism over F4 are: j=O: y2+ Y =X1, y2 + Y = x3 + w, r + y = x 3 + X + w, y2 + Y =x3 + x, y2+ y =.x3 +wx, y2 + Y = x3 + wx + w, ". + Y = x3 + w'x, r + y = x3 + w'x + w, y2 + wy =x3, y2 + wy = x3 + w, y2 + w'y = x3, r + w'y = x3 + w',· j = 1: r + xy = x3 + 1, y2 + xy = x3 + wx2 + 1. j = w: y2 + "y = x 3 + w', y2 + xy -= x3 + wx2 +·w'. j=w': y2+ xY =X3 +w, y2 + xy = x3 + wx2 + w. 326 Appendix. Guide to tbe Exercises

Over F16, these reduee to: j = 0: y2 + Y = x 3 (isomorphie to all above eurves with j = 0, a3 = 1),

y2 + wy = x 3 , y2 + wy = x 3 + ~, y2 + w'y = x 3, y2 + w'y = Xl + w'. j = 1: y2 + xy = x 3 + 1 (isomorphie to y2 + xy = Xl + wx2 + 1). j = w: y2 + xy = x 3 + w' (isomorPhie to y2 + xy = x 3 + wx2 + w'). j = w': y2 + xy = Xl + W (isomorphie to y2 + xy = Xl + wx2 + w).

6. The elliptie eurves over Fl up to isomorphism over Fl are:

j= 0: y2 = Xl + X} 2 3 isomorphie over F9 (16 elements), y =x -x

y2 = Xl - X + I} 2 3· isomorphie over F9 (7 elements) y =X ~-1

j = 1: y2 = Xl _ x 2 + I} 2 l 2 isomorphie over F9 (15 elements), y=x+x-l j = -1: y2 = x 3 + x 2 + I} 2 3 2 isomorphie over F9 (12 elements). y=x-x-l

7. We find that when k = Fl Z/2Z for eurves with j = 1, Autk(E) = { Z/2Z for y2 = Xl + X, Sl for y2 = Xl - X + Cl (Cl = 0, ± 1),

and with the notation V4 = Z/2Z x Z/2Z

Z/2Z for j "" 0, Z/4Z for y2 = x 3 "+ x, 3 AutF.(E) = jV4 x Z/3Z for y2 = x - x, Z/6Z for y2 = x 3 - X + 1, Z/6Z for y2 = x 3 - x-I.

8. We think of F8 as a eubic extension of F2 formed by adjoining w such that 3 w + w + 1 = O.We find that noncycIie groups occur only over F 16, FZS6 in this example. For

i = 1: F8 gives Z/14Z} F16 gives a 16-element group with a subgroup Z/8Z i = 2: F8 gives Z/4Z "of { 0, (0, 1), (w)1, w' '.( 2, 1)w' ., (w, ,I)} w for E.

i = 3: F8 gives Z/5Z} F16 gives.a 25-element group, with subgroup of i=4: F8 gives 0 order 5 gJVen by {O, (0, 0), (0, 1), (1, 0), (1, I)}. Appendix. Guide to the Exercises 327

; ~" F. g;,~ Z/9Z; F" g;'" {(O, 0), (0, " C:' ) ,0 l

This exercise can become a bit tedious: we only need to check Fs, F16 here. 9. The elliptic curves over Fs are: j=O: y2 = x3 + 1 (Z/6Z), y2 = x 3 + 2 (Zj6Z). y2 = Xl + X (Zj2Z x Zj2Z), y2 = x 3 + 2x (Zj2Z), y2 = x 3 + 3x (ZjlOZ), y2 = x 3 +.4x (Zj2Z x Zj2Z). j = 1: y2 = x 3 + X + 2 (Zj4Z), y2 = x 3 + 4x + 1 (Zj8Z). j = 2: y2 = Xl + 4x + 2 (Zj3Z), y2 = x 3 + X + 1 (Zj9Z). j=4: y2 = x 3 + 2x + 4 (Zj7Z), y2 = x 3 + 3x + 2 (Zj5Z).

CHAPTER 4, §1

These exercises are routine algebra, using the definitions of the bj , Ci' Ö, and j.

CHAPTER 4, §2

1. Here p, q are clearly inverses. Thus, one only needs to check that q = 2p. This 'is done by showing that the tangent at p cuts the at a tripIe point (namely p).

CHAPTER 5, §1 1. It is easy to verify that C is nonsingular over Q and that C is singular. A suitable pair P, P' is

P' = (p, p2, 1),

and then L is w + X = (p + p2)y. Thus i is w + X = 0 and alI the conditions are satisfied.

CHAPTER 5, §2

1. The required condition is that

ordp(ö) + min(O, ordp(j» < 12 + 12152P + M3p 328 Appendix. Guide to the Exercises

for all primes p. It is easily verified that

A = -16(4a3 + 27b2 ),

j = (3 3 . 28 )a 3 j(4a 3 + 27b 2 )

for y2 = x 3 + ax + b. Thus, for y2 = x 3 + ax, A = _26 a3 , and j = 33. 26. This gives the conditions for minimality:

ord2(a) < 6

ord3 (a) < 6 ordp(a) < 4,

For y2 = x 3 + a, A = _24 . 33a2, j = O. This gives thecondition forminimality:

ord2(a) < 10

ord3 (a) < 8 ordp(a) < 6,

CHAPTER 5, §3 The first four questions in this section are all very similar. We therefore give only the answers, and in Exercise 4(c) we give a complete solution. 1. (a) Never get bad reduction at prime p, unless a == 0 mod p. So the prim~s p at which bad reduction occurs~re those which divide Q. (b) Bad reduction occurs at primes p "# 3 as long as p divides a; and occurs at p = 3 always. (c) Bad reduction occurs at p = 13. (d) Bad reduction occurs at p = 3, 11.

2. (a) p = 5. (b) p = 3. (c) We never get bad reduction (d)p = 3,5.

3. (a). p = 37. Modulo 2 gives E3 in 3(6.4) and modulo 3 gives y2 = x 3 - X + 1. (b) p = 43. Modulo 2 gives E] in 3(6.4) and modulo 3 gives y2 = x 3 + x 2 + 1. 3 . (c) p = 91. Modulo 2 gives E3 in 3(6.4) and modulo 3 gives y2 = x + X + 1. (d»)' = 3. Modulo 2 gives E's. (e) p = 2, 53. Modulo 3 gives y = x 3 - X + 1. 3 (f) p = 5, 17,31. Modulo 2.give E l and modulo 3 gives y2 = x + 1. 4. (a) p = 3, 7 give good reduction and p = 2, 5 give bad reduction. (h) p = 2, 3 give good reduction and p = 5, 7 give bad reduction. (c) Here y2 + xy + Y = x 3 - x 2 - 3x + 3. Thus

(2y + x + I)y' = 3x2 - 2x - 3 - y and bad.reduction at an odd prime p requires

2y + x + 1 = 0, i.e., y = -tex + 1) and

3x2 - 2x - 3 = y. Appendix. Guide to the Exercises 329

This is never satisfied for odd p, and (x, y) on the curve. So we consider p = 2. This gives y2 + x'y = X'3 where x' = x + 1. Thus bad reduction occurs at p = 2 and good reduction occurs for p = 3, 5, 7. (d) p = 2, 5, 7 give good reduction and p = 3 gives bad reduction. (e) p = 5 gives good recluction and p = 2, 3, 7 give bad reduction. 5. The subgroup, G, generated by (0, 0) has image under r2 which is {(O, 0), (1,1), (1; 0), (0,1), O}. 6. The discriminant is 5077 and this is easily seen to be prime.

CHAPTER 5, §4

1. These fo11ow very simply from the relation for x + x' + x" given in (4.3) since ordp(x + x' + x") ;;:: 3n as a 1 = O. 2. It is quite clear that Rp is a maximal ideal in R iff R(p) forms an additive group, and thus R(p) = R. Uniqueness of this maximal ideal follows by assuming land J = Rp to be two distinct maximal ideals. Thus I 't J, J 't I. So thereexists ao e I such that ordpao = 0, and then Va e k, if and only if ordpa;;:: 1. But for a11 aeR.

So I = R because ao is invertible, a contradiction. It is now easy to show that I + Rp !:; R*. We then get k*jR* ..... Z, a + R* ..... max {ordp(a + r)}. rER·

Reduction mod p maps R~ ..... k(p)* with kernel 1 + Rp. The canonical map R ..... RjRp composed with the map:

1 + Rp" ..... R} 1 + ap" ..... a produces a map 1 + Rp" ..... RjRp. The kernel consists of 1 + Rp"+l. Thus (1 + Rp")j(I + Rp"+l) ~ RjRp by the first isomorphism theorem: 3. This is very straightforward from the definitions.

CHAPTER 5, §5

1. For the last part, note that good reduction occurs mod p far all odd primes other than 3. When E is reduced mod 5, we get a group of order 6. Since E(Q),ors has no elements of order 2, thus all elements must be of ordl:r 3. Hence E(Q),ors ~ Zj3Z. 2. Modulo 2and modulo 3 give no singularities. So there are injections from E(Q),ors into Zj3Z, Zj7Z. Hence E(Q)'on = O. 330 Appendix. Guide to the Exercises

3. Modulo 2, E contains just O. Modulo 3 we get no singularities and the group is Z/4Z. So E(Q),ors is thus 0 or Z/2Z. However, (2, -1) has order 2, and so E(Q),ors = Zj2Z.

4. Hefe, E(Q),ors = Z/7Z since modulo 3 gives Z/7Z and (1, 0) has order 7.

5. Here GL.(Z) denotes the group ofn x n matrices with entries in Z and determinant

± I. Thus GL.(Z) maps into GL.(ZjqZ) under rq • Showing that (I. + p·X)· == I. + np' X mod p.+b+l. Thus we find that C) p.r is divisible by p.+b+I, whenever r ~ 2.

If G ~ GL.(Z) is finite and A e G (") ker r p , then A has finite order. Thus,

as Aeker rp , A = I + X, and Am = I + mX mod pb+l. So X = 0 since the Am cannot all be distinct. This gives G (") ker r, = I, 'r/p > 2. For p = 2, A"' = I. + 2mX mod· pordp(m)~2. and so G (") ker'4 = 1 for p = 2.

6. It is easily seen that p = 3, 5 give good reduction, and groups Z/7Z (p = 3) and a group of order 10 (p = 5). So ß(Q),ors = O.

CHAPTER 5, §6

1. It is easily computed that E has discriminant 3. So, any torsion point has y = 0, ± 1, ±3. Thus, 0, (0, 0), (I, I), (1, -1) are the torsion points (Z/4Z). The curve has good reäuction modulo 5 and E(Fs) i~ja group of eight points: {O, (0, 0), (1, ± 1), (2, ± 1), (-2, ± 2)}. 2 The torsion points are 0, (0, 0). The curve has good reduction both modulo 3 and

modulo 5, and E(F3 ) = Z/6Z, E(Fs) = Z/4Z; In fact E(F3 ) = {O, (0, 0), (± 1, ± I)}, E(Fs) = {O, (0,0), (-2, ± I)}.

3. Here E(F3 ) =Z/6Z = {O, (0, 0), (± I, ± I)}. Also E(Q),o" = E(F3 ) and so both are Z/6Z.

4. To prove this, we use the fact that - 2P is not 11 torsion point, so that the tangent line at P cuts the curve at an integer point. This is used to determine that the slope of this line must be integral.

CHAPTER 6, §4

1. The first part is quite easy, as x + (f) generates Rf as an algebra. If f factors as distinct linear factors, n?=, (x - IX;) then we can map Rf to k· by evaluating at the IXi · When f factors as n~=, (x - IX;)", we can map Rf to a direct sum of R",r,. This then gives thestructure of Rf . 2. We use (); as our three maps which produce a tripie for each PeE. This tripie is converted into an element of Rf using g(r;). Thus, Jmg ~ Rj,I/(Rj)2.

CHAPTER 9, §1

I. The proof is by induction on n, and so we assume that it holds for (n - 1). For n = 2, it obviously holds. A discrete subgroup r of R" Jives. r' = rf(Rw t ) ~ Appendix. Guide to tbe Exera- 331

R"J(ftllJ 2 ) ~ Rn-l where w t er has minimal nonzero absolute value. (This holds unless r = {O}). Thus r = Zw. + ... + Z"', sinee r' = Z"', + ... + Zw; by indue• tive assumption, and by disereteness of r. The eondition for compactness ofR"jr follows sinee Rnjr is Rn-, x T. where T,. is torus. 2. Trus follows from the last exereise.

3. SupPose f is analytic, so that f, g: C --> C and fog = gof = id. We ean extend to maps t --> t where t = C U { oo} by

f(oo) == g(oo) = 00.

Hence f(z) = (az + b)!(ez + d). Sinee f( 00) = 00, C = 0, and so f(z) = az + b with a # O. Since f i~ a homomorphism, f(z, + Z2) = f(z tl + f(Z2)' Thus b = O;and so f(z) = .l.z some .l. eC

CHAPTER 9, §3 1. We consider djdz«((z + w) - (z)), and show that it vanishes for aH z. Thus, (z + w) - (z) is eonstant, independent of z, and is ,,(w) so me function IJ of w.

2. Integrate ( around a rectangle from Xo to Xo + w" Xo + W l + Wz, uno Xo + W2' Then we get 21[; by the eaIculus of residues. Integrating around pairs of opposite sides will give the result (using Exereise 1). 3. To show that u is entire, we only need to show that In(1 - zjUJ) + zlw + z2j2w2 forms a eonvergent sum over (OE L - {O}.

4. In this exereise u(z + wJ = u(z)e"= Ai some eonstant Ai from Exereises 1 and 3. Also u is odd, and so Ai = _e-·,,,,,/2. Henee result.

5. Since any elIiptic function has only a finite number of zeros and poles ai , bj say, we have " u(z - b·) f(z) [1 • i~l u(z - a,) eontaining no zeros or poles and also periodic. Thus, we get a constant function, as required.

CHAPTER 9, §4

1. Since h is a group isomorphism and A + B = - A· B, therefore (1, p(zd, p'(zd), (1, P(Z2)' P'(Z2))' -(1, p(Zt + Z2)' t,)'(z, + Z2)) are coHinear. This gives the result. 2. To check the first result, we note that both si des, as a function of z" are periodic with poles when z 1 E L. These poles are double poles with equal coeffieients of Ijzf near 0 (namely.l). So, they can dilTer at most by a constant. At z 1 = Z2, hoth sides agree. Hence the resuIt r.. uows. As Z2 -> Z l, we obtain the second part. 3. DilTerentiate the first resuIt in Exereise 2. 332 Appendix. Guide to the Exercises

4. Apply Exercise 3 with ZI' Z2 interchanged,and add to the result of Exercise 3. Simplifying gives the result. To derive the addition formulae, we need only derive (I).

CHAPTER 9, §5 1. We have

r(s)r(1 - s) = (L"" x·-Ie-x dX) (L"" x-'e-X dX)

= (L"" 2x 2.-1e- x2 dX) (L"" 2y-2·+1e-,2 dY)

("" (Kf2 = J0 J0 4e-"(cos 0)2'-I(sin 0)1-2'r dO dr

putting r = x 2 + y 2 = 2 LK/2 (tan 0)1-2. dO

= Ir> le du/(I + u) (u = tan 2 0).

lntegrating u-'/(l + u) around the contour below, since 0< Re(s) < 1 thus the integrals around circ1es of radii e, R about 0 tend to 0 as e -+ 0, R -+ 00. The only . enc10sed pole is at -1, with residue e-ttis• Thus

21rie- .is = r(s)r(1 - s)(1 _ e-2i",)

and so r(s)r(l - s) = n/sin ns. Q.E.D.

-1 -f.

Questions 2, 3, and 4 follow straight from-the definitions of the hypergeometrie function. Bibliography

Before giving a more complete bibliography, we assemble those references arising frequently in the text or which have had a special impact on the development of this book.

Ahlfors, L.: Complex Analysis, 2nd ed., McGraw-Hill, 1966. Birch, B., Swinnerton-Dyer, H. P. F.: Notes on elliptic curves, (I) and (11). J. Reine Angew. Math. 212, 7-25 (1963), 218, 79-108 (1965). Cassels; J. W. S.: Diophantine equations with special reference to elliptic curves. J. London Math. Soc. 41, 193-291 (1966). (This reference contains an extensive bibliography of the c1assicalliterature.) Koblitz, N.: lntroduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1984. Lang, S.: Algebraic Number Theory, Addison-Wesley, 1970. Mumford, D.: Abelian Varieties, Oxford University Press, 1974. Mumford, D.: Tata Lectures on Theta, land ll, Progress in Mathematics, Vol. 28 and 43, Birkhäuser, 1983, 1984. Serre, J.-P.: Abelian l-adic Representations and Elliptic Curves, Benjamin, 1968. Serre, J.-P.: Proprietes galoisiennes des points d'ordre fini des corbes elliptiques. lnvent. Math. 15,259--331 (1972). Serre, J.-P.: A Course in Arithmetic, Springer-Verlag, 1973. Silverman, J.: The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, 106, Springer-Verlag, 1986. Tate, J.: The arithmetic of elliptic curves. Invent. Math. 23, 179-206 (1974).

Ahlfors, L.: Complex Analysis, 2nd ed., McGraw-Hill, 1966. Amice, Y., Velu, J.: Distributions p-adiques associees aux series de Hecke. Asterisque, 24/25, \ 19-131 (1975). t>.postol, T.: Modular Functions and Dirichlet Series in Number Theory, Springer• Verlag, 1976. Arnaud, B.: Interpolation p-adique d'un Produit de Rankin, University of Orsay, 1984 (preprint). Arthaud, N.: On the Birch and Swinnerton-Dyer conjecture for elliptic curves with complex multiplication. Compositio Math. 37, 209-232 (1978). 334 Bibliography

Artin, E.: GaJois Theory, University ofNotre Dame Press, 1942. Artin, M., Swinnerton-Dyer, H. P. F.: Tbe Shafarevitch-Tate conjecture for pencils of eJliptic curves on K3 surfaces. Invent. Math. 20, 249-266 (1973). Atiyah, M., Macdonald, 1.: Introduetion to Commutative Algebra, Addison-Wesley, 1969. Atiyah, M., Wall, C.: Cohomology of groups. In Algebraic Number Theory, J. W. S. Cassels and A. Fröhlich, eds., Academic Press, 1967, pp. 94-115. Atkin, A. O. L., Lehner, J.: Hecke operators on ro(m). Math. Ann. 185, 134-160 (1970). Atkin, 0., Li, W.: Twists ofnewforms and pseudo-eigenvalues of W-operators. Invent . . Math. 48, 221-243 (1978). . Baker, A.: Transeernkntal Number Theory, Cambridge University Press, 1975. Baker, A., Coates, J.: Integer points on curves of genus 1. Proc. Camb. Phi!. Soe. 67, 595..:.602 (1970). Barsotti, I.: Analytical methods for abelian varieties in positive characteristic. Colloque de Bruxelles, 1962, pp. 77-85. Birch, B. J.: Cyc1otomic fields and Kummer extensions. In Algebraie Number Tfieory, J. W. S. Cassels and A. Fröhlich, eds., Academic Press, 1967, pp. 85-93. Birch, B. J.: Elliptic curves and modular functions. Symp. Math. Ist. Alta Mat. 4, 27-32 (1970). P.irch, B. J.: Elliptic curves. A progress report. Proceedings 01 the 1969 Summer Institute on Number Theory, Stony Brook, New York, American Mathematical Society, 1971, pp. 396-400. Birch, B. J.: Heegner points ofeIliptic curves. Symp. Math. 15,441-445 (1975). Birch, B. J., Stephens, N.: Heegner's construction of points on the curve y2 = x3 - 1728e2 • Seminaire de TheorÜ! des Nombres, Paris, 1981-82. Progress in Mathe• matics, 38, Birkhäuser, 1983, pp. 1'-19. Birch, B. J., Stephens, N.: Computation ofHeegner points. In Modular Forms; R. A. Railkin, ed., ElIis Horwood, 1984, pp. 13-41. Birch, B. J., Swinnerton-Dyer, H. P. F.: Notes on elliptic curves, (J) and (II). J. Reine Angew. Math. 212, 7-25 (1963), 218, 79-108 (1965). Birch, B. J., Swinnerton-Dyer, H. P. F.: Elliptic curves and modular functions. In Modular Funetions olOne Variable, IV, B. J. Birch and W. Kuyck, eds. Lecture Notes in Mathematics, 476, Springer-Verlag, 1975, pp. 2-32. Bloch, S.: A note on height pairings, Tamagawa numbers, and thc Birch and Swinnerton-Dyer conjecture. Invent. Math. 58, 65-76 (1980). Borevich, Z. L., Shafarevich, I. R.: Number.Theory, Academie Press, 1966. Bremner, A., Cassels, J. W. S.: On the equation y 2 = X(X 2 + p). Math. Comp. 42, 257-264 (1'984). Brumer, A., Kramer, K·.: Tberankofellipticcurves. DUke Math. J. 44, 715-743 (1977). Cartier, P.: Groupes tormeIs, fonetions automorphes et fonctions 2leta des courbes elIiptiques. Aetes des Congres Intern. Math. T. 2, 291-299 (1970). CasseIs, J. W. S.: A note on the division values of ;.(u). Proc. Camb. Phi!. Soe. 45, 167-172 (1949). CasseIs, J. W. S.: Arithmetic curves of genus 1 (III). The Tate-Shafarevitch and Selmer groups. Proe. London Math. Soe. 12, 259-296 (1962). Cassels, J. W. S.: Arithmetic on curves of genus I (IV). Proof ofthe Hauptvermutung. J. Reine Angew. Math. 211, 95-112 (1962). Cassels, J. W. S.: Arithmetic on curves of genus 1 (V). Two counter-examples. .J. London Mtith. Soe. 38, 244-248 (1963). Cassels, J. W. S.: Arithmetic on curves of genus 1 (VI). The Tate-Shafarevitch group can be arbitrarily large. J. Reine Angew. Math. 214/215, 65-70 (19.64). Cassels, J. W. S.: Arithmetic on curves of genus I (VII). The dual exact sequence. J. Reine Angew. Math. 216,150-158 (1964). Cassels, J. W. S.: Arithmetic on curves of genus 1 (VIII). On the conjecturc;s of Birch Bibliography 335

and Swinnerton-Dyer. J. Reine Angew. Math. 117,180-189 (1965). Casse1s, J. W. S.: Diophantine equations with special reference to elliptic curves. J. London Math. Soc. 41, 193-291 (1966). Cassels, J. W. S.: Global fields. In Aigebraic Number Theory, J. W. S. Cassels and A. Fröhlich, eds., Academic Press, 1967, pp. 42-84. Cassels, J. W. S., Ellison, W.J., Pfister, A.: On sums of squares and on elliptic curves . over function tields. J. Number Theory 3,125-149 (1971). Chinberg, T.: An introduction to Arakelov intersection theory. In Arithmetical Geometry, G. Corrrell and J. Silverman, eds., Springer-Verlag, 1986. Clemens, C. H.: A Scrapbook ofComplex Curve Theory, Plenum, 1980. Coates, J.: Construction of rational functions on a curve. Proc. Camb. Phi!. Soc. 68, 105-123 (1970). Coates, J.: An effective p-adic analog of a theorem of Thue, IH. The Diophantine equation y2 = x 3 + k. Acta Arith. XVI, 425-435 (1970). Coates, J., Wiles, A.: On the conjecture of Birch and Swinnerton-Dyer. lnvent. Ma'h. 39,223-251 (1977). Cox, D.: The arithmetic-geometric mean ofGauss. Enseign. Math. 30, 275-330 (1984). Danilov, L. V.: The Diophantine equation x 3 - y2 = k and Hall's conjecture. Math. Notes 32,617-618 (1982). Davenport, H.: On f3(t) - g2(t). Jljorske Vid. Selsk. Forh. (Trondheim) 38, 86-87 (1965). Deligne, P.: La conjecture de Weil. lnst. Hautes Etudes Sei. Publ. Math. 43, 273-307 (1974). Deligne, P.: Valeurs de fonctions L et periodes d'integrales. Proc. Sympos. Pure Math. 33,313-346 (1979). Deligne, P., Rapoport, M.: Les schemas de modules de courbes elliptiques. In Modular Functions ofOne Variable, ll, P. Deligne and W. Kuyck, eds., Lecture Notes in Mathematics, 349, Springer-Verlag, 1973, pp. 143-316. Demjanenko, V. A.: On the torsion of elliptic curves. hv. Acad. Nauk. SSSR Sero MM. 35,280-307 (1971) (in Russian). (English trans. Math. USSR-lzv.) Demjanenko, V. A.: On the uniform boundedness of the torsion of elliptic curves over algebraic number· fields. lzv. Akad. Nauk SSSR Sero Mat. 36 (1972) (in Russian). Deuring, M.: Die Typen der M ultiplikatorenringe elliptischer Funktionenkörper. Abh. Math. Sem. Univ. Hamburg 14, 197-272 (1941). Deuring, M.: Invarianten und Normalformen elliptischer Funktionenkörper. Math. Z. 47, 47-56 (1941). Deuring, M.: Die Typen der Multiplikatorenringe elliptischer Funktionenkörper. Abh. Math. Sem. Univ. Hamburg 16, 32-47 (1949). Deuring, M.: Die Zetafunktion einer algebraischen Kurve vom Geschlechte Eins, l, ll, lll, IV, Gott. Nach., 1953, 1955, 1956, 1957. Deuring, M.: Die Klassenkörper der komplexen Multiplikation. Enz. Math. Wiss., 12, 23. Teubner, 1958. Drinfeld, V. G.: Elliptic modules. Mat. Sb. (N. S.) 94, 596-627 (1974) (in Russian). (English trans. Math. USSR-Sb. 23 (4), 1973.) Drinfeld, V. G.: Coverings of p-adic symliletric regions. Functional Anal. Appl. 10, 29-40 (1976). " Dwork, B.: On the rationality of the zeta function of an algebraic variety. Amer. J. Math. 82, 631-648 (1960). Eichler, M.: Quaternäre quadratische Formen und die Riemannsche Vermutung für die Kongruenzzetafunktion. Arch. Math. (Basel) 5, 355-366 (1954). Eich1er, M.: Lectures on Modular Corresponden(:es, Lecture Notes of the Tata Institute, 9 (1956). Evertse, J. H.: On equations in: S-units and the Thue-Mahler equation. Invent. Math. 75,561-584 (1984). 336 Bibliography

Evertse, J. H., Silverman, J.: An upper bound for the number of solutions to the equation Y". = fex) (to appear). FaItings, G.: Endlichkeitssätze für abelsche Varietäten über Zahlenkörpern. Invent. Math. 73, 349-366 (1983). . Faltings, G.: Calculus on arithmetic surfaces. Ann. of Math. 119,387-424 (1984). Fröhlich, A.: Local fields. In Algebraic Number Theory, J. W. S. Cassels and A. Fröhlich, eds., Academic Press, 1967, pp. 1-41. Fröhlich, A.: Formal Groups, Lecture Notes in Mathematics, 74, Springer-Verlag, 1968. Fueter, R.: Über kubische diophantische Gleichungen. Comment. Math. Helv. 2, 69-89 (1930). Fulton, W.: Algebraic Curves, Benjamin, 1969. Goldfeld, D.: The c\ass numbers of quadratic fields and the conjectures of Birch and Swinnerton-Dyer. Ann. Scuola Norm. Sup. Pisa 3,623-663 (1976). Greenberg, R.: On the Birch and Swinnerton-Dyer conjecture. Invent. Math. 72, 241-265 (1983). Griffith, P., Harris, J.: Prim'iples of Algebraic Geometry, Wiley, 1978. Gross, B.: Heegner points Oll Xo(N). In Modular Forms, R. A. Rankin, ed., Ellis Horwood, 1984, pp. 87-106. Gross, B.: Local heights on curves. Proceedings of the Conference on Arithmetic Algebraic Geometry, Storrs, Springer-Verlag (to appear). Gross, B.: On canonicaland q uasi-canonicalliftings. Invent. M ath. 84, 321-326 (1986). Gross, B.: Heights and the special values of L-series. Con(erence Proceedings of the CMS, Vol. 7, American Mathematical Society, 1986 (to appear). Gross, B., Zagier, D.: Points de Heegner et derivees de fonctions L. C. R. Acad. Sei. Paris 297,85-87 (1983). Gross. B., Zagier. D.: On singular moduli. J. Reine Angel\'. Math. 355, 191-219 (1985). Gross, B., Zagier, D.: Heegner points and derivatives of L-serics. Invent. Math. 84, 225-320 (1986). Gruenberg, K.: Profinite groups. In Algebraic Number Theory, J. W. S. Cassels and A. Fröhlich, eds., Academic Press, 1967. pp. 116-127. Hall, M.: The Diophantinc equation x 3 - y2 = k. In Computers in Number Theory, A. Atkin and B. Birch, eds .• Academic Press, 1971. Hardy, G., Wright, E.: An Inrroducrion to the Theory of Numbers, Oxford University Press, 1960. Hartshorne, R.: Algebraic Geometry, Springer-Verlag, 1977. Hazewinkel, M.: Formal G/'Oups and Applications, Academic Press, 1978 .. Hecke, E.: Vorlesungen über die Theorie der algebraische Zahlen, Chelsea, 1948. Hecke, E.: Analytische Arithmetik der positiven Formen. In Mathematische Werke, Vandenhoeck und Ruprecht, 1959, pp. 789-918. Eejhal, D.: The Selberg Tracl' Formulafor PSL(2, IR). Lecture Notes in Mathematics, 1001, Springer-Verlag, 1983. Honda. T.: Formal groups and zeta functions. Osaka J. Math. 5,199-213 (1968). Honda. T.: On the theory of commutative formal groups. Math. SOl'. Japan 22, 213·-246 (1970). Hurwitz, A.: Über tenäre diophantische Gleichungen dritten Grades. Vierteljahrschrift d. Naturf·Ges. Zürich 62,207-229 (1917). Igusa. J.-I.: Class number ofa definite quaternion with prime discriminant, Proc. Nat. Acad. Sei. U:S.A. 44, 312-314 (1958). Igusa. J.-I.: On the transformation theory of elliptic functions Amer. J. Math. 81, 436-452 (1959). Igusa, J. -I.: Kroneckerian model of fields of elliptic modu lar functions. Amer. J. M ath. 81.561-577(1959). Iwasawa, K.: Lectures on p-adic L~(unctions, Annals of Mathematical Studies, 74 Bibliography 337

Princl;ton University Press, 1972. Katz, N.: p-adic properties of modular schemes and forms. In Modular Functions olOne Variable, IIf, Lecture Notes in Mathematics, 350, Springer-Verlag, 1973, pp. 69-19l. Katz, N.: An overview ofpeligne's proof. Proc. Sympos. Pure Math. 28 (1976). Katz, N., Mazur, B.: Arithmetic Moduli 01 Elliptic Curves, Anna1s of Mathematical Studies, 108, Princeton University Press, 1985. Kenku, M.: On the number of O-isomorphism class of elliptic curves in each iIJ-isogeny class. J. Number Theory 15, 199-202 (1982). Koblitz, N.: fntroduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1984. Kodaira, K.: On Compact Analytic Surlaces, Annals of Mathematical Studies, 24, Princeton University Press, 1960, pp. 121-135. Kotov, S. V., Trelina. L. A.: S-ganze Punkte auf elliptischen Kurven. J. Reine AngelV. , Matl!. 306, 28-41 (1979). Kramer, K.: Arithmetic of elliptic curves upon quadratic extension. Trans. Amer. Math. Soc. 264,121-135 (1981). Kubert, 0.: Universal bounds on the torsion and isogenies of elliptic curves. Ph.D. thesis, Harvard, 1973. Kurbert, 0.: Universal bounds on the torsion of elliptic curves. Proc. London Malh. Soc.33, 193-237 (1976). LaI, M., Jones, M. F., B1undon, W. J.: Nurnerical solutions of the Diophantine equationy3 - Xl = k. Math. Comp. 20, 322-325 (1966). Lang, S.: Diophantine Geometry, Interscience, 1962. Lang, S.: Les Formes Bilineaires de Neron et Tate, Seminaire Bourhaki, 274 (1964). Lang, S.: Algebraic Number Theory, Addison-Wesley, 1970, and Graduate Texts in Mathematics, 11 0, Springer-Verlag, 1986. Lang, S.: Division points of elliptic curves and abelian functions over number fields. Amer. J. Math. 97,124-132 (1972). Lang, ::;.: E/liptic Functions, Addison-Wesley, 1973. Lang, S.: Elliptic Curves: Diophantine Analysis, Springer-Verlag, 1978. Lang, S.: fntroduction to Alg~b1Gic QJI(/ Abelian Functions, 2nd ed., Springer-Verlag, 1982. Lang, S.: Fundamentals 01 Diophantilte Geometry, Springer-Verlag, 1983. Lang, S.: Conjectured Diophantuie Ertlmates on Elliptic Curves, Progress in Mathe- matics, 35, Birkhäuser, 1983. Lang, S.: Complex Multiplicatio,n, Sprinser-Verlag, 1983. Lang, S.: Algebra, 2nd ed., Addision-WesIey, 1984. Lang, S., Neron, A.: Rational points of abeliaa varietiea over function fields. Ame,.. J. Malh. 81, 95-118 (1959). Lang, S., Tate, J.: Principal homogeneous &pI1.QeaOVCf abelian varieties. Amer. J. M alh. 80, 659-684 (1958). Lang, S., Trotter, H.: Frobenius Distributions .. GL2-Extemions, Lectur..: Notes in Mathematics, 504, Springer-Verlag, 1976. Laska, M.: An algorithm for finding a minimal Weierstrass equation for an elliptic curve. Malh. Comp. 38, 257-260 (1982). Laska, M.: Elliptic Curves over Number Fields with pr~scribed Reduction Type. As• pects of Mathematics, 4, Friedr. Vieweg & Sohn, 1983. Laurent, M.: Minoration de la hauteur de Neron-Tate. Seminaire de Theorie des Nombres, Paris, 1981-82, Progress in Mathematics, 38, Birkhäuser, pp. 13 7-1 S2. Lazard, M.: Sur les groupes de Lie fonne1s a un parametre. Bull. Soc. MaIIr. Franc~ 83,251-274 (1955). Li, W.: Newforms and functional equations. Math. Ann. 211, 285-315 (1975). Ligozat, G.: FOllctions L des courbes ,nodulaires. SeminaireDelange-PisOl-Poilou, 1970. 338 Bibliography

Lind. c.-E.: Untersuchungen über die rationalen Punkte der ebenen Kubischen Kurven vom Geschlecht Eins. Thesis, Uppsala. Liouville, J.: Sur des classes tres-etendues de quantities dont la irrationelles algebriques, C. R. Acad. Sei. Paris 18. 883-885, 910-911 (1844). Lubin, J.: Finite subgroups and isogenies of one-parameter fonnal Lie groups. Ann. or Math. 85, 296-302 (1967). Lubin, J.: Canonical subgroups of fonnal groups. Trans. Amer. Math. Soc. 251, 103-127 (1979). Lubin, J., Serre, J.-P., Tate, J.: Seminar at Woods Hole Institute on Algebraic Geometry, 1964. Lubin, J., Serre, J.-P., Tate, J. T.: Elliptic curves and fonnal groups. A.M.S. Summer Institute on Algebraic Geometry, Woods Hole, American Mathematical Society, 1964. Lubin, J., Tate, J.: Formal complex multiplication in local fields. Ann. Math. 81, 380-387 (1965). Lubin. J.: Tate, J.: Fonnal moduli for one-parameter fonnal Lie groups. Bult. Soc. Math. France 94,49-60 (1966). Lutz, E.: Sur I'equation y2 =, x J .- Ax - B dans les corps p-adic. J. Reine Angew. Math. 177, 237-247 (1937). Mahler, K.: On the lattice points on curves of genus 1. Proc. London Math. Soc. 39, 431-466 (1935). Manin, Yu. I.: The Hasse-Will Marrix of an Algebraic ClIrve, AMS Translatidns, Vol. 45,245-264 (1965). . Manin, Yu. 1.: The p-torsion of clliptic curves is unifonnly bound!!d. I zv. Akad. N auk SSSR Sero Mal. 33, 433-438 (1%9). Manin, YU. I.: Parabolic points and zeta functions ofmodular curves. Izv. Akad. Nallk SSSR Sero Mat. 36, 19-64 (1972). Manin. YU. I.: Uniform bound {or the p-torsion of eIliptic curves. lzv. Akad. Nauk. SSSR Sero Mat. 33,459-465 (1969) (in Russian). (English trans. Math. USSR-Izv. Manin, Yu. I.: Le group de Brauer-Grothendieck en geometrie diophantienne. ACles, Congres Intern. Math. 1,401-411 (1970). Manin; Yu. k Cyclotomic fields and modular curves. Uspekhi Mal. Nauk 26, 7-71 (1971) (in Russian). Manin, Yu; I., Zarkin, Y. G.: Heights on families of abelian varieties. Mat. Sb. (N.S.) 89,171-181 (1972) (in Russian). Masser,.D.: Elliptic Functions and Transcendence, Lecture Notes in Mathematics, 437, Springer-Verlag, 1975. Masser, D., Wüstholz, G.: Fields oflarge transcendence degree generated by the values of elliptic functions. Invem. Mllih. 72, 407-464 (1983). Matsumura, H.: Commutative Algebra, 2nd ed., BenjaminjCummings, 1980. Mazur, B.: Courbes El/iptiques et Symboles -Modulaires. seminaire Bourbaki, 414, 1972. Mazur, B.: Rational points ofabelian varieties with values in towers ofnumber fields. Invem. Math. 18, 183-266 (1972). Mazur, B.: Courbes Elliptiques et Symboles Modularies, Setp.inaire aourbaki, 414, Lecture Notes in MathematicJ, 317, Springer-Verlag, 1973. . Mazur, B.: Modular curves and the Eisenstein ideal. lnst. Hautes Etudes Sei. Publ. Mtllh. 47, 33-186 (1977). Mazur, B.: Rational isogenies ofprime degree.Invent. Math. 44, 129-162 (1978). Mazur, B., Swinnerton-Dyer, H. P. F: Arithmetic ofvyeil curves. Invent. Math. 25; 1-61 (1974). Mazur, B., Tate, J.: Tbe p-adic sipla function (in preparation). Maztir, B., Tate. J.: Canonical beiaht pairings via biextensions. In Arithmetic and Geometry, Progress in Mathematics, 35, Birkhäuser, 1983, pp. 195-237. Bibliography 339

Mazur, B., Wiles, A.: <:;lass fields ofabelian extensions ofO. lnvent. Math. 76, 179-330 (1984). Mazur, B., Tate, J., Teitelbaum, J.: On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer. lllvent. Math. 84,1-48 (1986). ' McCabe, John: p-adic theta functions. Ph.D Thesis, Harvard, 196~, pp. 1-222. Mestre, J.-F.: Courbes elliptiques et formules explicites. Seminaire de Theorie des Nombres, Paris, 1981-82, Progress in Mathematics, 38. Birkhäuser, pp. 179-18~. Mestre, J.-F.: Construction of an elliptic curve of rank ~ 12. C. R. Acad. Sei. Paris 295, 643-644 (1982). Mestre, J.-F.: Courbes de Weil de conducteur 5077. C. R. Acad. Sei. Paris 300, ... 509-512 (1985). Mignotte, M.: Quelques remarques sur J'approximation rationelle des nombres algebriquc:s. J. Reine Angew. Math. 268/269, 341-347 (1974). Milne, J. S.: The Tate-Shafarevitch group of a constant . lnvent. Math. 6,91-105 (1968). Milne, J. S.: Weil-Chitelet groups over local fields. Ann. Sei. Ecole. Norm. Sup., 3, 273-284 (\970); Addendum, ibid. 5, 261-264 (1972). . Milne, J. S.: On the arithmetic ofabelian varieties.lnvent. Math. 17,177-190 (1972). MordelI, L. J.: On the rational solutions of the indetermina,te equations of the third and fourth degrees. Proc. Camb~ Phi!. Soc. 21, 179-192 (1922). MordeIl, L. J.: A Chapter in the Theory ofNumbers, Cambridge University Press, 1947. Morden, L.J.: The Diophantine equation x4 + my4 = z2. Quart. J. Math. Oxford Sero (2) 11, 1-6 (1967). Morden, L. J.: Diophantine Eqllations, Academic Press, 1969. Morikawa, H.: On theta functions and abelian varieties over valuation fields of rank one, land 11. Nagoya Math. J. 20,1-27,231-250 (1962). Mwnford, D.: An analytic construction of degenerating curves over complete loeal rinp. Composition Math:24, 129-174 (1972). Mumford, D.: Abelian Varieties, Oxford University Press, 1974. Mwnford, D., Fogerty, J.: Geometric Irwar;Bllt Theory, 2hd ed., Springer-Verlag, 1982. Mumford, D.: Tate Lectures on Thefa, land 11, Progress in Mathematics, 28 and 43, Birkhäuser, 1983, 1984. Nagen, T.: Solution de quelque problemes dans ia theorie arithmetique des cubiques plaoa du premier genre. Wid. Akad. Skrifter Oslo I, No. 1 (1935). Neron, A.: Problemes arithmetiques et geometriques rattaches ä la notion de rang d'une courbe algebrique dllns UD corps. Bull. Soc. Math. France 80, 101-166 . (1952). Neron, A.: Proprietes arithmetiques de certainc:s famillc:s de courbes al~ebriques. Proceedings of an International Congress, Amsterdam, Vol. 111, 481-488 (1954). Neron, A.: Mode1es mininiaux des vanetes abelic:nnc:s sur les corps locaux c:t globaux. IlUt. HOldes Etudes Sei. Publ. Math.ll. 361-482 (1964). Neron, A..: Quasi-fonctions et hauteurS'Sur Ic:s varietes abeliennes. Ann. of Math. 82, 249-331 (1965). Neumann, 0.: Zur Redukgon der elliptischen Kurven. Math. Nachr. 46, 285-310 (1970). Norman, P.: p-adic theta functions. Amer. J. Math. 107,617-661 (1985). Oesterle, J.: Nombres de ClasJes des C8rps Quadratiques lmaginaires, seminaire Bourbaki, 631, 1984. Ogai, S. V.: Ort rational points on the curvc: r = x(X2 + ax + b). Trudy Mat. lnat. Steklov. (1965) (in Russian). Ogg, A. P.: Cohomology of abelian varieties ovc:r runction fields. Ann. of Math. 76, 185-212 (1962). Ogg, A. P.: AbeHan curves of 2-power conductor, Proc. Camb. Phi/. Soc. 62, 143-148 (1966). 340 Bibliography

Ogg, A. P.: Abelian curves of small conductor. J. Reine Angew. Math. 226, 204-215 (1967). Ogg, A. P.: EIliptic curves and wild ramification. Amer. J. Math. 89, 1-21 (1967). Ogg, A. P.: Modular Forms and Dirichlet Series, Benjamin, 1969. Ogg, A. P.: On the eigenvalues ofHecke operators. Math. Ann.179, 101-108 (1969). Ogg, A. P.: Rational points of finite order on eIliptic curves. [sv. Math. 12, 105-111 (1971). Ogg, A. P.: Rational points on certain elliptic modular curves. (A talk given in St. Louis on 29 March 1972, at the A.M.S. Symposium on Analytic Number Theory and ReIatedParts of Analysis.) Olson, L.: Torsion points on elliptic curves_with givenj-invariant. Manuscripta Math. 16,145--150 (1975). Panciskin, A.: Le prolongemoat p-adique analytiques des fonctions L de Rankin. C. R. Acad. Sei. Paris, 295. '1-53,227-230 (1982). Parshin. A. N.: Algebraic cui • over function fields. Math. USSR-Izv. 2, 1145-1170 (1968). Penney, D. E., Pomerance, C.: A search for elliptic curves with large rank (in prcparation). Perrin-Riou, B.: Descente infinie et hauteur p-adique sur les courbes elliptiques a multiplication complexe. lnvent. Math. 70, 369-398 (1983). Pinch, R. G. E.: Elliplic curvcs with good reduction away from 2. Proc. Camb. Phi/. Soc. 96, 25-38 (1984). Rajwadc, A. R.: Arithmetic on curvcs with complex multiplication by yCi. Proc. Camb. Phil. Soc. 64, 659-672 (1968). Raynaud, M.: Caracter;.~tique d'Etiier-Paincare d'un Faisceau et Cohomologie des Varihes Abeliennes. Seminaire Bourbaki, 286, 1965. Raynaud, M.: Specialisation du foncteur de Picard. Inst. Hautes Etudes Sei. Publ. Math. 38, 27-76 (1970). Raynaud, M.: Varict6s abcliennes ct geometrie rigide. Proceedings althe International Congress, Nice, Vol. 1, 1970, pp. 473-477. Razar, M.: The non-vanishing of L(1) for certain elliptic curves. Ph.D. Thesis, Harvard, 1971. Reichardt, H.: Einige im Kleinen überall lösbare, im Großen Unlösbare diophantische Gleichungen. J. Reine Angew. Math. 184, 12-18 (1942). Robert, A.: Elliptic Curves, Lecture Notes in Mathematics, 326, Springer-Verlag, 1973. Rohrlich, D.: On L-functions of elliptic curves and anti-cycIotomic towers. Invent. Ma/h. 75, 383-408 (1984). Roquette, P.: Analy/ic Theory 01 Elliptic Functions Over Local Fields, Vandenhoeck & Ruprecht, 1970. Roquette, P. Analytic theory of elliptic functions over local fields. Hamb. Math. EinzelschriJten. Neue Folge, Heft I, Göttingen, 1970. Rubin, K.: Elliptic curves with complex multiplication and the conjecture of Birch and Swinnerton-Dyer. Invent. Math. 64, 455-470 (1981). Satge, P.: Une generalisation du calcul de SeImer. Seminaire de Theorie des Nombres, Paris, 1981-82, Progress in Mathematics, 38, Birkhäuser, pp. 245-266. Schanuel, S.: Heights in number fields. Bull. Soc. Math. France 107, 443-449 (1979). Schmidt, W.: Thue's equation over function fields. J. Austral. Math. Soc. 25, 385-422 (1978). Schmidt, W.: Diophantine Approximation, Lecture Notes in Mathematics, 785, Springer-Verlag, 1980. Schneider, P.: p-adic heights. Invem. Malh. 69, 401-409 (1982). SeImer, E.: The diophantinc equation ax3 + by 3 + cz3 = O. Acta Math. 85, 203-362, (1951); 92,191-197 (1954). Bibliography 341

Seimer, E.: A conjecture concerning rational points on cubic surfaces. Math. Scand. 2,49-54 (1954). Serre, J.-P.: Geometrie algebrique et geometrie analytique. Ann. Inst. Fourier (Grenoble) 6,1-42 (1956). Serre, J.-P.: Groupes Algebriques et Corps de Class, Hermann, 1959. Serre, J.-P.: Groupes de Lie I-adiques attaches aux courbes elliptiques. Colloque de Clermont-Ferrand, 1964. Serre, J.-P.: Sur less groupes de congruences des varietes abelinennes. Izv. Akad. Nauk SSSR Sero Mat. 28, 3-20 (\964). Serre, J:-P.: Groupes de Lie I-adiques attaches aux courbes elliptiques. Coll. Internat. du C.N.R.S., No. 143, Editions du C.N.R.S., 1966. Serre, J.-P.: Zeta- and L-functions in Arithmetical Aigebraic Geometry. Harper and Row, 1966. Serre, J.-P.: Une interpretation des congruences relatives a la fonction T de Ramanujan. Seminaire Delange-Pisvt-Poitou: Theorie des Nombres, Expose 14, 1,,67/68. Serre, J.-P.: Complex multiplication. In Aigebraic Number Tlzeory, 1 W. S. Cassels and A. Fröchlich, eds., Academic Press, 1967, pp. 292-296. Serre, J.-P.: Abelian I-adic Representations and Elliptic Curves. Benjamin, 1968. Serre, J.-P.: Facteurs locaux des fonetions zeta des varietes algebriques (definitions et conjectures). Seminaire Delange-Pisot-Poitou, 1970. Serre, J.-P.: p-Torsion des Courbes Elliptiques (d'apres Y. Manin), Seminaire Bourbaki, 380, 1970. Serre, J.-P.: Proprietes galoisiennes des points d'ordre fini des courbes elliptiqucs. Invent. Math. 15,259-331 (1972). Serre, J.-P.: Congruences et Formes Modulres (d'apres H. P. F. Swinnerton-Dyer), seminaire Bourbaki, 416, 1972. Serre, J.-P.: A Course in Arithmetic, Springer-Verlag, 1973. Serre, J.-P.: Cohomologie Galoisienne, Lecture Notes in Mathematics, 5, Springer• Verlag, 1973. Serre, J.-P.: Local Fields, Springer-Verlag, 1979. Serre, J .-P.: Diophantine geometry. Unpublished notes from a course given atHarvard University, 1979. Serre, J.-P.: Quelques application du theoreme de densite de Chebotarev. Inst. Hautes Etudes Sei. Publ. Math. 54, 123-202 (1981). Serre,J.-P.: Surta lacunarite des puissancesde '1. Glasgow Math. J. 27, 203-221 (1985). Serre, J.-P., Tate, J.: Mimeographed notes from the AM.S. Summer Institute at Woods Hole, 1964. Serre, J.-P., Tate, J.: Good reduction ofabelian varieties. Ann. of Math. 88,492-517 (1968). Setzer, C. B.: Elliptic curves ofprime conductor. Ph.D. Thesis, Harvard, 1972. Setzer, B.: Elliptic curves over complex quadratic fields. Pacific J. Matl!. 74, 235-250 (1978). . Shafarevitch, 1. R.: Aigebraic number fields. Proceedings of an International Congress on Mathematics, Stockholm, 1962, pp. 163-176. (AM.S. Translations, Series 2, Vol. 31, pp. 25-39.) Shafarevitch, 1. R.: Principal Homogeneous Spaces Defined over a Function-field. AM.S. Translations, Vol. 37, 1964, pp. 85-114. Shafarevitch,1. R.: Basic Aigebraic Geometry, Springer-Verlag, 1977. Shafarevitch, I; R., Tate, J. T.: The rank of elliptic curves. Dokl. Akad. Nauk. USSR. 175,770-773 (1967) (in Russian). (AM.S. Translations, Vol. 8, 1967, pp. 917-920.) Shimura, G.: On the zeta functions of thc algebraic curves uniformized by certain automorphic functions. J. Math. Soc. Japan 13, 275-331 (1961). 342 Bibliography

Shimura, G.: A reciprocity law in non-solvable extensions. J. Reine AngelV .. Marh. 221, 209-220 (1966). Shimura, G.: Construction of cIass fields ami zeta functions of algebraic curves. Ann. of Math. 85, 58-159 (1967). Shimura, G.: On the zeta-function of an abeiian variety with complex multiplication. Ann. of Math. 94, 504-533 (1971). Shimura, G.: On elliptic curves with complex multiplication as factors ofthe jacobians . ofmodular function fields. Nagoya Math. J.43, 199-208 (1971). Shimura, G.: Introduction to the Arithmetii: Theory of Automorphic Forms, Publi• cations of the Mathematical Society of Japan, Vol. 11, Iwanami Shoten and Princeton University Press, 1971. Shimura, G., Taniyama, Y.: Complex Multipltcation 0/ Abelian Varieiies and Its Application to Number Theory, Publications of the Mathematical Society of Japan, 6,.1961. Shioda, T.: On rational points of the generic elliptic curve with level N structure over the field of modular functions of level N (to appear). Siegel, C. L.: Über einige Anwendungen diophantischer Approximationen (1929). In Collected Works, Springer-Verlag, 1966, pp. 209-266. Silverman, J.: Lower bound for the canonical height on elliptic curves. Duke Math. J. 48, 633-648 (1981). Silverman, J.: Integer points and the rank of Thue eIliptic curves. Invent. Math. 66, 395-404 (1982). Silverman, J.: Heights and the specialization map for families of abeIian varieties. J. Reine Angew. Math. 342, 197-211 (1983). Silverman, J.: Integer points on curves ofgenus 2. J. London Math. Soc. 28,1-7 (1983). Silverman, J.: Weierstrass equations and the minimal discriminant of an elliptic curve. Mathematika 31,245-251 (1984). Silverman, J.: Divisibility ofthe specia1ization map for families of ellipticcurves. Amer. J. Math. 107, 555-565 (1985). Silverman, J.: I:"-e Arithmetic of El/iptic Curves, Graduate Texts in Mathematics, 106, Springer-Verlag, 1986. Silverman, J.: A quantitative version of Siegel's theorem (to appear). Stark, H.: Effective estimates of solutions of some Diophantine equations. Acta Arith. 24,251-259 (1973). Stephens, N. M.: The diophantine equation x 3 + y3 = DZ3 and the conjectures of Birch and Swinnerton-Dyer. J. Reine Angew. Math.l3!, 121-162 (1968). Stevens, G.: Arithmetic on Modular Curves, Progress in Mathematics 20, Birkhäuser, 1982. Sturm, J.: Projections of C'" automorphic forms. Bull. Amer. Math. Soc. 2, 435-439 (1980). Swinnerton-Dyer, H. P. F.: The conjectures of Birch and Swinnerton-Dyer, and of Tata. Proceedings 0/ a Con/erence on Local Fields, Springer-Verlag, 1967, pp. 132-157. Swinnerton-Dyer, H. P. F., Birch, B. J.: Elliptic curves and modular functions. In Modular Functions ofOne Variable, IV, B. J. Birch and W. Kuyck, eds., Lecture Notes in Mathematics, 476, Springer-Verlag, 1975, pp. 2-32. Tate, J.: w.c. Groups over P-adic Fields. Seminaire Bourbaki, 156, 1957. Tate, J.: Duality theorems in Galois cohomology over number fields. Proceedings of an International Congress on M athematics Stockholm, Institut Mittag-Leffer, 1962, pp. 288-295. Tate, J.: Algebraic cycles and poles of zeta functions. In Arilhmeticul Algehraic Geometry, Harper and Row, 1966. Tate, J.: Endomorphisms of abelian varieties over finite fields. Inveni. Math. 2. 134-144 (1966). Bibliography 343

Tate, J.: On the Conjecture of Birch anti Swinnerton-Dyer and a Geometric Analog. SCminaire Bourbaki, 306, 1966. Tate, J.: Global c1assified theory. In Aigebraic Number Theory, J. W. S. Cassels and A. Fröhlich, eds., Academic Press, ]967, pp. 162-203. Tate, J.: Residues of differentials on CUrve&. Ann. Sei. de Eeole Norm. Sup. (4) I, 149-159 (1968). Tate, J.: Letter to J.-P. Serre, 1968. Tate, J.: Classes d'lsogenie des Varretes Abiliennes sur un Corps Fini (d'apres T. Honda). Semiraire Bourbaki, 352,1968. Tate, J.: The arithmetic of elliptic curves. Irwent. Math. 23, 179-206 (1974). Tate, J.: Aigorithm for determining the tyttofa singular fiber in an elliptic penciL In Modular FUlictions ofOne Variable, IV, B. J. Birch and W. Kuyck, eds., Lecture Notes in Mathematics, 476, Springer-Verlag. 1975, pp. 33-52. Tate, J.: Variation ofthe canonical height ofa point depending on a parameter. Amer. J. Math. 105,287-294 (1983). Van der Waerden, B. L.: Algebra, 7th ed., Ungar, 1970. VeIu, J.: Isogenies entre courbes elliptiques. C. R. Acad. Sei. Paris 238-241 (1971). Velu, J.: Courbes elliptiques sur 0 ayant bonne reduction en dehors de (11). C. R. Acad. Sei. Paris, 73-75 (1971). Vigneras, M.-F.: Valeur au centre de symetrie des fonctions L associees aux formes modulaires. Seminaire de Theorie des Nombres, Paris, 1979-80, Progress in M,thematics, 12, Birkhäuser, 1981, pp. 331-356. Vishik,M.: Nonarchimedean measures connectedwith Dirichlet series. Math. USSR• Sb. lI., 216-228 (1976). Vojta, P.: A higher Ilimensional Mordell conjecture. In Arithmetic Geometry, G. Cor- neH and J. Silverman, eds., Springer-Verlag, 1986. Waldspurger, J.-h.: Correspondances de Shimura et quaternions (preprint). Walker, R. J.: Algebraic Curves, Dover, 1962. Waterhouse, W. C., Milne, J. S.: Abelian varieties over finite fields. A.M.S. Summer Institute on Number Theory, Stony Brook, 1969, Proceedings ofSymposia in Pure Mathematics, Vol. XX, American Mathematical Society, 1971. Weil, A.: L'arithmetique sur les courbes algebriques. Acta Math. 52, 281-315 (1928). Weil, A.: Sur un theoreme de Mordell. Bull. Sei. Math.~, 182-191 (1930). Weil, A.: Number of solutions of equations in finite fields. Bull. Amer. Math. Sei. 55, 497-508 (1949). Weil, A.: Jacobi sums as Größencharaktere. Trans. Amer. Math. Soc. 7S, 487-495 (1952). . Weil, A.: On algebraic groups and homogeneous spaces. Amer. J. Math. 77, 493-512 (1955). Weil, A.: über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen. Math. Ann.l68, 149-156 (1967) (Oeuvres, Vol.lII, pp. 165-172). Weil, A.: Dirichlet Series and Automorphic Forms. Lecture Notes in Mathematics, 189, Springer-Verlag, 1971. Whittaker, E. T., Watson, G. N.: A COUI'8e in Modern Analysis, 4th ed., Cambridge University Press, 1927. Wüstholz, G.: Recent Progress in TranM:endence Theory, LecWre Notes in Mathe• matics, 1068, Springer-Verlag. 1984, pp. 280-296. Wüstholz, G.: Multiplicity estimates on lfO'IP varieties (to· appear). Zagier, D.: L-series of elliptic curves, tbe Birdt-Swinnerton-Dyer conjecture, and the class number problem of Gauss. NGticn Amer. Math. Soc. 31, 739-743 (1984). Zimmer, H.: On the difference of the Weil height and the Neron-Tate height: Math. Z. 14'7, 35-51 (1976). Index

Abelian L-functions, 296-303 Bombieri,247 Abelian variety, 229 Boundary function, 146 Absolute values, 136,137 Addition fommla, 172 Additive group, 40, 41 Canonica1 height, see Height Additive reduction, see Reduction of an Cebotarov density theorem, 281 clIiptic curve Character, 298-303 Admissiblc change of variables, 65 Characteristic polynomial, 230, 259, 261, Aigebraic extension, 139, 140 271, 277,280 Aigebraie group homomorphism, 301 Chinese remainder theorem, 210 Aigebraie Hecke character, 301-303 Chord-tangent composition law, 12-15,22- Analytic continuation, 290, 293, 295, 298, 32 299,303,305 Cla.:s field thcory, 301 Arclength of an ellipse, 182 Class number, 234, 310 Artin, E., 243 one.233 Artin, M., 245 Coates, J., 17: 19,307 Associative law for an elliptic curYe, 63 Cohomologous one-cocycles, 144 Automorphism group, 68, 71, 73, 75-77, Cohomology c\ass, 144, 146 150,207,323-326 Cohomology group, 142-147 as a Gal (k/k)-module, 150,237 Cohomology set, 143-147 ofTate module, 259 Complex analytic isomorphism, 1163 Complcx multiplication, 230-234, 302- 303 Bad reduction, see Reduction of an elliptic Conductor of an elliptic curve, 265, 273, curve 274 Bezout's theorem, 48, 54, 55 Congruence subgroup, 206 Bilinear pairing, 311 Connecting homomorphism, 146 Birch arid Swinnerton-Dyer conjecture, 17, Cubic curve, 13 35,306-313 Cubic equation, 45 346 Index

Curve, 45 Division point, 224, 228. 253-255, 258, elliptic, see Elliptic curve 270,271 modular, see Modular curve Divisor, 168,229 twists of. 150, 151 associated to a differential, 273 Cusp, 39,77-80 associated to a function, 168 of a congruence subgroup, 209, 212 degree, 168 Cuspform, 214 degree O. 168 for a congruence subgroup, 304--306 of a differential, 273 Cyclotomic representation, 275 evaluated at a function. 229 group (Div), 168 principal. 168 Decomposition group, 278 Divisorclassgroup, 168 Dedekind zeta function, 297, 307 Oouble point, 39,77-80 Definite quaternion algebra, 258 Dual isogeny, 223, 226, 228 Degree of an algebraic field extension, 139 of a curve, 18,45 Eichler-Shimura, 304, 305 of a divisor, 227, 228 Eigenfunctions, 304, 305 of an endomorphism, 223, 228 Ei~nsteil) series. 170--172, 184-185 ofanisogeny,223,224,228 Elimination theory, 55 of a map, 130, 227 Ellipse, 182 of amorphism, 227, 228 EIliptiC curve, I, 15 of multiplication-by-m map, 228 in characteristic two and three, 72-77, Degree map is positive definite, 228 113, 114, 323-327 Deligne, P., 243, 245, 248 defined over k, 15 Density of a subset, 281 families, 81-89 Descent, 155-161 group of rational points 0ver via two-isogeny, 155-158 complex numbers, 21 Deuring, M., 258, 302, 303 finite fjelds, 242-261 Duering normal form, 248, 251 local fields, 262-271 Deuring polynomial, 249, 251 number fields and rational numbers, Differential equation, 169-171 28-35 Differential form, 65, 67-77 real numbers, 19--21 associated to a cusp form, 215 k-isomorphism classes, 150 invariant, 65, 67-77, 251, 258 Elliptic functions, 161, 163-1"14, 185, Diophantine equation, 17 191, 192 Diophantine geometry, 17 field, 167, 168, 226 Diophantus, 7, 8 as functions of Weierstrass functions, DiriChlet, G.L., 298 167, 168 Dirichlet class number formula. 310 no poles implies it is constant, 164 Dirichlet L-function, 298 as product of a-functions, 169 Dirichlet series. 220 , 178-182 Dirichlet unit theorem. 127 e .. -pairing or Weil pairing. 226, 229. 230 Discrete valuation, 57, 100 N~' 224, 226 ring. 57. 100 Endomorphism ring, 223, 228-234. 236, Discriminant, 67,70,84, 1I6, 322 237, 255-258 minimal, 103-105,273,274 classification of, 23 I as a , 214 is an integral domain, 230 of a polynomial, 61, 69, 70, 72. 321 e.-pairing or Weil pairing. 226, 229, 230 Divisible element, 55 Euler characteristic, 221 Index 347

Euler product, 217-220 Good reduction, see Reduction of an Exponential of a formal group, 240, elliptic curve 241 Greenberg, R., 17, 308, 309 . Extended upper half-plane, 209 Gross, B., 309, 31I-313 Grössencharacters, 299-301, 303 Grotbendieck, A., 245, 248 Factorial rings, 55 Group cohomology, 141-147; see also Faltings, G., 9,17,272,288 Galois cohomology Families of elliptic curves, 81-90, 204- non-abelian, 143-146 208 Group Iaw on an elliptic curve, 14, 63 Fermat, P., 7, 9 Group scheme, 264-267, 271 Fermat descent, 122 Fermat equation, 9, 29, 30, 122, 123 Fermat's last theorem, 9 H", 146 Fiber, 265, 266 H', 144, 146 Finitely generated group, 120, 121 of Aut(E), 150-151 Fixed fjeld, 139 of E, 152 Formal addition law, 238, 239 of ...E, 158-161 Formal group, 237-241, 255, 258, 263 of...,E, 155-158, 161

Fourier coefficients, 183-187,213,214, of GLn , 148 216 of Isom(E), 152-155 Fourier series or q-expansions, 183-187 ofk*, 148, 149 Fractional ideal, 232 of ILm' 149 Frobenius element, 281 Hasse, H., 7, 17,231,243,258 Frobenius morphism, 243, 244, 248, 254, Hasse invariant, 248; see also Ordinary, 258,272 Supersingular characteristic polynomial, 243 Hasse-Minkowski theorem, 7 degree of, 243 Hasse-Weil conjecture, 290 is njlrely inseparable, 254 Hasse-Weil L-function, 290, 292-2% Function fjeld, 226, 227 Hasse-Weil zeta function, 292 map induced on, by rational map, 226, Hecke L-series, 215, 216, 299 227 Hecke operator, 220, 221 Functional equation, 293-299 Heegner, K., 312 ' Fundamental parallelogram, 164- Heegner point, 312, ~:3 Height, 130-137, 311 on an abelian 'group, 135 G-invariant element, 142 behavior under maps, 131-133 G-module, 142-147 canonical height, 133-137 exact sequence of, 146-'147 on an elliptic curve, 133-135 homomorphism, 142 finitely many points with bounded, 135 set, 141 .on P" (Q), 130-133 Galois cohomology, 147-151,270,271, on projective space, 136, 137 279 Hessian family, 84-86, Il8 Galois group, 139 Hilbert theorem ninety, 148 Galois theory, 138-141 Homogeneous coordinates, 3, 44 Gamma function, 174-176, 332 Homogeneous space, 143-146, 152-155 Gauss, C.F., 58 associated with a quadratic extension, General linear group, 148 153-156 Genus, 18, 212 Homothetic lattices, 163, 203 Goldfeld, 0., 310, 311 Honda, 261 348 Index

Hurwitz-Riemann genus formula, 211 f-adic representation, 274--289 Hypergeometric function, 162, 176, 177, compatibility, 283 179, 180,250 image of, 288, 289 Hyperplane, 44 integral, 282 Hypersurface, 45 rational, 282 unramified, 279 C-adic Tate module, see Tate module Ideal dass group, 232 C-adic Weil pairing, see Weil pairing or Identity component, 265 em-pairing Inertial group, 279, 280 L-series, 215-217, 293-295, 298, 299; action on ,.E and Te (E), 270 303, 306-310, 312-313; see also Infinite descent , 160 Birch and .Swinnerton-Dyer Inflection point, 53 conjecture Intersection multiplicity , 52 ~ce, 163, 164, 223-226 'Intersection theory, 48-50, 52 Lcgendre normal fonn, 81, 84,117,249- Invariant differential, 65,67-77,251, 258 254 of a formal group, 240 Legendre theorem, 7 Irreducible, 56 Lie group, 19, 20 Isogenous eIliptic curves, 163, 203 Une, 2-4, 6, 11-15 Isogeny, 163,203,223,224,226-230 at infinity, 3 associated moduli problem, 206-208 Uouville's theorem, 164 of degreetwo, 91-96 Locus, 1,2 Frobenius, see Frobenius morphism Lutz, 112 given by an analytic map, 163 kerne I of, 163, 254, 255 Weil pairing on kernei, 226, 230 Mass fonnula, 253 Isomorphism Mazur, B., 16, 316 complex analytic, 163, 203, 206, 207 Mellin transform, 215, 305 of curves, 62, 65, 68, 71, 73, 75-77 Minimal discriminant, see Discriminant Isomorphism group, 71, 73, 75, 77, 86 Minkowski, H., 7 may be non-abeJian, 324, 325 Modular curve, 208-212, 304, 305 cusps,209 genus, 212 j-invariant, 67-69, 71-77, 83, 85,150, Modillar form, 213-215 151,187,232-234 algebra of, 214 of some CM elIiptic curves, 233 associated L-series, 215-217 integral implies potential good reduction, ·for. a corigruence subgroup, 304, 305 117,118 Fourier series, 186, 214 j = 0 andj = 1728,33-36,71,73-78, Modular fUfl(;tion, 202, 213 324, 325 tield of, 234 Jacobi, c.G.J., 14, 166 Modular groups, 202, 206, 210, 211 Jacobian, 248 Moduli space, 204-208 Monsky, 247 MordelI, L.J., 15 Katz, 245, 247 MordelI con jecture, 17 Kummer sequence, 149' MordelI theorem or MordelI-Weil theorem, Kummer theory, 9, 149 . 10, 13, 15, 120 Multiplication by m !llap, 36-38, 123 f-adic cohomology, 248 Multiplicative group, 42 Index 349

Nagell, T., 112 Quadratic imaginary field, 231-234 Neron, A., 264 dass field, 232 Neron model, 264-267, 311 dass number one, 233 Neron-Ogg':"Safarevic criterion, 269-271, Quasilinear maps, 127-130 277-279 Quasiparallelogram law, 128 Node, see Double point Quasiquadratic maps, 127-130 Non-abelian cohomology, 145 Quaternion algebra, 256, 258 Nonsingular Quaternion group, 325 curve, 12, 51 Quotient of a curve by a finite group, 256 hypersurface, 51 point, 51 reduction, see Reduction (good) of an Rank of an eIliptic curve, 16 elliptic curve Rational Weierstrass equation, 68 conic, 5, 13 Nonn, 121, 122, 133-135 cubic, 10-16 Nonnal fonn, 22, 64, 272-274 curve, 4, 17 NullstelIensatz, 131, 132 line, 4 point, I, 4, 5, 11 , 2, 4 Ogg, A., 16 Reduction map, lQO, 106, 107, 263 Order of a point, 51 is injective 'on torsion, 112 Ordinary, 258; see also Supersingular kernel of, 107-109, 112 Reduction modulop, 99-102 Reduction of an clliptic curve, denoted E. Parallelogram law, 128, 129 105, 263, 328-330 Parametrized by modul~r functions, 305 additive, 116, 265, 271 Periods of an elliptic curve, 178-180 bad, 105, 116, 265, 271 Petersson inner product, 221 everywhere good, 118 Picard group (Pic), 232 no cvcrywhere good reduction over Q. Plane curve, I, 43 118 Poincare, 15 good (stable), 105, 106,265,271, T/8 Points at infinity, 3 morphism, 106 Point of finite order, see Torsion point multiplicative (semistable), 116, 117, Potential good reduction, see Reduction of 265, 271 an elliptic curve potential good, 118 Principal homogeneous space, see Residue of a function, 165 Homogeneous space Residuc theorem, 165 Product formula, 136 Rest;ltant, 59 Profinitc group, 140 Riemann hypothesis, 242-245, 247, 248 Projective Riemann-Roch theorem, 66. 199 plane, 2-4 Riemann surfacc. 18 space, 43, 44, 136 Riemann zeta function, 217, 292 Proper function, 127 Rohrlieh, D., 308, 309 p-torsion in characteristic p, 258 Roots of unity, 234 Pythagoras, 7 Rosati involution, 223 Pythagorean tripie, 7-10 Rubin, K., 308

q-expansion, see FourieI series Scheme, 264-266 Quadratic form, 3 i I Seimer, E.,I4 350 Index

Selmer group, 160-161 Torsion point, 21, 39, 81-91, 96-98 Serre, J-P., 289, 314 associated moduli problem, 206-209 Safare\ i~, I.R., 287 integrality conditions, 114-116 Safarevi~-Tate grotip. 160, 161,306, 311, Torsion subgroup, 16, 96-98, 112 313 Torus, 162-164, 189-191, 203 Sheaf eohomology, 66 Trace of Frobenius, 246 Shimura, G., 16,305 TunnelI, J., 9, 10 Siegel, C.L., 18, 19,310 Siegel's theorem, 18 .. 19, 310 is not effective, 310 Uniformizing element (local), 100 Sigma funetion, see Weierstrass u-funetion Unique factorization domain, see Factorial Sign of the funetional equation, 295 ring Singular point, 12, 39, 50, 77-80 Unit group, 127 Silverman, J., 222, 242, 262 Unramified, 279, 280

SL2(Z), 204, 206, 210 Smooth, see Nonsingular Spee (R), 260 Valuation, 57, 58, 100 Special fiber, 266 Variety over a finite field, 248 Standard absolute values, 136 Supersingular, 248~258; see also Ordinary Weber, H., 233 eharaeterizations, 258 Weierstrass, K., 166 number of eurves, 252, 253 Weie'tstrass p·function, 166-174, 331 points of order p, 253, 254 algebraic relation, 170 Sympleetie pairing, 224-226, 235 generates elliptie funetion field, 167 Laurent series, 170 relation with u, 174 Tangent line, 13 Weierstrass u-funetion, 169, 174, 331 Taniyama. 272 Weierstrass ~-funetion, 167, 169, 174 Taniyama-Weil eonjecture, 305, 306 Weil, A .. 244, 247 Tate curve. 192-195,200. 201 Weil eonjectures, 247, 248 Tate, ,1.,264 ,287 Weil pairing, 288, 230, 235 Tate module, (jenoted Tl (E), 234-:237, Weil reciprocity law, 229 259-261 Weil-Taniyama eonjeeture, see Taniyama• action of Gal (hk), 259 Weil conjeeture . action of inertia, 270 Wiles, A., 17, 308

Tp (E) in characteristie p, 258 Wronskian determinant, 250 Tate normal form, 8~ Tate's algorithm, 26~9 Tate-Safarevi~ group, ~ee Safarevi~-Tate Zagier, D., 309, 311-313 group Zeta funetion Theorem 90, see Hilbert theorem ninety of a eurve;245-248, 291 Theta functions, 183, t87-192. 197-200 of an ellip\ie curve, 244 coastants. 190 of a variety, 248