Advances in Computational Mathematics (2005) 22: 377–397 Springer 2005 Approximation of parabolic PDEs on spheres using spherical basis functions ∗ Q.T. Le Gia Department of Mathematics, Texas A&M University, TX 77843-3368, USA E-mail:
[email protected] Received 17 June 2003; accepted 29 September 2003 Communicated by C.A. Micchelli In this paper we investigate the approximation of a class of parabolic partial differential + equations on the unit spheres Sn ⊂ Rn 1 using spherical basis functions. Error estimates in the Sobolev norm are derived. Keywords: heat equation, radial basis functions, collocation method, spheres AMS subject classification: 35K05, 65M70, 46E22 1. Introduction Approximation of partial differential equations on spheres has many applications in physical geodesy, potential theory, oceanography, and meteorology [2,17,18]. Evolu- tion equations on spherical geometry such as shallow water equations have been studied in weather forecasting services [3,23]. The geometry of the sphere is a major obsta- cle in constructing the approximation space for the solution of the PDEs. One way to overcome the obstacle is to construct basis functions which depend only on the geodesic distance between two points on the sphere, which are called spherical basis functions in literature [2,5,13]. Error estimates of pseudo-differential operator (which are time- independent) were studied in [2,9] but error estimates for the evolution equations remain unexplored. In this paper we consider the following parabolic partial differential equation de- fined on the unit sphere Sn ⊂ Rn+1: ∂ u(x, t) − u(x, t) = F(x,t) ∂t (1) u(x, 0) = f(x), f ∈ H 2σ Sn , ∗ The results presented in this paper are taken from the author’s Ph.D.