Eidgenössische Technische Hochschule Zürich Laboratory for High Swiss Federal Institute of Technology Zurich Power Electronic Systems

Solid State Modulators – Efficiency Considerations focussing on SiC Devices –

J. Biela, S. Stathis, M. Jaritz, and S. Blume www.hpe.ee.ethz.ch / [email protected] Typical Topology of Solid State Pulse Modulator Systems

 AC/DC rectifier unit  DC/DC converter for charging C-bank / voltage adaption  Pulse generation unit  Load e.g.

Constant Power Pulsed Power

AC DC Energy Storage

Pulse Klystron Modulator Load DC DC Grid Medium Voltage ⎧⎪⎪⎪⎨⎪⎪⎪⎩ Sometimes integrated V V V V

t

Pulse t t t Pulse 400V or MV Intermediate Buffer Bank Pulse Voltage

High Power 2 33 Electronic Systems Typical Topology of Solid State Pulse Modulator Systems

 Grounded klystron load I Isolation with 50Hz or I Isolated DC-DC converter

Typical Isolation

AC DC Energy Storage

Pulse Klystron Modulator Load DC DC Grid Medium Voltage

V V V V

t

Pulse t t t Pulse 400V or MV Intermediate Buffer Capacitor Bank Pulse Voltage

High Power 3 33 Electronic Systems 29 MW(35MW)/140 µs Modulator for CLIC – System Efficiency –

High Power Electronic Systems CLIC System Specifications

 Output voltage 150...180 kV  Settling time <8 µs  Output power (pulsed) 29 MW (- 35 MW)  Repetition rate 50 Hz  Flat-top length 140 µs  Average output power 203 kW (- 245 kW)  Flat-top stability (FTS) <0.85 %  Pulse to pulse repeatab. <100 ppm  Rise time <3 µs

819 819 klystrons 15 MW, 142 µs circumferences 15 MW, 142 µs delay loop 73 m drive beam accelerator CR1 293 m drive beam accelerator (c)FT 2.4 GeV, 1.0 GHz CR2 439 m 2.4 GeV, 1.0 GHz 2.5 km 2.5 km delay loop delay loop CR2 CR2 Drive Beam CR1 CR1 decelerator, 24 sectors of 878 m

BC2 BC2 BDS BDS 2.75km 2.75km – IP + TA e main linac, 12 GHz, 100 MV/m, 21 km e main linac TA

48.3 km CR combiner ring Main Beam TA turnaround DR damping ring PDR predamping ring booster linac BC bunch compressor 2.86 to 9 GeV BDS beam delivery system IP interaction point BC1 dump e– injector, e+ injector, 2.86 GeV e– e– e+ e+ 2.86 GeV PDR DR DR PDR 389 m 427 m 427 m 389 m

High Power 5 33 Electronic Systems CLIC Solid State Modulator – System Overview

AC/ DC Unit Interleaved Switching Unit

750V 3kV 3kV 400V -180kV 3kV AC 750V DC -180kV 400V Klystron Voltage Load Grid DC DC

0-300V DC 3kV 450V

DC Active 0V Bouncer 300V

Matrix Transformer

High Power 6 33 Electronic Systems CLIC Modulator – Grid/Isolation Transformer

 Voltage 3×400 V to 3×400 V @ 250 kVA  Core material Silicon steel  Winding material Aluminium  Weight 890 kg  Efficiency 98.8 % (PCore = 700W & PWdg = 2.3kW)

 Higher efficiency

I Better core material E.g. Amorphous (PCore − 60%) I Copper winding Higher conductivity (PWdg − 35%) I Efficiency ¬ ≈99.2 % (Estimated) (Larger volume ¬ Higher efficiency)

AC DC

DC Grid

DC DC DC Isolation PFC Boost Converter Bouncer Switching Unit Pulse Transformer Rectifier (Droop Compensation) Transformer

High Power 7 33 Electronic Systems +

CLIC Modulator – AC/DC Converter Efficiency

 Type (B&R) ACOPOSmulti 8BVP1650  Topology 2-level PFC-rectifier  1.2 kV Si IGBTs  Voltage conversion 400 VAC → 750 VDC (620 V – 800 V)  Efficiency 97.47 %

 Higher efficiency

I 1.2 kV SiC Lower PCond & PSW I Optimised design E.g. higher volume / lower fSW I Efficiency ¬ ≈99 %

+

AC DC

DC Grid

DC DC DC Isolation PFC Boost Converter Bouncer Switching Unit Pulse Transformer Rectifier (Droop Compensation) Transformer

High Power 8 33 Electronic Systems CLIC Modulator – Boost Converter Basic Operation

 Input voltage 600 V – 800 V  Output voltage 3 kV  Switching frequency 70 kHz – 240 kHz T1 T2 T3 T4 T5  Output power 40 kW

I L L ... Imax  650 V Si MOSFETs 8 in series I ¬ Cs/R for balancing L  Boundary cond. mode t Sn Imin  6-fold interleaving ¬ 6 × 40 kW ...

vCd,tot vCs,tot VDC

S1 ZVS ZVS off on t

AC DC

DC Grid

DC DC DC Isolation PFC Boost Converter Bouncer Switching Unit Pulse Transformer Rectifier (Droop Compensation) Transformer

High Power 9 33 Electronic Systems CLIC Modulator – Boost Converter Efficiency

 Nom. voltages 750 V → 3 kV ...  Output power 40 kW  Switching frequency 70 kHz – 240 kHz Sn  8×650 V Si MOSFETs 2× Infineon IPZ65R019C7 ...  4×1.2 kV Microsemi APT75DQ120B  Efficiency 97.2 %

S1

Fans Output Snubber Capacitor 2% HV output Boost Inductor Switching 11% Power 3% input MOSFET Diode Conduction Conduction 58% Input 20%

MOSFET Switching 6% Input capacitors PCB with isolated gate drives

High Power 10 33 Electronic Systems CLIC Modulator – "SiC" Boost Converter

 Voltages 750 V → 3 kV ...  Switching frequency 70 kHz – 240 kHz  Higher efficiency Sn I 4×1.2 kV SiC MOSFETs 2×C3M0016120K ... I 4×1.2 kV SiC Diodes 2×IDW40G120C5B I Efficiency ≈ 98.6 % (Old: 97.2 %)

S1

Snubber Capacitor 4%

700 W Si-based Converter 600 W MOSFET SiC-based Converter Boost Conduction 500 W Inductor 25% 46% 400 W

300 W

200 W Diode Conduction 100 W 22% W MOSFET MOSFET MOSFET Diode Diode Switching 3% Conduction Switching Conduction Switching

High Power 11 33 Electronic Systems Conduct. Losses 13%

Switching Losses 87%

CLIC Modulator – Switching Unit

 ABB StakPak 4.5 kV / max. 3 kA (pulsed) (5SNA1250B450300)  Active reset  4 units in parallel  Pulse current 4 × 2.4 kA (@ PP = 29 MW )  Efficiency 98.6 % (Switching losses: 87% of Ptot)

 Higher efficiency I SiC MOSFETs (assumption: 1.2 kV devices) (4 in series / 3 parallel) I Efficiency ¬ 99.5 %

AC DC

DC Grid

DC DC DC Isolation PFC Boost Converter Bouncer Switching Unit Pulse Transformer Rectifier (Droop Compensation) Transformer

High Power 12 33 Electronic Systems CLIC Modulator – Bouncer

 Output voltage 0...300 V (10 % droop)  Input voltage 450 V  24-fold interleaving  Ultra low ripple  Semiconductors IGBTs

3kV DV=300V V main Vtotal

+ S DHS HS Cmain L 300V b

SSC Vb,out SLS DLS Active Bouncer Module

AC DC

DC Grid

DC DC DC Isolation PFC Boost Converter Bouncer Switching Unit Pulse Transformer Rectifier (Droop Compensation) Transformer

High Power 13 33 Electronic Systems CLIC Modulator – Bouncer Operating Principle

 Output voltage 0...300 V  Input voltage 450 V

 S DHS Output current (pulse) >600 A HS Cmain L (per module) b

SSC SLS DLS Active Bouncer Module

Wait for trigger VBout shortened } } 625A i b V 3.0kV main 2.7kV V 450V Bin

VBout

Wait tk Pre- Interpulse for next Pre- charge Pulse Resonant Recharging pulse charge

High Power 14 33 Electronic Systems CLIC Modulator – Bouncer Components

 Output voltage 0...300 V  Input voltage 450 V

 S DHS 4×6-fold interleaving HS Cmain L  Switching frequency 100 kHz b  Per module: SSC SLS DLS I SLS-IGBTs 2×IGW50N65H5 Active Bouncer Module I DLS-Diodes 4×IDW40E65D1 I SHS-IGBTs (w. diode) 6×IKW50N65F5 I SSC-IGBTs (w. diode) 6×IKW50N65F5 I Inductor Lb = 26 µH 4×Metglas AMCC32

Control board

Buck-boost switch Short circuit switch

High Power 15 33 Electronic Systems CLIC Modulator – Bouncer Efficiency

 With IGBTs I Total AVG losses 1.56 kW

I Module efficiency 91.0 % Bouncer-Level S DHS HS Cmain ¬ Efficiency 99.4 % System-Level Lb

SSC SLS DLS Active Bouncer Module

HS IGBTs conduct. 7%

Inductor 625A losses 18%

HS IGBTs switching HS diodes 3% 51%

SC IGBTs 3% ib

LS IGBTs 4% LS diodes 14%

tk

High Power 16 33 Electronic Systems CLIC Modulator – SiC Bouncer Efficiency

 With IGBTs I Total AVG losses 1.56 kW

I Module efficiency 91.0 % Bouncer-Level S DHS HS Cmain ¬ Efficiency 99.4 % System-Level Lb

SSC SLS  With SiC MOSFETs DLS I Total AVG losses 0.79 kW Active Bouncer Module I Module efficiency 95.2 % Bouncer-Level ¬ Efficiency 99.7 % System-Level

Inductor losses 35%

800W Si-based converter HS diodes HS SW 600W 5% conduction 12% SiC-based converter SC SW 4% 400W LS SW HS SW switching 200W 9% 8%

W LS diodes HS switch HS switch LS diodes LS switch SC switch 27% conduction switching

High Power 17 33 Electronic Systems CLIC Modulator – Pulse Transformer

 Matrix transformer 2 cores / 4 primary windings  Turns ratio 62 ¬ 4:(2×124)  Core material SiFe / 50 µm

Vsek RLoad

I Ipri,1 pri,3 S M,1 SM,3 Df,1 Df,3

I Ipri,2 pri,4 S M,2 SM,4 Df,2 Df,4

AC DC

DC Grid

DC DC DC Isolation PFC Boost Converter Bouncer Switching Unit Pulse Transformer Rectifier (Droop Compensation) Transformer

High Power 18 33 Electronic Systems CLIC Modulator – Pulse Shape/Transformer Efficiency

 Rise + settling time 4.6 µs  Fall time <3 µs  Flat top 140 µs  Efficiency 96.7 % (Trafo + Pulse shape)

Reverse voltage Time to Fall flat top Time

t “Dissipated” pulse “energy” Pulse Shape Winding Losses 88% 4% Core Losses 8% Flat top (Used pulse “energy”)

Allowed droop

High Power 19 33 Electronic Systems CLIC Modulator – Higher Transformer Efficiency

 Core material SiFe 25 µm lamination Amorphous material  Insulating oil Ester 7131 εr = 3.2 ¬ Mineral oil εr = 2.2  Shorter load cable  Transformer design Critical damping (slightly underdamped) Larger volume / Core splitting

 Estimated efficiency ≈ ≥97.5 %

0.98 Mineral oil CLIC trafo @12kV/mm 1.5m cable 0.975 Mineral oil @10kV/mm 1.5m cable 0.97 Natural ester @10kV/mm 1.5m cable 0.965

Efficiency (%) 0.96 Mineral oil @10kV/mm 5m cable Natural ester @10kV/mm 0.955 5m cable

1.05 1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 Transformer volume (m3)

High Power 20 33 Electronic Systems CLIC Modulator – System Efficiency

Original System Improved System

Grid Trans- Pulse Shape/ Pulse Shape/ former 10% Transformer Transformer 39% 28% Grid Trans- former PFC 12% Bouncer 21% Bouncer 5% 5% Switching Switching Unit 8% Unit 12% PFC 24.8kW 15%

Booster Booster 21% 24% 13.4kW

Conventional SiC-based

88.7% Original 98.8% 97.5% 97.2% 99.4% 98.6% 96.7% Improved 99.2% 99.0% 98.6% 99.7% 99.5% 97.5% 93.6% AC DC

DC Grid

DC DC DC Isolation PFC Boost Converter Bouncer Switching Unit Pulse Transformer Rectifier (Droop Compensation) Transformer

High Power 21 33 Electronic Systems SwissFEL Modulator – Pulse Efficiency @ Short Pulses

 Free ¬ X-Rays  Electron beam energy 5.8 GeV  Wavelength range 1 Å – 70 Å  Output voltage 370 kV  Output power (pulsed) 127 MW  Flat-top length 3 µs  Rise time <1 µs  Repetition rate 100 Hz

High Power 22 33 Electronic Systems SwissFEL – Pulse Transformer

 Matrix transformer 6 cores / 12 primary  Turns ratio 1:21 × 6 ¬ 1:126  Core material SiFe / 50 µm  Rise time ≈ 1 µs  Fall time ≈ 0.9 µs ¬Pulse shape ≈ <82 %

High Power 23 33 Electronic Systems Solid State Modulators 2.88 MW / 3.5 ms Modulator for European Spallation Source (ESS)

High Power Electronic Systems ESS Modulator Specifications

 Pulse power 2.88 MW  Pulse voltage 115 kV  Pulse width 3.5 ms  Rise/fall time ≤ 150 µs  Repetition rate 14 Hz

RF powering cell #1

Electrical pulsed Klystron SC cavity power RF power A #A Klystron modulator (Power Supply) Klystron RF power SC cavity

B Beam #B Electrical Network RF powering cell #N

Similar to RF powering cell #1

High Power 25 33 Electronic Systems ESS Modulator – Basic Configuration

 Pulse power 2.88 MW DC  Pulse voltage 115 kV  Pulse width 3.5 ms  Rise/fall time 150 µs ≤ DC  Repetition rate 14 Hz

DC

DC

DC

Energy DC Storage R 400 V AC DC S 3-phase 50 Hz T DC Parallel DC Series connection connection

High Power 26 33 Electronic Systems ESS Modulator – Basic Configuration

 Pulse power 2.88 MW  Pulse voltage 115 kV  Pulse width 3.5 ms  Rise/fall time ≤ 150 µs

 Repetition rate 14 Hz Balancing Circuit

CP  Switching frequency 105 kHz DC-B1 S1 S2 CS LS 1 : n 12.5 A C C I  CDL1 P P O1 Modules: 2 parallel / 9 in series S VDL1 B1 Iprim V 400 V sec Cf VO1

S3 S4 LDL 12.8 kV SPRC-Bm1 CP

CDL2 SB2 V DL2 SPRC-Bm2 12.8kV 400 V 2 SPRC-Bms ISOP stack

V DL3 SPRC-Bm3

400 V Klystron/IOT DC-B2 VO2 V DL4 SPRC-Bm4 400 V Vout 2 SPRC-Bms ISOP stack 115kV

AC V DL17 SPRC-Bm17 400 V 800 V 400 V

3-phase DC-B9 VO9 50 Hz Grid V DL18 SPRC-Bm18 DC 400 V PFC Rectifier 2 SPRC-Bms ISOP stack SPRC IPOS modulator system

High Power 27 33 Electronic Systems ESS Modulator – Series-Parallel Resonant Converter Module

 H-bridge 650 V MOSFETs (STY139N65M5)  Module loss distribution:

I H-bridge 221 W (179 W PCond) CP I Rectifier diode 78 W (APT60DQ120SG) S1 S2 1 : n 12.5 A I Series inductor 132 W (Air core with litz) CP CP I Series capacitor 56 W (NP0 / 896 pieces) 400 V I Parallel capacitor 18 W (NP0 / 864 pieces) Cf Σ 505 W (per module) S S 3 4 12.8kV SPRC-Bm1 CP

H-bridge: 6 x 650V MOSFETs in parallel Diodes LS

CS

CP

High Power 28 33 Electronic Systems ESS Modulator – Step-up Transformer/Pulse Shape

 Transformer 2:40 / Midel 7131 trise  Losses (per module) 0 I Core 73.4 W (2×4× UU126/20 / N87 ferrite) -20 I Primary winding 12.9 W (405 × 0.071mm / 18 parallel)

I Secondary winding 11.1 W (1125 × 0.071mm) -40 K1 V  Rise time 107.8 µs (0→99%) -60 out  Fall time 83.5 µs (100→10%) -80  Pulse shape (total) 97.8 % Falling Edge -100 -113.85 = 99 % of Vout -115 -120-0.05 0 0.05 0.1 0.15 Output voltage (kV) Time (ms) 20 20 10 % of V Primary-secondary Secondary out tfall t Primary bobbins fastening plate bobbin (POM) 2 t t 0 0 1 2 K -11.5 K 2 -20 1 -20

K2 -40 -40

22cm V out V -60 -60 out Secondary Primary bobbin -80 -80 Rising Edge -100 -100 22cm -115 -115 27.3cm -120 -120 0 0.5 1 1.5 2 2.5 3 3.5 4 3.45 3.5 3.55 3.6 3.65 3.7 Time (ms) Time (ms)

High Power 29 33 Electronic Systems ESS Modulator – Module Loss Distribution

 Resonant converter 92.9 % (incl. transformer) (without pulse shape)

Parallel Capacitor Diodes 2.9% 13.0%

Series Capacitor H-Bridge 9.2% 37%

CP S1 S2 1 : n 12.5 A Series Inductor CP CP 21.9% 400 V Transformer Cf 16% S S 3 4 12.8kV SPRC-Bm1 CP

High Power 30 33 Electronic Systems ESS Modulator – Converter with SiC

 Improved efficiency I 1.2 kV SiC MOSFETs No balancing / Lower conduction losses I 1.7 kV SiC Diode Lower losses in rectifier 1 1 I Ls ⇒ 2 × Ls@ 2 I 2 × volume / 2 losses I New core material N97 instead of N87 ¬ New efficiency ≈ 94.4 % (+1.5% / Old: 92.9 %)

 Further improvements I More parallel devices C I Higher f ¬ Shorter t /t P SW r f S1 S2 CS LS 1 : n 12.5 A C C I I Higher overrating ¬ Shorter tr/tf P P O1 800 V Iprim V sec V ¬ Cf O1 New system optimisation VO1 S S 3 4 12.8kV 2 x SPRC-Bm1 12.8 kV C IPOP P

250 W

Si-based Converter Klystron/IOT 2 x SPRC-Bm2 V 200 W 800 V O2 SiC-based Converter IPOP

150 W Vout 115kV

100 W

800V 50 W 2 x SPRC-Bm8 800 V IPOP VO9 W H-Bridge Transformer Series Series Parallel Rectifier Inductor Capacitor Capacitor Diodes SPRC IPOS modulator system

High Power 31 33 Electronic Systems ESS Modulator – System Efficiency & Loss Distribution

Si-based SiC-based I Resonant converter 92.9 % 94.4 % I PFC charging 97.5 % 99.0 % ⇒ Electrical system 90.5 % 93.5 %

I Pulse shape 97.8 % 97.8 % ⇒ Total efficiency 88.5 % 91.4 %

PFC Pulse Shape PFC Charging Charging 11.4% 17.8% Pulse Shape 20.3% 25.4% H-bridge Rectifier 19.2% 9.9%

Transformer H-bridge Rectifier 10.0% 22.7% 14.0% Resonant Resonant Tank Tank 19.3% Transformer 17.8% 12.1%

High Power 32 33 Electronic Systems Conclusion

 Efficiency gain (Assuming "drop-in" replacement) I CLIC Modulator ∆η = +≈4.9 % ¬ ηSiC = 93.6 % I ESS Modulator ∆η = +≈2.9 % ¬ ηSiC = 91.4 %

 Higher Efficiency I Switches/diode Wide band gap devices (parallel SIC MOSFETs...) I Core material SiFE 25 µm lamination or Amorphous Use of uncut cores I Insulating oil Ester 7131 εr = 3.2 ¬ Mineral oil εr = 2.2 I Transformer design Critical damping (slightly underdamped) Larger volume / Core splitting I Short load cable I Fix operating point η Efficiency Limit Power Density η-ρ-Pareto-Front Limit Efficiency Power Density ρ

High Power 33 33 Electronic Systems