Tensors 7.1 Introduction in Two Dimensions

Total Page:16

File Type:pdf, Size:1020Kb

Tensors 7.1 Introduction in Two Dimensions Physics 411 Lecture 7 Tensors Lecture 7 Physics 411 Classical Mechanics II September 12th 2007 In Electrodynamics, the implicit law governing the motion of particles is F α = m x¨α. This is also true, of course, for most of classical physics and the details of the physical principle one is discussing are hidden in F α, and potentially, its potential. That is what defines the interaction. In general relativity, the motion of particles will be described by µ µ α β x¨ + Γ αβ x_ x_ = 0 (7.1) and this will occur in a four-dimensional space-time { but that doesn't con- cern us for now. The point of the above is that it lacks a potential, and can be connected in a natural way to the metric. 7.1 Introduction in Two Dimensions We will start with some basic examples in two-dimensions for concreteness. Here we will always begin in a Cartesian-parametrized plane, with basis vectors x^ and y^. 7.1.1 Rotation To begin, consider a simple rotation of the usual coordinate axes through an angle θ (counterclockwise) as shown in Figure 7.1. From the figure, we can easily relate the coordinates w.r.t. the new axes (¯x andy ¯) to coordinates w.r.t. the \usual" axes (x and y) { define ` = 1 of 12 7.1. INTRODUCTION IN TWO DIMENSIONS Lecture 7 yˆ y¯ y x¯ ! x¯ y¯ ψ θ xˆ x Figure 7.1: Two sets of axes, rotated through an angle θ with respect to each other. px2 + y2, then the invariance of length allows us to write x¯ = ` cos( − θ) = ` cos cos θ + ` sin sin θ = x cos θ + y sin θ (7.2) y¯ = ` sin( − θ) = ` sin cos θ − ` cos sin θ = y cos θ − x sin θ; which can be written in matrix form as: x¯ cos θ sin θ x = : (7.3) y¯ − sin θ cos θ y | {z α } ≡R _=R β If we think of infinitesimal displacements centered at the origin, then we α α β would write dx¯ = R β dx . Notice that in this case, as a matrix, the inverse of R is cos θ − sin θ −1 _= (7.4) R sin θ cos θ and this is also equal to the transpose of R, a defining property of \ro- −1 T tation" or \orthogonal" matrices: R = R , in this case coming from the observation that one coordinate system's clockwise rotation is another's counter-clockwise, and symmetry properties of the trigonometric functions. 2 of 12 7.1. INTRODUCTION IN TWO DIMENSIONS Lecture 7 Scalar This one is easy { a scalar \does not" transform under coordinate transfor- mations { if we have a function φ(x; y) in the first coordinate system, then we have: φ¯(¯x; y¯) = φ(x(¯x; y¯); y(¯x; y¯)) (7.5) so that operationally, all we do is replace the x and y appearing in the definition of φ with the relation x =x ¯ cos θ−y¯ sin θ and y =x ¯ sin θ+¯y cos θ. Vector (Contravariant) With the fabulous success and ease of scalar transformations, we are led to a natural definition for an object that transforms as a vector. If we write a generic vector in the original coordinate system: f = f x(x; y) x^ + f y(x; y) y^; (7.6) then we'd like the transformation to be defined as: ¯f = f¯x(¯x; y¯) x¯ + f¯y(¯x; y¯) y¯ = f x(x; y) x^ + f y(x; y) y^; (7.7) i.e. identical to the scalar case, but with the non-trivial involvement of the basis vectors. From Figure 7.1, we can easily see how to write the basis vector x¯ and y¯ in terms of x^ and y^: x¯ = cos θ x^ + sin θ y^ (7.8) y¯ = − sin θ x^ + cos θ y^; and using this, we can write ¯f in terms of the original basis vectors, the elements in front of these will then define f x and f y according to our target. ¯f =f¯x cos θ − f¯y sin θ x^ +f¯x sin θ + f¯y cos θ y^; (7.9) so that we learn (slash demand) that f x = f¯x cos θ − f¯y sin θ (7.10) f y = f¯x sin θ + f¯y cos θ; or, inverting, we have, now in matrix form: f¯x cos θ sin θ f x = : (7.11) f¯y − sin θ cos θ f y 3 of 12 7.1. INTRODUCTION IN TWO DIMENSIONS Lecture 7 ¯α α β Notice that the \components" can be written as f = R β f from the above, and this leads to the usual statement that \a (contravariant) vector transforms `like' the coordinates themselves." (more appropriately, like the α α β coordinate differentials, which are actual vectors { recall dx¯ = R β dx from above). The rotation matrix and transformation is just one example, and the form is telling { notice that (somewhat sloppily) dx¯α dx¯α = Rα dxβ −! = Rα (7.12) β dxβ β and so it is tempting to generalize the contravariant vector transformation law to include an arbitrary relation between \new" and \old" coordinates: dx¯α f¯α = f β; (7.13) dxβ precisely what we defined for a contravariant vector originally. 7.1.2 Non-Orthogonal Axes We will stick with linear transformations for a moment, but now allow the axes to be skewed { this will allow us to distinguish between the above con- travariant transformation law and the covariant (one-form) transformation law. Consider the two coordinate systems shown in Figure 7.2 { from the figure, we can write the relation for dx¯α in terms of dxα: dx 1 cos θ dx¯ = (7.14) dy 0 sin θ dy¯ or, we can write in the more standard form (inverting the above): dx¯ 1 − cot θ dx = 1 ; (7.15) dy¯ 0 sin θ dy | {z α } ≡T _=T β α α β so that dx¯ = T β dx and the matrix T is the inverse of the matrix in (7.14). 4 of 12 7.1. INTRODUCTION IN TWO DIMENSIONS Lecture 7 yˆ y¯ dy dy¯ θ xˆ, x¯ dx¯ dx Figure 7.2: Original, orthogonal Cartesian axes, and a skewed set with coordinate differential shown (parallel projection is used since differentials are contravariant). Let us first check the contravariant form dx = dx x^ + dy y^ transforms ap- propriately. We need the basis vectors in the skewed coordinate system { from the figure, these are x¯ = x^ and y¯ = cos θ x^ + sin θ y^, then dx¯ = dx¯ x¯ + dy¯y¯ dy =(dx − cot θ dy) x^ + (cos θ x^ + sin θ y^) (7.16) sin θ = dx x^ + dy y^ as expected. Recall that we developed the metric for this type of situation previously { if we take the scalar length dx2 + dy2, and write it in terms of the dx¯ and dy¯ infinitesimals, then 1 cos θ dx¯ dx2 + dy2 = dx¯2 + dy¯2 2 dx¯ dy¯ cos θ _= dx¯ dy¯ ; cos θ 1 dy¯ | {z } ≡g¯µν (7.17) α β α β defining the metric. We have the relation dx gαβ dx = dx¯ g¯αβ dx¯ , which tells us how the metric itself transforms. From the definition of the trans- α α β dx¯α α formation, dx¯ = T β dx , we have dxβ = T β as usual, but we can also write the inverse transformation, making use of the inverse of the matrix T 5 of 12 7.1. INTRODUCTION IN TWO DIMENSIONS Lecture 7 ~α −1 in (7.14). Letting T β≡_ T , dxα dxα = T~α dx¯β −! = T~α : (7.18) β dx¯β β Now going back to the invariant, α β α γ β ρ dx¯ g¯αβ dx¯ = (T γ dx )g ¯αβ (T ρ dx ): (7.19) α β For this to expression to equal dx gαβ dx , we must have ~σ ~δ g¯αβ = T α gσδ T β; (7.20) which we can put in as a check: α β α γ β ρ dx¯ g¯αβ dx¯ = (T γ dx )g ¯αβ (T ρ dx ) α γ σ δ β ρ = (T dx ) T~ gσδ T~ (T dx ) γ α β ρ (7.21) σ δ γ ρ = δ γ δ ρ gσδ dx dx σ δ = dx gσδ dx : The metric transformation law (7.20) is different from that of a vector { first of all, there are two indices, but more important, rather than transforming α with T β, the covariant indices transform with the inverse of the transfor- mation. This type of transformation is not obvious under rotations since T rotations leave the metric itself invariant (R g R = g), and we don't notice the transformation of the metric. Covariant \vector" Transformation If we generalize the above covariant transformation to non-linear coordinate relations, we define covariant vector transformation as: dxβ f¯ = f : (7.22) α dx¯α β For a second rank covariant tensor, like the metric gµν, we just introduce a copy of the transformation for each index (the same is true for the con- travariant transformation law): dxα dxβ g¯ = g (7.23) µν dx¯µ dx¯ν αβ 6 of 12 7.1. INTRODUCTION IN TWO DIMENSIONS Lecture 7 Now the question becomes: For contravariant vectors, the model was dxα, what is the model covariant vector? The answer is, \the gradient". Consider a scalar φ(x; y) { we can write its partial derivaties w.r.t.
Recommended publications
  • Geometrical Tools for Embedding Fields, Submanifolds, and Foliations Arxiv
    Geometrical tools for embedding fields, submanifolds, and foliations Antony J. Speranza∗ Perimeter Institute for Theoretical Physics, 31 Caroline St. N, Waterloo, ON N2L 2Y5, Canada Abstract Embedding fields provide a way of coupling a background structure to a theory while preserving diffeomorphism-invariance. Examples of such background structures include embedded submani- folds, such as branes; boundaries of local subregions, such as the Ryu-Takayanagi surface in holog- raphy; and foliations, which appear in fluid dynamics and force-free electrodynamics. This work presents a systematic framework for computing geometric properties of these background structures in the embedding field description. An overview of the local geometric quantities associated with a foliation is given, including a review of the Gauss, Codazzi, and Ricci-Voss equations, which relate the geometry of the foliation to the ambient curvature. Generalizations of these equations for cur- vature in the nonintegrable normal directions are derived. Particular care is given to the question of which objects are well-defined for single submanifolds, and which depend on the structure of the foliation away from a submanifold. Variational formulas are provided for the geometric quantities, which involve contributions both from the variation of the embedding map as well as variations of the ambient metric. As an application of these variational formulas, a derivation is given of the Jacobi equation, describing perturbations of extremal area surfaces of arbitrary codimension. The embedding field formalism is also applied to the problem of classifying boundary conditions for general relativity in a finite subregion that lead to integrable Hamiltonians. The framework developed in this paper will provide a useful set of tools for future analyses of brane dynamics, fluid arXiv:1904.08012v2 [gr-qc] 26 Apr 2019 mechanics, and edge modes for finite subregions of diffeomorphism-invariant theories.
    [Show full text]
  • Multilinear Algebra
    Appendix A Multilinear Algebra This chapter presents concepts from multilinear algebra based on the basic properties of finite dimensional vector spaces and linear maps. The primary aim of the chapter is to give a concise introduction to alternating tensors which are necessary to define differential forms on manifolds. Many of the stated definitions and propositions can be found in Lee [1], Chaps. 11, 12 and 14. Some definitions and propositions are complemented by short and simple examples. First, in Sect. A.1 dual and bidual vector spaces are discussed. Subsequently, in Sects. A.2–A.4, tensors and alternating tensors together with operations such as the tensor and wedge product are introduced. Lastly, in Sect. A.5, the concepts which are necessary to introduce the wedge product are summarized in eight steps. A.1 The Dual Space Let V be a real vector space of finite dimension dim V = n.Let(e1,...,en) be a basis of V . Then every v ∈ V can be uniquely represented as a linear combination i v = v ei , (A.1) where summation convention over repeated indices is applied. The coefficients vi ∈ R arereferredtoascomponents of the vector v. Throughout the whole chapter, only finite dimensional real vector spaces, typically denoted by V , are treated. When not stated differently, summation convention is applied. Definition A.1 (Dual Space)Thedual space of V is the set of real-valued linear functionals ∗ V := {ω : V → R : ω linear} . (A.2) The elements of the dual space V ∗ are called linear forms on V . © Springer International Publishing Switzerland 2015 123 S.R.
    [Show full text]
  • C:\Book\Booktex\C1s2.DVI
    35 1.2 TENSOR CONCEPTS AND TRANSFORMATIONS § ~ For e1, e2, e3 independent orthogonal unit vectors (base vectors), we may write any vector A as ~ b b b A = A1 e1 + A2 e2 + A3 e3 ~ where (A1,A2,A3) are the coordinates of A relativeb to theb baseb vectors chosen. These components are the projection of A~ onto the base vectors and A~ =(A~ e ) e +(A~ e ) e +(A~ e ) e . · 1 1 · 2 2 · 3 3 ~ ~ ~ Select any three independent orthogonal vectors,b b (E1, Eb 2, bE3), not necessarilyb b of unit length, we can then write ~ ~ ~ E1 E2 E3 e1 = , e2 = , e3 = , E~ E~ E~ | 1| | 2| | 3| and consequently, the vector A~ canb be expressedb as b A~ E~ A~ E~ A~ E~ A~ = · 1 E~ + · 2 E~ + · 3 E~ . ~ ~ 1 ~ ~ 2 ~ ~ 3 E1 E1 ! E2 E2 ! E3 E3 ! · · · Here we say that A~ E~ · (i) ,i=1, 2, 3 E~ E~ (i) · (i) ~ ~ ~ ~ are the components of A relative to the chosen base vectors E1, E2, E3. Recall that the parenthesis about the subscript i denotes that there is no summation on this subscript. It is then treated as a free subscript which can have any of the values 1, 2or3. Reciprocal Basis ~ ~ ~ Consider a set of any three independent vectors (E1, E2, E3) which are not necessarily orthogonal, nor of unit length. In order to represent the vector A~ in terms of these vectors we must find components (A1,A2,A3) such that ~ 1 ~ 2 ~ 3 ~ A = A E1 + A E2 + A E3. This can be done by taking appropriate projections and obtaining three equations and three unknowns from which the components are determined.
    [Show full text]
  • Introduction to Vector and Tensor Analysis
    Introduction to vector and tensor analysis Jesper Ferkinghoff-Borg September 6, 2007 Contents 1 Physical space 3 1.1 Coordinate systems . 3 1.2 Distances . 3 1.3 Symmetries . 4 2 Scalars and vectors 5 2.1 Definitions . 5 2.2 Basic vector algebra . 5 2.2.1 Scalar product . 6 2.2.2 Cross product . 7 2.3 Coordinate systems and bases . 7 2.3.1 Components and notation . 9 2.3.2 Triplet algebra . 10 2.4 Orthonormal bases . 11 2.4.1 Scalar product . 11 2.4.2 Cross product . 12 2.5 Ordinary derivatives and integrals of vectors . 13 2.5.1 Derivatives . 14 2.5.2 Integrals . 14 2.6 Fields . 15 2.6.1 Definition . 15 2.6.2 Partial derivatives . 15 2.6.3 Differentials . 16 2.6.4 Gradient, divergence and curl . 17 2.6.5 Line, surface and volume integrals . 20 2.6.6 Integral theorems . 24 2.7 Curvilinear coordinates . 26 2.7.1 Cylindrical coordinates . 27 2.7.2 Spherical coordinates . 28 3 Tensors 30 3.1 Definition . 30 3.2 Outer product . 31 3.3 Basic tensor algebra . 31 1 3.3.1 Transposed tensors . 32 3.3.2 Contraction . 33 3.3.3 Special tensors . 33 3.4 Tensor components in orthonormal bases . 34 3.4.1 Matrix algebra . 35 3.4.2 Two-point components . 38 3.5 Tensor fields . 38 3.5.1 Gradient, divergence and curl . 39 3.5.2 Integral theorems . 40 4 Tensor calculus 42 4.1 Tensor notation and Einsteins summation rule .
    [Show full text]
  • Beyond Scalar, Vector and Tensor Harmonics in Maximally Symmetric Three-Dimensional Spaces
    Beyond scalar, vector and tensor harmonics in maximally symmetric three-dimensional spaces Cyril Pitrou1, ∗ and Thiago S. Pereira2, y 1Institut d'Astrophysique de Paris, CNRS UMR 7095, 98 bis Bd Arago, 75014 Paris, France. 2Departamento de F´ısica, Universidade Estadual de Londrina, Rod. Celso Garcia Cid, Km 380, 86057-970, Londrina, Paran´a,Brazil. (Dated: October 1, 2019) We present a comprehensive construction of scalar, vector and tensor harmonics on max- imally symmetric three-dimensional spaces. Our formalism relies on the introduction of spin-weighted spherical harmonics and a generalized helicity basis which, together, are ideal tools to decompose harmonics into their radial and angular dependencies. We provide a thorough and self-contained set of expressions and relations for these harmonics. Being gen- eral, our formalism also allows to build harmonics of higher tensor type by recursion among radial functions, and we collect the complete set of recursive relations which can be used. While the formalism is readily adapted to computation of CMB transfer functions, we also collect explicit forms of the radial harmonics which are needed for other cosmological ob- servables. Finally, we show that in curved spaces, normal modes cannot be factorized into a local angular dependence and a unit norm function encoding the orbital dependence of the harmonics, contrary to previous statements in the literature. 1. INTRODUCTION ables. Indeed, on cosmological scales, where lin- ear perturbation theory successfully accounts for the formation of structures, perturbation modes, Tensor harmonics are ubiquitous tools in that is the components in an expansion on tensor gravitational theories. Their applicability reach harmonics, evolve independently from one an- a wide spectrum of topics including black-hole other.
    [Show full text]
  • The Grassmannian Sigma Model in SU(2) Yang-Mills Theory
    The Grassmannian σ-model in SU(2) Yang-Mills Theory David Marsh Undergraduate Thesis Supervisor: Antti Niemi Department of Theoretical Physics Uppsala University Contents 1 Introduction 4 1.1 Introduction ............................ 4 2 Some Quantum Field Theory 7 2.1 Gauge Theories .......................... 7 2.1.1 Basic Yang-Mills Theory ................. 8 2.1.2 Faddeev, Popov and Ghosts ............... 10 2.1.3 Geometric Digression ................... 14 2.2 The nonlinear sigma models .................. 15 2.2.1 The Linear Sigma Model ................. 15 2.2.2 The Historical Example ................. 16 2.2.3 Geometric Treatment ................... 17 3 Basic properties of the Grassmannian 19 3.1 Standard Local Coordinates ................... 19 3.2 Plücker coordinates ........................ 21 3.3 The Grassmannian as a homogeneous space .......... 23 3.4 The complexied four-vector ................... 25 4 The Grassmannian σ Model in SU(2) Yang-Mills Theory 30 4.1 The SU(2) Yang-Mills Theory in spin-charge separated variables 30 4.1.1 Variables .......................... 30 4.1.2 The Physics of Spin-Charge Separation ......... 34 4.2 Appearance of the ostensible model ............... 36 4.3 The Grassmannian Sigma Model ................ 38 4.3.1 Gauge Formalism ..................... 38 4.3.2 Projector Formalism ................... 39 4.3.3 Induced Metric Formalism ................ 40 4.4 Embedding Equations ...................... 43 4.5 Hodge Star Decomposition .................... 48 2 4.6 Some Complex Dierential Geometry .............. 50 4.7 Quaternionic Decomposition ................... 54 4.7.1 Verication ........................ 56 5 The Interaction 58 5.1 The Interaction Terms ...................... 58 5.1.1 Limits ........................... 59 5.2 Holomorphic forms and Dolbeault Cohomology ........ 60 5.3 The Form of the interaction ..................
    [Show full text]
  • APPLIED ELASTICITY, 2Nd Edition Matrix and Tensor Analysis of Elastic Continua
    APPLIED ELASTICITY, 2nd Edition Matrix and Tensor Analysis of Elastic Continua Talking of education, "People have now a-days" (said he) "got a strange opinion that every thing should be taught by lectures. Now, I cannot see that lectures can do so much good as reading the books from which the lectures are taken. I know nothing that can be best taught by lectures, expect where experiments are to be shewn. You may teach chymestry by lectures. — You might teach making of shoes by lectures.' " James Boswell: Lifeof Samuel Johnson, 1766 [1709-1784] ABOUT THE AUTHOR In 1947 John D Renton was admitted to a Reserved Place (entitling him to free tuition) at King Edward's School in Edgbaston, Birmingham which was then a Grammar School. After six years there, followed by two doing National Service in the RAF, he became an undergraduate in Civil Engineering at Birmingham University, and obtained First Class Honours in 1958. He then became a research student of Dr A H Chilver (now Lord Chilver) working on the stability of space frames at Fitzwilliam House, Cambridge. Part of the research involved writing the first computer program for analysing three-dimensional structures, which was used by the consultants Ove Arup in their design project for the roof of the Sydney Opera House. He won a Research Fellowship at St John's College Cambridge in 1961, from where he moved to Oxford University to take up a teaching post at the Department of Engineering Science in 1963. This was followed by a Tutorial Fellowship to St Catherine's College in 1966.
    [Show full text]
  • Mach's Principle: Exact Frame-Dragging Via
    Mach’s principle: Exact frame-dragging via gravitomagnetism in perturbed Friedmann-Robertson-Walker universes with K =( 1, 0) ± Christoph Schmid∗ ETH Zurich, Institute for Theoretical Physics, 8093 Zurich, Switzerland (Dated: October 30, 2018) We show that there is exact dragging of the axis directions of local inertial frames by a weighted average of the cosmological energy currents via gravitomagnetism for all linear perturbations of all Friedmann-Robertson-Walker (FRW) universes and of Einstein’s static closed universe, and for all energy-momentum-stress tensors and in the presence of a cosmolgical constant. This includes FRW universes arbitrarily close to the Milne Universe and the de Sitter universe. Hence the postulate formulated by Ernst Mach about the physical cause for the time-evolution of inertial axes is shown to hold in General Relativity for linear perturbations of FRW universes. — The time-evolution of local inertial axes (relative to given local fiducial axes) is given experimentally by the precession angular velocity Ω~ gyro of local gyroscopes, which in turn gives the operational definition of the gravitomagnetic field: B~ g ≡−2 Ω~ gyro. The gravitomagnetic field is caused by energy currents J~ε via 0ˆ − 2 ~ − ~ ~ ~ the momentum constraint, Einstein’s G ˆi equation, ( ∆+ µ )Ag = 16πGNJε with Bg = curl Ag. This equation is analogous to Amp`ere’s law, but it holds for all time-dependent situations. ∆ is the de Rham-Hodge Laplacian, and ∆ = −curl curl for the vorticity sector in Riemannian 3- space. — In the solution for an open universe the 1/r2-force of Amp`ere is replaced by a Yukawa force Yµ(r)=(−d/dr)[(1/R) exp(−µr)], form-identical for FRW backgrounds with K = (−1, 0).
    [Show full text]
  • Chapter 9 Symmetries and Transformation Groups
    Chapter 9 Symmetries and transformation groups When contemporaries of Galilei argued against the heliocentric world view by pointing out that we do not feel like rotating with high velocity around the sun he argued that a uniform motion cannot be recognized because the laws of nature that govern our environment are invariant under what we now call a Galilei transformation between inertial systems. Invariance arguments have since played an increasing role in physics both for conceptual and practical reasons. In the early 20th century the mathematician Emmy Noether discovered that energy con- servation, which played a central role in 19th century physics, is just a special case of a more general relation between symmetries and conservation laws. In particular, energy and momen- tum conservation are equivalent to invariance under translations of time and space, respectively. At about the same time Einstein discovered that gravity curves space-time so that space-time is in general not translation invariant. As a consequence, energy is not conserved in cosmology. In the present chapter we discuss the symmetries of non-relativistic and relativistic kine- matics, which derive from the geometrical symmetries of Euclidean space and Minkowski space, respectively. We decompose transformation groups into discrete and continuous parts and study the infinitesimal form of the latter. We then discuss the transition from classical to quantum mechanics and use rotations to prove the Wigner-Eckhart theorem for matrix elements of tensor operators. After discussing the discrete symmetries parity, time reversal and charge conjugation we conclude with the implications of gauge invariance in the Aharonov–Bohm effect.
    [Show full text]
  • Spatiospectral Concentration of Vector Fields on a Sphere
    Spatiospectral concentration of vector fields on a sphere Alain Plattner a;∗ and Frederik J. Simons a aDepartment of Geosciences, Princeton University, Princeton NJ 08544, U.S.A. Received 1 November 2018; revised 1 November 2018; accepted 1 November 2018 Abstract We construct spherical vector bases that are bandlimited and spatially concentrated, or alternatively, spacelimited and spectrally concentrated, suitable for the analysis and representation of real-valued vector fields on the surface of the unit sphere, as arises in the natural and biomedical sciences, and engineering. Building on the original approach of Slepian, Landau, and Pollak we concentrate the energy of our function basis into arbitrarily shaped regions of interest on the sphere and within a certain bandlimit in the vector spherical-harmonic domain. As with the concentration prob- lem for scalar functions on the sphere, which has been treated in detail elsewhere, the vector basis can be constructed by solving a finite-dimensional algebraic eigenvalue problem. The eigenvalue problem decouples into separate prob- lems for the radial, and tangential components. For regions with advanced symmetry such as latitudinal polar caps, the spectral concentration kernel matrix is very easily calculated and block-diagonal, which lends itself to efficient diago- nalization. The number of spatiospectrally well-concentrated vector fields is well estimated by a Shannon number that only depends on the area of the target region and the maximal spherical harmonic degree or bandwidth. The Slepian spherical vector basis is doubly orthogonal, both over the entire sphere and over the geographic target regions. Like its scalar counterparts it should be a powerful tool in the inversion, approximation and extension of bandlimited fields on the sphere: vector fields such as gravity and magnetism in the earth and planetary sciences, or electromagnetic fields in optics, antenna theory and medical imaging.
    [Show full text]
  • Pseudodifferential Equations on Spheres with Spherical
    SCIENTIA MANU E T MENTE Pseudodifferential equations on spheres with spherical radial basis functions and spherical splines 31st March, 2011 A thesis presented to The School of Mathematics and Statistics The University of New South Wales in fulfilment of the thesis requirement for the degree of Doctor of Philosophy by Duong Thanh Pham 2 THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: PHAM Firstname: Duong Thanh Other names: Abbreviation for degree as given in the University calendar: PhD School: Mathematics and Statistics Faculty: Science Title: Pseudodifferential equations on spheres with spherical radial basis functions and spherical splines Abstract 350 words maximum n Pseudodifferential equations on the unit sphere in R , n ≥ 3, are considered. The class of pseudodiffrential operators have long been used as a modern and powerful tool to tackle linear boundary-value problems. These equations arise in geophysics, where the sphere of interest is the earth. Efficient solutions to these equations on the sphere become more demanding when given data are collected by satellites. In this dissertation, firstly we solve these equations by using spherical radial basis functions. The use of these functions results in meshless methods, which have recently become more and more popular. In this dissertation, the collocation and Galerkin methods are used to solve pseudodifferential equations. From the point of view of application, the collocation method is easier to implement, in particular when the given data are scattered. However, it is well-known that the collocation methods in general elicit a complicated error analysis. A salient feature of our work is that error estimates for collocation methods are obtained as a by-product of the analysis for the Galerkin method.
    [Show full text]
  • Mathematical Techniques
    Chapter 8 Mathematical Techniques This chapter contains a review of certain basic mathematical concepts and tech- niques that are central to metric prediction generation. A mastery of these fun- damentals will enable the reader not only to understand the principles underlying the prediction algorithms, but to be able to extend them to meet future require- ments. 8.1. Scalars, Vectors, Matrices, and Tensors While the reader may have encountered the concepts of scalars, vectors, and ma- trices in their college courses and subsequent job experiences, the concept of a tensor is likely an unfamiliar one. Each of these concepts is, in a sense, an exten- sion of the preceding one. Each carries a notion of value and operations by which they are transformed and combined. Each is used for representing increas- ingly more complex structures that seem less complex in the higher-order form. Tensors were introduced in the Spacetime chapter to represent a complexity of perhaps an unfathomable incomprehensibility to the untrained mind. However, to one versed in the theory of general relativity, tensors are mathematically the simplest representation that has so far been found to describe its principles. 8.1.1. The Hierarchy of Algebras As a precursor to the coming material, it is perhaps useful to review some ele- mentary algebraic concepts. The material in this subsection describes the succes- 1 2 Explanatory Supplement to Metric Prediction Generation sion of algebraic structures from sets to fields that may be skipped if the reader is already aware of this hierarchy. The basic theory of algebra begins with set theory .
    [Show full text]