Mathematical Modeling of Diverse Phenomena

Total Page:16

File Type:pdf, Size:1020Kb

Mathematical Modeling of Diverse Phenomena NASA SP-437 dW = a••n c mathematical modeling Ok' of diverse phenomena james c. Howard NASA NASA SP-437 mathematical modeling of diverse phenomena James c. howard fW\SA National Aeronautics and Space Administration Scientific and Technical Information Branch 1979 Library of Congress Cataloging in Publication Data Howard, James Carson. Mathematical modeling of diverse phenomena. (NASA SP ; 437) Includes bibliographical references. 1, Calculus of tensors. 2. Mathematical models. I. Title. II. Series: United States. National Aeronautics and Space Administration. NASA SP ; 437. QA433.H68 515'.63 79-18506 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock Number 033-000-00777-9 PREFACE This book is intended for those students, 'engineers, scientists, and applied mathematicians who find it necessary to formulate models of diverse phenomena. To facilitate the formulation of such models, some aspects of the tensor calculus will be introduced. However, no knowledge of tensors is assumed. The chief aim of this calculus is the investigation of relations that remain valid in going from one coordinate system to another. The invariance of tensor quantities with respect to coordinate transformations can be used to advantage in formulating mathematical models. As a consequence of the geometrical simplification inherent in the tensor method, the formulation of problems in curvilinear coordinate systems can be reduced to series of routine operations involving only summation and differentia- tion. When conventional methods are used, the form which the equations of mathematical physics assumes depends on the coordinate system used to describe the problem being studied. This dependence, which is due to the practice of expressing vectors in terms of their physical components, can be removed by the simple expedient.of expressing all vectors in terms of their tensor components. For the benefit of those who have access to digital computers equipped with formula manipulation compilers, the convenience of computerized formulations will be demonstrated. No programming experience is necessary, and the few program- ming steps required will be explained as they occur. The first chapter is concerned with those aspects of the tensor calculus that are considered necessary for an understanding of later chapters. It is assumed that the reader has a knowledge of elementary vector analysis and matrix operations. In writing this part, I was influenced by the work of I. S. Sokolnikoff (ref. 1) and A. P. Wills (ref. 2). The definition of a tensor of rank r associated with a point of an N dimensional space, as an r linear form in the base vectors associated with the point, is due to Wills. I feel that this approach to tensor calculus will have a greater appeal to applied mathematicians than the conventional method of defining tensors in terms of their transformation laws. m JAMES C. HOWARD The reader may encounter unfamiliar entities such as covariant and contravariant vectors and tensors, and unfamiliar operations such as covariant differentiation. It will be seen, however, that the only operations involved in applying these concepts to practical problems are summation, in accordance with the summation convention, and differentiation. In using tensor methods to formulate mathematical models, considerable insight is obtained and the striking similarity of all formulations of physical systems becomes apparent. This is due to the fact that all such formulations evolve from a fundamental metric which is simply an expression for the square of the distance between two adjacent points on a surface. Hence, in addition to its utility, the method advocated has a definite educational value. As I. S. Sokolnikoff has noted, the best evidence of the remarkable effectiveness of the tensor apparatus in the study of nature is the fact that it is possible to include, between the covers of a small volume, a large amount of material that is of interest to mathematicians, physicists, and engineers. The major part of the book is devoted to applications using the theory given in the first chapter. The applications are chosen to demonstrate the feasibility of combining tensor methods and computer capability to formulate problems of interest to students, engineers, and theoretical physicists. Chapter 2 is devoted to aeronautical applications that culminate in the formulation of a mathematical model of an aeronautical system. In using chapter 2, only first- and second-order transfor- mations are required; the necessary theory is contained in the first 11 sections of chapter 1. In chapter 3, the equations of motion of a particle are formulated in tensor form. These formulations require an understanding of the Christoffel sym- bols (ref. 3) of the first and second kinds and the concept of covariant differentia- tion. The corresponding theory is contained in sections 1.11 and 1.12 of chapter 1. The methods described in chapter 4 can be used to formulate mathematical models involving fluid dynamics. An understanding of this chapter also requires a knowledge of the Christoffel symbols and covariant differentiation as described in sections 1.11 and 1.12 of chapter 1. The tensor theory contained in sections 1.13 through 1.18 of chapter 1, is required to formulate the cosmological models described in chapter 5. The final chapter describes how. the symbol manipulation language MACSYMA (ref. 4) may be used to assist in the formulation of mathematical models. The techniques described in this book represent an attempt to simplify the formulation of mathematical models by reducing the modeling process to a series of routine operations, which can be performed either manually or by computer. This attempt is part of a continuing effort in support of simulation experimentation in the Simulation Sciences Division. IV CONTENTS Page PREFACE iii 1. SCALARS, VECTORS, AND TENSORS 1 1.1 Summation Convention 3 1.2 Tensors 6 1.3 Physical Examples 11 1.4 Transformation Laws . 25 1.5 Base Vectors 29 1.6 Vector Transformations 31 1.7 Raising and Lowering of Indices 32 1.8 Bivector Transformations 34 1.9 Physical Components 36 1.10 Tensor Components - 39 1.11 Algebra of Tensors 40 1.12 Vector Derivatives and the Christoffel Symbols 47 1.13 Special Coordinate Systems .56 1.14 The Differential Operator V 60 1.15 The Riemann-Christoffel Tensor and the Ricci Tensor 64 1.16 The Ricci Tensor 69 1.17 Curvature Tensor 70 1.18 Einstein Tensor 72 1.19 References 74 Page 2. AERONAUTICAL APPLICATIONS 77 2.1 Transformations and Transformation Laws 79 2.2 Aeronautical Reference Systems 80 2.3 Transformation Law for Static Forces and Moments 82 2.4 Transformation Law for the Static-Stability Derivatives 85 2.5 Inverse Transformation Law for Static Forces and Moments. 86 2.6 Transformation by Computer 89 2.7 Transformation Law for Aerodynamic Stability Derivatives ...... 94 2.8 Computer Transformations of Aerodynamic Stability Derivatives. 103 2.9 Transformation of Moments and Products of Inertia 129 2.10 The Formulation of Mathematical Models of Aircraft 134 2.11 Aerodynamic Forces 136 2.12 Thrust Forces 142 2.13 Thrust Moments 144 2.14 Gravity Forces 146 2.15 Summation of Forces and Moments 153 .2.16 Spatial Orientation in Terms of Euler Angles 156 2.17 Spatial Orientation in Terms of Direction Cosines 159 2.18 Coordinates of the Aircraft in an Earth-Fixed Reference Frame ... 161 2.19 References 164 3. APPLICATIONS TO PARTICLE DYNAMICS 'l65 3.1 Formulation of Christoffel Symbols Using Coordinate Transformation Equations 167 3.2 Metric Tensor Inputs 172 3.3 The Velocity Vector 182 3.4 The Acceleration Vector 185 3.5 Equations of Motion in a General Curvilinear Coordinate System. 187 3.6 Computer Derivations of Equations of Motion of a Particle 193 3.7 Observations 206 3.8 Illustrative Examples 206 3.9 References - 216 vi Page 4. APPLICATIONS TO FLUID MECHANICS .~~. 217 4.1 Formulation of the Navier-Stokes Equations and the Continuity Equation 219 4.2 The Physical Form of the Navier-Stokes Equations 224 ' 4.3 Formulation of the Christoffel Symbols of the Second Kind 239 4.4 References 253 5. COSMOLOGICAL APPLICATIONS .~ 255 5.1 Newtonian and Relativistic Field Equations and Trajectory Equations 257 5.-21 Modeling Considerations 261 5.3 Anisotropic Model 263 5.4 Isotropic Model 269 5.5 Static Homogeneous Models 276 5.6 The Einstein Model Universe 277 5.7 The De Sitter Model 283 5.8 A Nonhomogeneous Case 284 5.9 Concluding Comments 287 5.10 References 287 6. ALTERNATIVE TECHNIQUES 289 6.1 REDUCE and MACSYMA. 291 6.2 Use of MACSYMA to Transform Aerodynamic Stability Derivatives 292 6.3 Printout of Input Commands 296 6.4 Central Processing Unit Times 297 6.5 Formulation of Christoffel's Symbols 300 6.6 Equations of Motion of a Particle 313 6.7 Formulating Models of Aeronautical Systems 317 6.8 Aeronautical Reference Systems 317 6.9 Transformation Equations 318 vn Page 6.10 Transformation Law for Static Forces 321 6.11 Transformation Law for Control Force Derivatives 322 6.12 Forces Produced by Linear Velocity Perturbations 324 6.13 Forces Produced by Angular Velocity Perturbations 327 6.14 Forces Produced by Linear Acceleration Perturbations 331 6.15 Gravity Forces 334 6.16 Inertia Forces 338 6.17 Resultant Forces 341 6.18 Special Forms of the Equations of Motion 349 6.19 Thrust Forces 358 6.20 Determination of the Geographical Location of Aircraft 360 6.21 Transformation Law for Static Moments 361 6.22 Transformation Law for Control Moment Derivatives 362 6.23 Moments Produced
Recommended publications
  • Introduction to Linear Bialgebra
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of New Mexico University of New Mexico UNM Digital Repository Mathematics and Statistics Faculty and Staff Publications Academic Department Resources 2005 INTRODUCTION TO LINEAR BIALGEBRA Florentin Smarandache University of New Mexico, [email protected] W.B. Vasantha Kandasamy K. Ilanthenral Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp Part of the Algebra Commons, Analysis Commons, Discrete Mathematics and Combinatorics Commons, and the Other Mathematics Commons Recommended Citation Smarandache, Florentin; W.B. Vasantha Kandasamy; and K. Ilanthenral. "INTRODUCTION TO LINEAR BIALGEBRA." (2005). https://digitalrepository.unm.edu/math_fsp/232 This Book is brought to you for free and open access by the Academic Department Resources at UNM Digital Repository. It has been accepted for inclusion in Mathematics and Statistics Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. INTRODUCTION TO LINEAR BIALGEBRA W. B. Vasantha Kandasamy Department of Mathematics Indian Institute of Technology, Madras Chennai – 600036, India e-mail: [email protected] web: http://mat.iitm.ac.in/~wbv Florentin Smarandache Department of Mathematics University of New Mexico Gallup, NM 87301, USA e-mail: [email protected] K. Ilanthenral Editor, Maths Tiger, Quarterly Journal Flat No.11, Mayura Park, 16, Kazhikundram Main Road, Tharamani, Chennai – 600 113, India e-mail: [email protected] HEXIS Phoenix, Arizona 2005 1 This book can be ordered in a paper bound reprint from: Books on Demand ProQuest Information & Learning (University of Microfilm International) 300 N.
    [Show full text]
  • Geometrical Tools for Embedding Fields, Submanifolds, and Foliations Arxiv
    Geometrical tools for embedding fields, submanifolds, and foliations Antony J. Speranza∗ Perimeter Institute for Theoretical Physics, 31 Caroline St. N, Waterloo, ON N2L 2Y5, Canada Abstract Embedding fields provide a way of coupling a background structure to a theory while preserving diffeomorphism-invariance. Examples of such background structures include embedded submani- folds, such as branes; boundaries of local subregions, such as the Ryu-Takayanagi surface in holog- raphy; and foliations, which appear in fluid dynamics and force-free electrodynamics. This work presents a systematic framework for computing geometric properties of these background structures in the embedding field description. An overview of the local geometric quantities associated with a foliation is given, including a review of the Gauss, Codazzi, and Ricci-Voss equations, which relate the geometry of the foliation to the ambient curvature. Generalizations of these equations for cur- vature in the nonintegrable normal directions are derived. Particular care is given to the question of which objects are well-defined for single submanifolds, and which depend on the structure of the foliation away from a submanifold. Variational formulas are provided for the geometric quantities, which involve contributions both from the variation of the embedding map as well as variations of the ambient metric. As an application of these variational formulas, a derivation is given of the Jacobi equation, describing perturbations of extremal area surfaces of arbitrary codimension. The embedding field formalism is also applied to the problem of classifying boundary conditions for general relativity in a finite subregion that lead to integrable Hamiltonians. The framework developed in this paper will provide a useful set of tools for future analyses of brane dynamics, fluid arXiv:1904.08012v2 [gr-qc] 26 Apr 2019 mechanics, and edge modes for finite subregions of diffeomorphism-invariant theories.
    [Show full text]
  • Determinants Linear Algebra MATH 2010
    Determinants Linear Algebra MATH 2010 • Determinants can be used for a lot of different applications. We will look at a few of these later. First of all, however, let's talk about how to compute a determinant. • Notation: The determinant of a square matrix A is denoted by jAj or det(A). • Determinant of a 2x2 matrix: Let A be a 2x2 matrix a b A = c d Then the determinant of A is given by jAj = ad − bc Recall, that this is the same formula used in calculating the inverse of A: 1 d −b 1 d −b A−1 = = ad − bc −c a jAj −c a if and only if ad − bc = jAj 6= 0. We will later see that if the determinant of any square matrix A 6= 0, then A is invertible or nonsingular. • Terminology: For larger matrices, we need to use cofactor expansion to find the determinant of A. First of all, let's define a few terms: { Minor: A minor, Mij, of the element aij is the determinant of the matrix obtained by deleting the ith row and jth column. ∗ Example: Let 2 −3 4 2 3 A = 4 6 3 1 5 4 −7 −8 Then to find M11, look at element a11 = −3. Delete the entire column and row that corre- sponds to a11 = −3, see the image below. Then M11 is the determinant of the remaining matrix, i.e., 3 1 M11 = = −8(3) − (−7)(1) = −17: −7 −8 ∗ Example: Similarly, to find M22 can be found looking at the element a22 and deleting the same row and column where this element is found, i.e., deleting the second row, second column: Then −3 2 M22 = = −8(−3) − 4(−2) = 16: 4 −8 { Cofactor: The cofactor, Cij is given by i+j Cij = (−1) Mij: Basically, the cofactor is either Mij or −Mij where the sign depends on the location of the element in the matrix.
    [Show full text]
  • Symmetry and Tensors Rotations and Tensors
    Symmetry and tensors Rotations and tensors A rotation of a 3-vector is accomplished by an orthogonal transformation. Represented as a matrix, A, we replace each vector, v, by a rotated vector, v0, given by multiplying by A, 0 v = Av In index notation, 0 X vm = Amnvn n Since a rotation must preserve lengths of vectors, we require 02 X 0 0 X 2 v = vmvm = vmvm = v m m Therefore, X X 0 0 vmvm = vmvm m m ! ! X X X = Amnvn Amkvk m n k ! X X = AmnAmk vnvk k;n m Since xn is arbitrary, this is true if and only if X AmnAmk = δnk m t which we can rewrite using the transpose, Amn = Anm, as X t AnmAmk = δnk m In matrix notation, this is t A A = I where I is the identity matrix. This is equivalent to At = A−1. Multi-index objects such as matrices, Mmn, or the Levi-Civita tensor, "ijk, have definite transformation properties under rotations. We call an object a (rotational) tensor if each index transforms in the same way as a vector. An object with no indices, that is, a function, does not transform at all and is called a scalar. 0 A matrix Mmn is a (second rank) tensor if and only if, when we rotate vectors v to v , its new components are given by 0 X Mmn = AmjAnkMjk jk This is what we expect if we imagine Mmn to be built out of vectors as Mmn = umvn, for example. In the same way, we see that the Levi-Civita tensor transforms as 0 X "ijk = AilAjmAkn"lmn lmn 1 Recall that "ijk, because it is totally antisymmetric, is completely determined by only one of its components, say, "123.
    [Show full text]
  • A Brief Tour of Vector Calculus
    A BRIEF TOUR OF VECTOR CALCULUS A. HAVENS Contents 0 Prelude ii 1 Directional Derivatives, the Gradient and the Del Operator 1 1.1 Conceptual Review: Directional Derivatives and the Gradient........... 1 1.2 The Gradient as a Vector Field............................ 5 1.3 The Gradient Flow and Critical Points ....................... 10 1.4 The Del Operator and the Gradient in Other Coordinates*............ 17 1.5 Problems........................................ 21 2 Vector Fields in Low Dimensions 26 2 3 2.1 General Vector Fields in Domains of R and R . 26 2.2 Flows and Integral Curves .............................. 31 2.3 Conservative Vector Fields and Potentials...................... 32 2.4 Vector Fields from Frames*.............................. 37 2.5 Divergence, Curl, Jacobians, and the Laplacian................... 41 2.6 Parametrized Surfaces and Coordinate Vector Fields*............... 48 2.7 Tangent Vectors, Normal Vectors, and Orientations*................ 52 2.8 Problems........................................ 58 3 Line Integrals 66 3.1 Defining Scalar Line Integrals............................. 66 3.2 Line Integrals in Vector Fields ............................ 75 3.3 Work in a Force Field................................. 78 3.4 The Fundamental Theorem of Line Integrals .................... 79 3.5 Motion in Conservative Force Fields Conserves Energy .............. 81 3.6 Path Independence and Corollaries of the Fundamental Theorem......... 82 3.7 Green's Theorem.................................... 84 3.8 Problems........................................ 89 4 Surface Integrals, Flux, and Fundamental Theorems 93 4.1 Surface Integrals of Scalar Fields........................... 93 4.2 Flux........................................... 96 4.3 The Gradient, Divergence, and Curl Operators Via Limits* . 103 4.4 The Stokes-Kelvin Theorem..............................108 4.5 The Divergence Theorem ...............................112 4.6 Problems........................................114 List of Figures 117 i 11/14/19 Multivariate Calculus: Vector Calculus Havens 0.
    [Show full text]
  • Multilinear Algebra
    Appendix A Multilinear Algebra This chapter presents concepts from multilinear algebra based on the basic properties of finite dimensional vector spaces and linear maps. The primary aim of the chapter is to give a concise introduction to alternating tensors which are necessary to define differential forms on manifolds. Many of the stated definitions and propositions can be found in Lee [1], Chaps. 11, 12 and 14. Some definitions and propositions are complemented by short and simple examples. First, in Sect. A.1 dual and bidual vector spaces are discussed. Subsequently, in Sects. A.2–A.4, tensors and alternating tensors together with operations such as the tensor and wedge product are introduced. Lastly, in Sect. A.5, the concepts which are necessary to introduce the wedge product are summarized in eight steps. A.1 The Dual Space Let V be a real vector space of finite dimension dim V = n.Let(e1,...,en) be a basis of V . Then every v ∈ V can be uniquely represented as a linear combination i v = v ei , (A.1) where summation convention over repeated indices is applied. The coefficients vi ∈ R arereferredtoascomponents of the vector v. Throughout the whole chapter, only finite dimensional real vector spaces, typically denoted by V , are treated. When not stated differently, summation convention is applied. Definition A.1 (Dual Space)Thedual space of V is the set of real-valued linear functionals ∗ V := {ω : V → R : ω linear} . (A.2) The elements of the dual space V ∗ are called linear forms on V . © Springer International Publishing Switzerland 2015 123 S.R.
    [Show full text]
  • 8 Rank of a Matrix
    8 Rank of a matrix We already know how to figure out that the collection (v1;:::; vk) is linearly dependent or not if each n vj 2 R . Recall that we need to form the matrix [v1 j ::: j vk] with the given vectors as columns and see whether the row echelon form of this matrix has any free variables. If these vectors linearly independent (this is an abuse of language, the correct phrase would be \if the collection composed of these vectors is linearly independent"), then, due to the theorems we proved, their span is a subspace of Rn of dimension k, and this collection is a basis of this subspace. Now, what if they are linearly dependent? Still, their span will be a subspace of Rn, but what is the dimension and what is a basis? Naively, I can answer this question by looking at these vectors one by one. In particular, if v1 =6 0 then I form B = (v1) (I know that one nonzero vector is linearly independent). Next, I add v2 to this collection. If the collection (v1; v2) is linearly dependent (which I know how to check), I drop v2 and take v3. If independent then I form B = (v1; v2) and add now third vector v3. This procedure will lead to the vectors that form a basis of the span of my original collection, and their number will be the dimension. Can I do it in a different, more efficient way? The answer if \yes." As a side result we'll get one of the most important facts of the basic linear algebra.
    [Show full text]
  • C:\Book\Booktex\C1s2.DVI
    35 1.2 TENSOR CONCEPTS AND TRANSFORMATIONS § ~ For e1, e2, e3 independent orthogonal unit vectors (base vectors), we may write any vector A as ~ b b b A = A1 e1 + A2 e2 + A3 e3 ~ where (A1,A2,A3) are the coordinates of A relativeb to theb baseb vectors chosen. These components are the projection of A~ onto the base vectors and A~ =(A~ e ) e +(A~ e ) e +(A~ e ) e . · 1 1 · 2 2 · 3 3 ~ ~ ~ Select any three independent orthogonal vectors,b b (E1, Eb 2, bE3), not necessarilyb b of unit length, we can then write ~ ~ ~ E1 E2 E3 e1 = , e2 = , e3 = , E~ E~ E~ | 1| | 2| | 3| and consequently, the vector A~ canb be expressedb as b A~ E~ A~ E~ A~ E~ A~ = · 1 E~ + · 2 E~ + · 3 E~ . ~ ~ 1 ~ ~ 2 ~ ~ 3 E1 E1 ! E2 E2 ! E3 E3 ! · · · Here we say that A~ E~ · (i) ,i=1, 2, 3 E~ E~ (i) · (i) ~ ~ ~ ~ are the components of A relative to the chosen base vectors E1, E2, E3. Recall that the parenthesis about the subscript i denotes that there is no summation on this subscript. It is then treated as a free subscript which can have any of the values 1, 2or3. Reciprocal Basis ~ ~ ~ Consider a set of any three independent vectors (E1, E2, E3) which are not necessarily orthogonal, nor of unit length. In order to represent the vector A~ in terms of these vectors we must find components (A1,A2,A3) such that ~ 1 ~ 2 ~ 3 ~ A = A E1 + A E2 + A E3. This can be done by taking appropriate projections and obtaining three equations and three unknowns from which the components are determined.
    [Show full text]
  • Divergence, Gradient and Curl Based on Lecture Notes by James
    Divergence, gradient and curl Based on lecture notes by James McKernan One can formally define the gradient of a function 3 rf : R −! R; by the formal rule @f @f @f grad f = rf = ^{ +| ^ + k^ @x @y @z d Just like dx is an operator that can be applied to a function, the del operator is a vector operator given by @ @ @ @ @ @ r = ^{ +| ^ + k^ = ; ; @x @y @z @x @y @z Using the operator del we can define two other operations, this time on vector fields: Blackboard 1. Let A ⊂ R3 be an open subset and let F~ : A −! R3 be a vector field. The divergence of F~ is the scalar function, div F~ : A −! R; which is defined by the rule div F~ (x; y; z) = r · F~ (x; y; z) @f @f @f = ^{ +| ^ + k^ · (F (x; y; z);F (x; y; z);F (x; y; z)) @x @y @z 1 2 3 @F @F @F = 1 + 2 + 3 : @x @y @z The curl of F~ is the vector field 3 curl F~ : A −! R ; which is defined by the rule curl F~ (x; x; z) = r × F~ (x; y; z) ^{ |^ k^ = @ @ @ @x @y @z F1 F2 F3 @F @F @F @F @F @F = 3 − 2 ^{ − 3 − 1 |^+ 2 − 1 k:^ @y @z @x @z @x @y Note that the del operator makes sense for any n, not just n = 3. So we can define the gradient and the divergence in all dimensions. However curl only makes sense when n = 3. Blackboard 2. The vector field F~ : A −! R3 is called rotation free if the curl is zero, curl F~ = ~0, and it is called incompressible if the divergence is zero, div F~ = 0.
    [Show full text]
  • APPLIED ELASTICITY, 2Nd Edition Matrix and Tensor Analysis of Elastic Continua
    APPLIED ELASTICITY, 2nd Edition Matrix and Tensor Analysis of Elastic Continua Talking of education, "People have now a-days" (said he) "got a strange opinion that every thing should be taught by lectures. Now, I cannot see that lectures can do so much good as reading the books from which the lectures are taken. I know nothing that can be best taught by lectures, expect where experiments are to be shewn. You may teach chymestry by lectures. — You might teach making of shoes by lectures.' " James Boswell: Lifeof Samuel Johnson, 1766 [1709-1784] ABOUT THE AUTHOR In 1947 John D Renton was admitted to a Reserved Place (entitling him to free tuition) at King Edward's School in Edgbaston, Birmingham which was then a Grammar School. After six years there, followed by two doing National Service in the RAF, he became an undergraduate in Civil Engineering at Birmingham University, and obtained First Class Honours in 1958. He then became a research student of Dr A H Chilver (now Lord Chilver) working on the stability of space frames at Fitzwilliam House, Cambridge. Part of the research involved writing the first computer program for analysing three-dimensional structures, which was used by the consultants Ove Arup in their design project for the roof of the Sydney Opera House. He won a Research Fellowship at St John's College Cambridge in 1961, from where he moved to Oxford University to take up a teaching post at the Department of Engineering Science in 1963. This was followed by a Tutorial Fellowship to St Catherine's College in 1966.
    [Show full text]
  • De Vectores Al´Algebra Geométrica
    De Vectores al Algebra´ Geom´etrica Sergio Ramos Ram´ırez, Jos´eAlfonso Ju´arezGonz´alez, Volkswagen de M´exico 72700 San Lorenzo Almecatla, Cuautlancingo, Pue., M´exico Garret Sobczyk Universidad de las Am´ericas-Puebla Departamento de F´ısico-Matem´aticas 72820 Puebla, Pue., M´exico February 4, 2018 Abstract El Algebra´ Geom´etricaes la extensi´onnatural del concepto de vector y de la suma de vectores. Despu´esde revisar las propiedades de la suma vec- torial, definimos la multiplicaci´onde vectores de tal manera que respete el famoso Teorema de Pit´agoras. Varias demostraciones sint´eticasde teo- remas en geometr´ıaeuclidiana pueden as´ıser reemplazadas por elegantes demostraciones algebraicas. Aunque en este art´ıculonos limitamos a 2 y 3 dimensiones, el Algebra´ Geom´etricaes aplicable a cualquier dimensi´on, tanto en geometr´ıaseuclidianas como no-euclidianas. 0 Introducci´on La evoluci´ondel concepto de n´umero,el cual es una noci´oncentral en Matem´aticas, tiene una larga y fascinate historia, la cual abarca muchos siglos y ha sido tes- tigo del florecimiento y ca´ıdade muchas civilizaciones [4]. En lo que respecta a la introducci´onde los conceptos de n´umerosnegativos e imaginarios, Gauss hac´ıala siguiente observaci´onen 1831: \... este tipo de avances, sin embargo, siempre se han hecho en primera instancia con pasos t´ımidosy cautelosos". En el presente art´ıculo,presentamos al lector las ideas y m´etodos m´aselementales del Algebra´ Geom´etrica,la cual fue descubierta por William Kingdon Clifford (1845-1879) poco antes de su muerte [1], y constituye la generalizaci´onnatural de los sistemas de n´umerosreales y complejos, a trav´esde la introducci´onde nuevos entes matem´aticosdenominados n´umeros con direcci´on.
    [Show full text]
  • The Geometry of Algorithms with Orthogonality Constraints∗
    SIAM J. MATRIX ANAL. APPL. c 1998 Society for Industrial and Applied Mathematics Vol. 20, No. 2, pp. 303–353 " THE GEOMETRY OF ALGORITHMS WITH ORTHOGONALITY CONSTRAINTS∗ ALAN EDELMAN† , TOMAS´ A. ARIAS‡ , AND STEVEN T. SMITH§ Abstract. In this paper we develop new Newton and conjugate gradient algorithms on the Grassmann and Stiefel manifolds. These manifolds represent the constraints that arise in such areas as the symmetric eigenvalue problem, nonlinear eigenvalue problems, electronic structures computations, and signal processing. In addition to the new algorithms, we show how the geometrical framework gives penetrating new insights allowing us to create, understand, and compare algorithms. The theory proposed here provides a taxonomy for numerical linear algebra algorithms that provide a top level mathematical view of previously unrelated algorithms. It is our hope that developers of new algorithms and perturbation theories will benefit from the theory, methods, and examples in this paper. Key words. conjugate gradient, Newton’s method, orthogonality constraints, Grassmann man- ifold, Stiefel manifold, eigenvalues and eigenvectors, invariant subspace, Rayleigh quotient iteration, eigenvalue optimization, sequential quadratic programming, reduced gradient method, electronic structures computation, subspace tracking AMS subject classifications. 49M07, 49M15, 53B20, 65F15, 15A18, 51F20, 81V55 PII. S0895479895290954 1. Introduction. Problems on the Stiefel and Grassmann manifolds arise with sufficient frequency that a unifying investigation of algorithms designed to solve these problems is warranted. Understanding these manifolds, which represent orthogonality constraints (as in the symmetric eigenvalue problem), yields penetrating insight into many numerical algorithms and unifies seemingly unrelated ideas from different areas. The optimization community has long recognized that linear and quadratic con- straints have special structure that can be exploited.
    [Show full text]