Mouse Akt1s1 Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Akt1s1 Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Akt1s1 Knockout Project (CRISPR/Cas9) Objective: To create a Akt1s1 knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Akt1s1 gene (NCBI Reference Sequence: NM_001290694 ; Ensembl: ENSMUSG00000011096 ) is located on Mouse chromosome 7. 5 exons are identified, with the ATG start codon in exon 1 and the TAA stop codon in exon 5 (Transcript: ENSMUST00000107882). Exon 2~5 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mice homozygous for a knock-out allele exhibit increased susceptibility to induced ischemic brain injury. Exon 2 starts from about 8.48% of the coding region. Exon 2~5 covers 91.64% of the coding region. The size of effective KO region: ~2162 bp. The KO region does not have any other known gene. Page 1 of 9 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 4 5 Legends Exon of mouse Akt1s1 Knockout region Page 2 of 9 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section upstream of Exon 2 is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section downstream of stop codon is aligned with itself to determine if there are tandem repeats. Tandem repeats are found in the dot plot matrix. The gRNA site is selected outside of these tandem repeats. Page 3 of 9 https://www.alphaknockout.com Overview of the GC Content Distribution (up) Window size: 300 bp Sequence 12 Summary: Full Length(2000bp) | A(23.25% 465) | C(23.45% 469) | T(24.25% 485) | G(29.05% 581) Note: The 2000 bp section upstream of Exon 2 is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Overview of the GC Content Distribution (down) Window size: 300 bp Sequence 12 Summary: Full Length(2000bp) | A(23.45% 469) | C(24.95% 499) | T(25.7% 514) | G(25.9% 518) Note: The 2000 bp section downstream of stop codon is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Page 4 of 9 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 2000 1 2000 2000 100.0% chr7 + 44850572 44852571 2000 browser details YourSeq 58 1321 1677 2000 74.6% chr17 + 35560405 35605226 44822 browser details YourSeq 37 1240 1338 2000 91.2% chr11 - 99437030 99437129 100 browser details YourSeq 33 1321 1381 2000 97.2% chr5 - 106971520 106971718 199 browser details YourSeq 28 440 474 2000 96.7% chr18 + 19510636 19510683 48 browser details YourSeq 26 1321 1346 2000 100.0% chr7 - 28445138 28445163 26 browser details YourSeq 25 1715 1742 2000 84.7% chrX - 123582651 123582676 26 browser details YourSeq 25 1715 1742 2000 84.7% chrX - 123794616 123794641 26 browser details YourSeq 25 1715 1742 2000 84.7% chrX - 124022386 124022411 26 browser details YourSeq 25 1302 1342 2000 80.5% chr7 - 98693931 98693971 41 browser details YourSeq 25 1320 1344 2000 100.0% chr17 - 83463795 83463819 25 browser details YourSeq 25 1321 1345 2000 100.0% chr17 - 24029424 24029448 25 browser details YourSeq 25 1321 1346 2000 100.0% chr1 + 138563126 138563152 27 browser details YourSeq 25 1320 1344 2000 100.0% chr1 + 59308522 59308546 25 browser details YourSeq 25 1229 1256 2000 96.5% chr1 + 3856379 3856408 30 browser details YourSeq 24 1255 1278 2000 100.0% chr3 - 66371119 66371142 24 browser details YourSeq 23 1321 1343 2000 100.0% chr8 - 3444214 3444236 23 browser details YourSeq 23 1322 1344 2000 100.0% chr7 - 4418991 4419013 23 browser details YourSeq 23 1320 1342 2000 100.0% chr19 - 53014816 53014838 23 browser details YourSeq 23 1320 1342 2000 100.0% chr18 - 8877276 8877298 23 Note: The 2000 bp section upstream of Exon 2 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 2000 1 2000 2000 100.0% chr7 + 44854734 44856733 2000 browser details YourSeq 74 1408 1662 2000 96.3% chr5 - 145263902 145264442 541 browser details YourSeq 73 929 1507 2000 76.5% chr11 - 58227897 58228400 504 browser details YourSeq 72 1291 1507 2000 91.9% chr11 + 110213639 110214008 370 browser details YourSeq 67 1269 1453 2000 90.4% chr10 + 121332361 121332628 268 browser details YourSeq 67 1407 1507 2000 91.4% chr1 + 74722951 74723556 606 browser details YourSeq 66 1411 1507 2000 90.3% chr5 - 134019398 134019497 100 browser details YourSeq 66 1408 1507 2000 84.6% chr11 - 70426341 70426442 102 browser details YourSeq 66 1409 1505 2000 94.6% chr1 - 176252178 176252277 100 browser details YourSeq 65 1376 1507 2000 97.2% chr12 + 108464955 108465138 184 browser details YourSeq 65 1393 1507 2000 93.4% chr10 + 91184018 91184132 115 browser details YourSeq 64 1421 1507 2000 95.8% chr4 + 148084907 148084996 90 browser details YourSeq 63 1408 1507 2000 94.3% chr4 - 132643683 132643787 105 browser details YourSeq 63 1408 1503 2000 93.2% chr19 - 47835273 47835373 101 browser details YourSeq 63 1421 1507 2000 95.7% chr1 - 191957761 191957850 90 browser details YourSeq 63 1409 1951 2000 68.0% chr8 + 108570501 108570643 143 browser details YourSeq 62 1408 1507 2000 97.0% chr6 - 142787161 142787262 102 browser details YourSeq 62 1409 1503 2000 93.1% chr2 + 91648451 91648548 98 browser details YourSeq 62 1408 1507 2000 95.6% chr19 + 22555989 22556091 103 browser details YourSeq 61 1410 1507 2000 93.1% chr16 - 32103127 32103224 98 Note: The 2000 bp section downstream of stop codon is BLAT searched against the genome. No significant similarity is found. Page 5 of 9 https://www.alphaknockout.com Gene and protein information: Akt1s1 AKT1 substrate 1 (proline-rich) [ Mus musculus (house mouse) ] Gene ID: 67605, updated on 14-Aug-2019 Gene summary Official Symbol Akt1s1 provided by MGI Official Full Name AKT1 substrate 1 (proline-rich) provided by MGI Primary source MGI:MGI:1914855 See related Ensembl:ENSMUSG00000011096 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as Lobe; Lobel; PRAS40; AI227026; 1110012J22Rik Expression Ubiquitous expression in adrenal adult (RPKM 52.6), ovary adult (RPKM 41.8) and 28 other tissues See more Orthologs human all Genomic context Location: 7; 7 B3 See Akt1s1 in Genome Data Viewer Exon count: 9 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 7 NC_000073.6 (44848961..44855421) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 7 NC_000073.5 (52104597..52110780) Chromosome 7 - NC_000073.6 Page 6 of 9 https://www.alphaknockout.com Transcript information: This gene has 12 transcripts Gene: Akt1s1 ENSMUSG00000011096 Description AKT1 substrate 1 (proline-rich) [Source:MGI Symbol;Acc:MGI:1914855] Gene Synonyms 1110012J22Rik, Lobe, PRAS40 Location Chromosome 7: 44,848,991-44,855,421 forward strand. GRCm38:CM001000.2 About this gene This gene has 12 transcripts (splice variants), 150 orthologues, is a member of 1 Ensembl protein family and is associated with 2 phenotypes. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Akt1s1- ENSMUST00000107880.8 1757 257aa ENSMUSP00000103512.1 Protein CCDS21218 Q9D1F4 TSL:1 202 coding GENCODE basic APPRIS P3 Akt1s1- ENSMUST00000054343.14 1592 257aa ENSMUSP00000049764.8 Protein CCDS21218 Q9D1F4 TSL:1 201 coding GENCODE basic APPRIS P3 Akt1s1- ENSMUST00000107882.7 1160 283aa ENSMUSP00000103514.1 Protein CCDS71954 E9QKI5 TSL:3 203 coding GENCODE basic APPRIS ALT2 Akt1s1- ENSMUST00000107885.7 1812 328aa ENSMUSP00000103517.1 Protein - E9QKI4 TSL:1 204 coding GENCODE basic APPRIS ALT2 Akt1s1- ENSMUST00000141311.7 835 193aa ENSMUSP00000120690.1 Protein - D3YWZ1 CDS 3' incomplete 207 coding TSL:2 Akt1s1- ENSMUST00000127783.1 750 247aa ENSMUSP00000116149.2 Protein - F6R8S6 CDS 3' incomplete 205 coding TSL:5 Akt1s1- ENSMUST00000150335.1 485 123aa ENSMUSP00000122607.1 Protein - D3Z4R0 CDS 3' incomplete 209 coding TSL:2 Akt1s1- ENSMUST00000208384.1 392 57aa ENSMUSP00000147235.1 Protein - A0A140LJJ3 CDS 3' incomplete 212 coding TSL:2 Akt1s1- ENSMUST00000142880.2 333 111aa ENSMUSP00000146332.1 Protein - A0A140LHA0 CDS 5' and 3' 208 coding incomplete TSL:3 Akt1s1- ENSMUST00000136232.1 332 95aa ENSMUSP00000116541.1 Protein - D3Z4W3 CDS 3' incomplete 206 coding TSL:2 Akt1s1- ENSMUST00000207223.1 212 14aa ENSMUSP00000146484.1 Protein - A0A140LHN7 CDS 3' incomplete 211 coding TSL:3 Akt1s1- ENSMUST00000152091.7 2207 No - Retained - - TSL:1 210 protein intron 26.43 kb Forward strand 44.84Mb 44.85Mb 44.86Mb Genes (Comprehensive set... Il4i1-202 >protein coding Akt1s1-204 >protein coding Pnkp-203 >protein coding
Recommended publications
  • Supplemental Figure Legends Figure S1. Hierarchical
    Supplemental Figure Legends Figure S1. Hierarchical clustering and principle component analysis (PCA) for RNAseq samples. A) Heat map showing hierarchical clustering of gene expression data for individual RNAseq samples, based on Pearson correlation with complete linkage clustering of all differentially expressed genes between the T-ALL cell lines. Clusters are marked by blue triangles. Scale bar represents log2 FPKM values. B) 3D scatter plot depicting the PCA of the eight independent RNAseq samples. The replicates for each cell line cluster closely together and SIL TAL cell lines cluster closer together than the ARR cell line. Figure S2. Gene ontology enrichment analysis was performed for C8 and C11 of the hierarchical clustering of RNAseq data, as shown in Figure 1A. Terms are ordered based on Modified Fisher Extract P-value and shown as percentage of input genes (% genes). Figure S3. Protein levels and phosphorylation status of mTOR regulators (A) and mTOR effectors (B). Western blot analysis of 150µg cell extract. Treatment was DMSO (-,Ctrl) or 10nM rapamycin (+,Rap) for 24h. PonceauS staining was used to confirm equal loading. Each experiment was performed at least three times and representative results are shown. C-E) TSC1 expression is lost in ARR due to alternative splicing. C) UCSC genome browser screenshot showing the distribution of reads across TSC1 from a representative set of RNAseq tracks. D) Expression level for TSC1 gene and identified transcripts based on the RNA-seq data, presented as FPKM values. E) qPCR data showing relative TSC1 mRNA level using primer pairs recognising exon 18-19 and the 5’UTR. Data points are the mean of at least three independent samples measured in duplicate ± StDev.
    [Show full text]
  • Akt1s1 (NM 026270) Mouse Tagged ORF Clone – MR225878 | Origene
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for MR225878 Akt1s1 (NM_026270) Mouse Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: Akt1s1 (NM_026270) Mouse Tagged ORF Clone Tag: Myc-DDK Symbol: Akt1s1 Synonyms: 1110012J22Rik; AI227026; Lobe; Lobel; PRAS40 Vector: pCMV6-Entry (PS100001) E. coli Selection: Kanamycin (25 ug/mL) Cell Selection: Neomycin ORF Nucleotide >MR225878 ORF sequence Sequence: Red=Cloning site Blue=ORF Green=Tags(s) TTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACCGAGGAGATCTGCC GCCGCGATCGCC ATGGCGTCTGGGCGGCCAGAGGAACTGTGGGAAGCCGTCGTGGGGGCCGCCGAGCGCTTTCAGGCCCGCA CTGGCACAGAGCTGGTATTACTGACTGCAGCGCCACCGCCGCCGCCCCGCCCTGGACCCTGTGCCTATGC CGCCCATGGCCGCGGAGCCCTGGCAGAGGCGGCCCGACGCTGCCTCCACGACATCGCACAGGCGCACAGG GCTGCCACTGCCACCCGACCTCCTGGTCCCCCACCAGCACCACAGCCGCCCAGCCCTGCTCCTAGTCCAC CACCTCGGCCAGCCCTGGCCAGGGAGGATGAGGAGGAAGATGAGGACGAGCCCACTGAAACAGAGACATC TGGGGAGCGGCTGGGCGGTAGCGATAATGGAGGTCTCTTCATGATGGATGAGGATGCCACCCTCCAGGAC CTGCCCCCCTTCTGCGAGTCAGACCCGGAGAGCACAGACGACGGCAGCCTGAGCGAGGAGACGCCCGCCG GTCCCACAGCCTGTCCCCAGCCCCCGGCCACAGCCCTGCCTACCCAGCAGTATGCCAAGTCTCTGCCCGT GTCGGTGCCAGTGTGGGCCTTCAAGGAGAAGAGGACAGAAGCCCGATCGTCAGATGAGGAGAATGGCCCG CCCTCCTCGCCCGACCTAGACCGAATAGCGGCCAGCATGCGCGCGCTGGTGCTGCGGGAGGCTGAGGACA CCCAGGTCTTCGGGGATCTTCCGCGGCCGCGGCTCAATACCAGCGACTTCCAGAAGCTGAAGCGGAAATA T ACGCGTACGCGGCCGCTCGAGCAGAAACTCATCTCAGAAGAGGATCTGGCAGCAAATGATATCCTGGATT
    [Show full text]
  • Anti-AKT1S1 (C-Terminal) Polyclonal Antibody (DPABH-13704) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
    Anti-AKT1S1 (C-terminal) polyclonal antibody (DPABH-13704) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Antigen Description Subunit of mTORC1, which regulates cell growth and survival in response to nutrient and hormonal signals. mTORC1 is activated in response to growth factors or amino-acids. Growth factor-stimulated mTORC1 activation involves a AKT1-mediated phosphorylation of TSC1-TSC2, which leads to the activation of the RHEB GTPase that potently activates the protein kinase activity of mTORC1. Amino-acid-signaling to mTORC1 requires its relocalization to the lysosomes mediated by the Ragulator complex and the Rag GTPases. Activated mTORC1 up- regulates protein synthesis by phosphorylating key regulators of mRNA translation and ribosome synthesis. mTORC1 phosphorylates EIF4EBP1 and releases it from inhibiting the elongation initiation factor 4E (eiF4E). mTORC1 phosphorylates and activates S6K1 at Thr-389, which then promotes protein synthesis by phosphorylating PDCD4 and targeting it for degradation. Within mTORC1, AKT1S1 negatively regulates mTOR activity in a manner that is dependent on its phosphorylation state and binding to 14-3-3 proteins. Inhibits RHEB-GTP-dependent mTORC1 activation. Substrate for AKT1 phosphorylation, but can also be activated by AKT1-independent mechanisms. May also play a role in nerve growth factor-mediated neuroprotection. Immunogen Synthetic peptide corresponding to Human PRAS40 (C terminal). Peptide corresponds to 19 amino acids (NP_115751).Database link: Q96B36-3 Isotype IgG Source/Host Rabbit Species Reactivity Mouse, Rat, Human Purification Immunogen affinity purified Conjugate Unconjugated Applications IHC-P, ICC/IF, WB Format Liquid Size 100 μg Buffer Constituent: 99% PBS Preservative 0.02% Sodium Azide 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 1 © Creative Diagnostics All Rights Reserved Storage Shipped at 4°C.
    [Show full text]
  • Lipopolysaccharide Treatment Induces Genome-Wide Pre-Mrna Splicing
    The Author(s) BMC Genomics 2016, 17(Suppl 7):509 DOI 10.1186/s12864-016-2898-5 RESEARCH Open Access Lipopolysaccharide treatment induces genome-wide pre-mRNA splicing pattern changes in mouse bone marrow stromal stem cells Ao Zhou1,2, Meng Li3,BoHe3, Weixing Feng3, Fei Huang1, Bing Xu4,6, A. Keith Dunker1, Curt Balch5, Baiyan Li6, Yunlong Liu1,4 and Yue Wang4* From The International Conference on Intelligent Biology and Medicine (ICIBM) 2015 Indianapolis, IN, USA. 13-15 November 2015 Abstract Background: Lipopolysaccharide (LPS) is a gram-negative bacterial antigen that triggers a series of cellular responses. LPS pre-conditioning was previously shown to improve the therapeutic efficacy of bone marrow stromal cells/bone-marrow derived mesenchymal stem cells (BMSCs) for repairing ischemic, injured tissue. Results: In this study, we systematically evaluated the effects of LPS treatment on genome-wide splicing pattern changes in mouse BMSCs by comparing transcriptome sequencing data from control vs. LPS-treated samples, revealing 197 exons whose BMSC splicing patterns were altered by LPS. Functional analysis of these alternatively spliced genes demonstrated significant enrichment of phosphoproteins, zinc finger proteins, and proteins undergoing acetylation. Additional bioinformatics analysis strongly suggest that LPS-induced alternatively spliced exons could have major effects on protein functions by disrupting key protein functional domains, protein-protein interactions, and post-translational modifications. Conclusion: Although it is still to be determined whether such proteome modifications improve BMSC therapeutic efficacy, our comprehensive splicing characterizations provide greater understanding of the intracellular mechanisms that underlie the therapeutic potential of BMSCs. Keywords: Alternative splicing, Lipopolysaccharide, Mesenchymal stem cells Background developmental pathways, and other processes associated Alternative splicing (AS) is important for gene regulation with multicellular organisms.
    [Show full text]
  • CREB-Dependent Transcription in Astrocytes: Signalling Pathways, Gene Profiles and Neuroprotective Role in Brain Injury
    CREB-dependent transcription in astrocytes: signalling pathways, gene profiles and neuroprotective role in brain injury. Tesis doctoral Luis Pardo Fernández Bellaterra, Septiembre 2015 Instituto de Neurociencias Departamento de Bioquímica i Biologia Molecular Unidad de Bioquímica y Biologia Molecular Facultad de Medicina CREB-dependent transcription in astrocytes: signalling pathways, gene profiles and neuroprotective role in brain injury. Memoria del trabajo experimental para optar al grado de doctor, correspondiente al Programa de Doctorado en Neurociencias del Instituto de Neurociencias de la Universidad Autónoma de Barcelona, llevado a cabo por Luis Pardo Fernández bajo la dirección de la Dra. Elena Galea Rodríguez de Velasco y la Dra. Roser Masgrau Juanola, en el Instituto de Neurociencias de la Universidad Autónoma de Barcelona. Doctorando Directoras de tesis Luis Pardo Fernández Dra. Elena Galea Dra. Roser Masgrau In memoriam María Dolores Álvarez Durán Abuela, eres la culpable de que haya decidido recorrer el camino de la ciencia. Que estas líneas ayuden a conservar tu recuerdo. A mis padres y hermanos, A Meri INDEX I Summary 1 II Introduction 3 1 Astrocytes: physiology and pathology 5 1.1 Anatomical organization 6 1.2 Origins and heterogeneity 6 1.3 Astrocyte functions 8 1.3.1 Developmental functions 8 1.3.2 Neurovascular functions 9 1.3.3 Metabolic support 11 1.3.4 Homeostatic functions 13 1.3.5 Antioxidant functions 15 1.3.6 Signalling functions 15 1.4 Astrocytes in brain pathology 20 1.5 Reactive astrogliosis 22 2 The transcription
    [Show full text]
  • Mtor Signaling Pathway Regulates Sperm Quality in Older Men
    cells Article mTOR Signaling Pathway Regulates Sperm Quality in Older Men Joana Vieira Silva 1,2,3 , Madalena Cabral 4,Bárbara Regadas Correia 1, Pedro Carvalho 1,4, Mário Sousa 3,5, Pedro Fontes Oliveira 2,3,5 and Margarida Fardilha 1,* 1 Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine–iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; [email protected] (J.V.S.); [email protected] (B.R.C.); [email protected] (P.C.) 2 i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; [email protected] 3 Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal; [email protected] 4 COGE-Clínica Obstétrica e Ginecológica de Espinho, 4500-057 Espinho, Portugal; [email protected] 5 Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal * Correspondence: [email protected]; Tel.: +351-9181-43947 Received: 5 June 2019; Accepted: 19 June 2019; Published: 21 June 2019 Abstract: Understanding how age affects fertility becomes increasingly relevant as couples delay childbearing toward later stages of their lives. While the influence of maternal age on fertility is well established, the impact of paternal age is poorly characterized. Thus, this study aimed to understand the molecular mechanisms responsible for age-dependent decline in spermatozoa quality. To attain it, we evaluated the impact of male age on the activity of signaling proteins in two distinct spermatozoa populations: total spermatozoa fraction and highly motile/viable fraction.
    [Show full text]
  • Supporting Information
    Supporting Information Friedman et al. 10.1073/pnas.0812446106 SI Results and Discussion intronic miR genes in these protein-coding genes. Because in General Phenotype of Dicer-PCKO Mice. Dicer-PCKO mice had many many cases the exact borders of the protein-coding genes are defects in additional to inner ear defects. Many of them died unknown, we searched for miR genes up to 10 kb from the around birth, and although they were born at a similar size to hosting-gene ends. Out of the 488 mouse miR genes included in their littermate heterozygote siblings, after a few weeks the miRBase release 12.0, 192 mouse miR genes were found as surviving mutants were smaller than their heterozygote siblings located inside (distance 0) or in the vicinity of the protein-coding (see Fig. 1A) and exhibited typical defects, which enabled their genes that are expressed in the P2 cochlear and vestibular SE identification even before genotyping, including typical alopecia (Table S2). Some coding genes include huge clusters of miRNAs (in particular on the nape of the neck), partially closed eyelids (e.g., Sfmbt2). Other genes listed in Table S2 as coding genes are [supporting information (SI) Fig. S1 A and C], eye defects, and actually predicted, as their transcript was detected in cells, but weakness of the rear legs that were twisted backwards (data not the predicted encoded protein has not been identified yet, and shown). However, while all of the mutant mice tested exhibited some of them may be noncoding RNAs. Only a single protein- similar deafness and stereocilia malformation in inner ear HCs, coding gene that is differentially expressed in the cochlear and other defects were variable in their severity.
    [Show full text]
  • MAFB Determines Human Macrophage Anti-Inflammatory
    MAFB Determines Human Macrophage Anti-Inflammatory Polarization: Relevance for the Pathogenic Mechanisms Operating in Multicentric Carpotarsal Osteolysis This information is current as of October 4, 2021. Víctor D. Cuevas, Laura Anta, Rafael Samaniego, Emmanuel Orta-Zavalza, Juan Vladimir de la Rosa, Geneviève Baujat, Ángeles Domínguez-Soto, Paloma Sánchez-Mateos, María M. Escribese, Antonio Castrillo, Valérie Cormier-Daire, Miguel A. Vega and Ángel L. Corbí Downloaded from J Immunol 2017; 198:2070-2081; Prepublished online 16 January 2017; doi: 10.4049/jimmunol.1601667 http://www.jimmunol.org/content/198/5/2070 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2017/01/15/jimmunol.160166 Material 7.DCSupplemental References This article cites 69 articles, 22 of which you can access for free at: http://www.jimmunol.org/content/198/5/2070.full#ref-list-1 by guest on October 4, 2021 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2017 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606.
    [Show full text]
  • A High-Throughput Study in Melanoma Identifies Epithelial- Mesenchymal Transition As a Major Determinant of Metastasis
    Research Article A High-Throughput Study in Melanoma Identifies Epithelial- Mesenchymal Transition as a Major Determinant of Metastasis Soledad R. Alonso,1 Lorraine Tracey,1 Pablo Ortiz,4 Beatriz Pe´rez-Go´mez,5 Jose´ Palacios,1 Marina Polla´n,5 Juan Linares,6 Salvio Serrano,7 Ana I. Sa´ez-Castillo,6 Lydia Sa´nchez,2 Raquel Pajares,2 Abel Sa´nchez-Aguilera,1 Maria J. Artiga,1 Miguel A. Piris,1 and Jose´ L. Rodrı´guez-Peralto3 1Molecular Pathology Programme and 2Histology and Immunohistochemistry Unit, Centro Nacional de Investigaciones Oncolo´gicas; Departments of 3Pathology and 4Dermatology, Hospital Universitario 12 de Octubre; 5Centro Nacional de Epidemiologı´a, Instituto de Salud Carlos III, Madrid, Spain; and Departments of 6Pathology and 7Dermatology, Hospital Universitario San Cecilio, Granada, Spain Abstract with a less favorable prognosis as potential candidates for adjuvant Metastatic disease is the primary cause of death in cutaneous or novel therapies. malignant melanoma (CMM) patients. To understand the Currently, the prognosis of primary CMM is mainly based mechanisms of CMM metastasis and identify potential on histopathologic criteria. The most important of these is the predictive markers, we analyzed gene-expression profiles of Breslow index, although it is merely a measure of tumor depth. 34 vertical growth phase melanoma cases using cDNA micro- New molecular markers that correlate with melanoma genesis and/or progression are continuously being identified but, to date, arrays. All patients had a minimum follow-up of 36 months. Twenty-one cases developed nodal metastatic disease and 13 most of them have been obtained in experimental models and did not.
    [Show full text]
  • Identification of Candidate Genes Related to Pancreatic Cancer Based on Analysis of Gene Co-Expression and Protein-Protein Interaction Network
    www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 41), pp: 71105-71116 Research Paper Identification of candidate genes related to pancreatic cancer based on analysis of gene co-expression and protein-protein interaction network Tiejun Zhang1, Xiaojuan Wang2 and Zhenyu Yue2 1GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China 2Institute of Health Sciences, School of Computer Science and Technology, Anhui University, Hefei, Anhui 230601, China Correspondence to: Zhenyu Yue, email: [email protected] Keywords: pancreatic cancer, candidate genes, gene co-expression, protein-protein interaction network, subnetwork extraction algorithm Received: May 14, 2017 Accepted: July 29, 2017 Published: August 24, 2017 Copyright: Zhang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Pancreatic cancer (PC) is one of the most common causes of cancer mortality worldwide. As the genetic mechanism of this complex disease is not uncovered clearly, identification of related genes of PC is of great significance that could provide new insights into gene function as well as potential therapy targets. In this study, we performed an integrated network method to discover PC candidate genes based on known PC related genes. Utilizing the subnetwork extraction algorithm with gene co- expression profiles and protein-protein interaction data, we obtained the integrated network comprising of the known PC related genes (denoted as seed genes) and the putative genes (denoted as linker genes).
    [Show full text]
  • Quantitative Phosphoproteomics Reveals Cell Alignment and Mitochondrial Length Change Under Cyclic Stretching in Lung Cells
    International Journal of Molecular Sciences Article Quantitative Phosphoproteomics Reveals Cell Alignment and Mitochondrial Length Change under Cyclic Stretching in Lung Cells Wei-Hsuan Wang 1, Chia-Lang Hsu 2,3 , Hsuan-Cheng Huang 4,* and Hsueh-Fen Juan 1,2,5,* 1 Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan; [email protected] 2 Department of Life Science, National Taiwan University, Taipei 10617, Taiwan; [email protected] 3 Department of Medical Research, National Taiwan University Hospital, Taipei 10002, Taiwan 4 Institute of Biomedical Informatics, National Yang-Ming University, Taipei 11230, Taiwan 5 Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan * Correspondence: [email protected] (H.-C.H.); [email protected] (H.-F.J.); Tel.: +886-2-2826-7357 (H.-C.H.); +886-2-3366-4536 (H.-F.J.); Fax: +886-2-2820-2508 (H.-C.H.); +886-2-2367-3374 (H.-F.J.) Received: 28 May 2020; Accepted: 5 June 2020; Published: 7 June 2020 Abstract: Lung cancer is a leading cause of death. Most previous studies have been based on traditional cell-culturing methods. However, lung cells are periodically subjected to mechanical forces during breathing. Understanding the mechanisms underlying the cyclic stretching induced in lung cells may be important for lung cancer therapy. Here, we applied cyclic stretching to stimulate the continual contraction that is present under physiological conditions in lung cells. We first uncovered the stretching-induced phosphoproteome in lung cancer cell line A549 and fibroblast cell line IMR-90. We identified 2048 and 2604 phosphosites corresponding to 837 and 1008 phosphoproteins in A549 and IMR-90, respectively.
    [Show full text]
  • Description: Uniprot:Q96B36 Alternative Names: Specificity
    TA7428 Phospho-PRAS40 (Ser202) Antibody Order 021-34695924 [email protected] Support 400-6123-828 50ul [email protected] 100 uL √ √ Web www.ab-mart.com.cn Description: Subunit of mTORC1, which regulates cell growth and survival in response to nutrient and hormonal signals. mTORC1 is activated in response to growth factors or amino acids. Growth factor-stimulated mTORC1 activation involves a AKT1-mediated phosphorylation of TSC1-TSC2, which leads to the activation of the RHEB GTPase that potently activates the protein kinase activity of mTORC1. Amino acid-signaling to mTORC1 requires its relocalization to the lysosomes mediated by the Ragulator complex and the Rag GTPases. Activated mTORC1 up-regulates protein synthesis by phosphorylating key regulators of mRNA translation and ribosome synthesis. mTORC1 phosphorylates EIF4EBP1 and releases it from inhibiting the elongation initiation factor 4E (eiF4E). mTORC1 phosphorylates and activates S6K1 at 'Thr-389', which then promotes protein synthesis by phosphorylating PDCD4 and targeting it for degradation. Within mTORC1, AKT1S1 negatively regulates mTOR activity in a manner that is dependent on its phosphorylation state and binding to 14-3-3 proteins. Inhibits RHEB-GTP-dependent mTORC1 activation. Substrate for AKT1 phosphorylation, but can also be activated by AKT1-independent mechanisms. May also play a role in nerve growth factor-mediated neuroprotection. Uniprot:Q96B36 Alternative Names: 40 kDa proline rich AKT substrate; 40 kDa proline-rich AKT substrate; AKT1 S1; AKT1 substrate 1 (proline rich); AKT1 substrate 1; AKT1S 1; AKT1S1; AKTS1_HUMAN; Lobe; MGC2865; PRAS 40; PRAS; PRAS40; Proline rich akt substrate; Proline rich Akt substrate 40 kDa; Proline-rich AKT1 substrate 1; Specificity: Phospho-PRAS40 (Ser202) Antibody detects endogenous levels of PRAS40 only when phosphorylated at Ser202.
    [Show full text]