De Vectores Al´Algebra Geométrica

Total Page:16

File Type:pdf, Size:1020Kb

De Vectores Al´Algebra Geométrica De Vectores al Algebra´ Geom´etrica Sergio Ramos Ram´ırez, Jos´eAlfonso Ju´arezGonz´alez, Volkswagen de M´exico 72700 San Lorenzo Almecatla, Cuautlancingo, Pue., M´exico Garret Sobczyk Universidad de las Am´ericas-Puebla Departamento de F´ısico-Matem´aticas 72820 Puebla, Pue., M´exico February 4, 2018 Abstract El Algebra´ Geom´etricaes la extensi´onnatural del concepto de vector y de la suma de vectores. Despu´esde revisar las propiedades de la suma vec- torial, definimos la multiplicaci´onde vectores de tal manera que respete el famoso Teorema de Pit´agoras. Varias demostraciones sint´eticasde teo- remas en geometr´ıaeuclidiana pueden as´ıser reemplazadas por elegantes demostraciones algebraicas. Aunque en este art´ıculonos limitamos a 2 y 3 dimensiones, el Algebra´ Geom´etricaes aplicable a cualquier dimensi´on, tanto en geometr´ıaseuclidianas como no-euclidianas. 0 Introducci´on La evoluci´ondel concepto de n´umero,el cual es una noci´oncentral en Matem´aticas, tiene una larga y fascinate historia, la cual abarca muchos siglos y ha sido tes- tigo del florecimiento y ca´ıdade muchas civilizaciones [4]. En lo que respecta a la introducci´onde los conceptos de n´umerosnegativos e imaginarios, Gauss hac´ıala siguiente observaci´onen 1831: \... este tipo de avances, sin embargo, siempre se han hecho en primera instancia con pasos t´ımidosy cautelosos". En el presente art´ıculo,presentamos al lector las ideas y m´etodos m´aselementales del Algebra´ Geom´etrica,la cual fue descubierta por William Kingdon Clifford (1845-1879) poco antes de su muerte [1], y constituye la generalizaci´onnatural de los sistemas de n´umerosreales y complejos, a trav´esde la introducci´onde nuevos entes matem´aticosdenominados n´umeros con direcci´on. En la Secci´on1, extendemos el sistema de los n´umerosreales R para incluir vectores, los cuales son segmentos de l´ınea con longitud y direcci´on. Dado que el 1 significado geom´etricode la suma vectorial y de la multiplicaci´onde vectores con n´umeros reales o escalares es bien conocido, damos aqu´ıs´oloun breve resumen. Queremos recalcar que el concepto de vector como un segmento dirigido en un espacio plano es independiente de cualquier sistema de coordenadas y de la dimensi´ondel espacio. Es fundamental entender que la posici´on de cada segmento dirigido en un espacio plano no es importante, dado que un vector con origen en un punto dado puede ser trasladado a cualquier otro punto, mientras conserve su longitud y direcci´on. La Secci´on2 trata del producto geom´etrico de vectores. As´ıcomo podemos sumar y multiplicar n´umerosreales, si queremos ampliar el sistema de n´umeros reales para incluir vectores, deberemos ser capaces de multiplicarlos y sumarlos. Como gu´ıa para entender c´omomultiplicar vectores geom´etricamente, recor- damos el milenario Teorema de Pit´agoras,mismo que relaciona los lados de un tri´angulorect´angulo.Dejando de lado ´unicamente la ley universal sobre la conmutatividad de la multiplicaci´on,descubrimos que el producto de dos vec- tores ortogonales es anti-conmutativo y establece una nueva entidad llamada bivector. Definimos los productos interno y exterior en t´erminosde las partes sim´etrica y anti-sim´etrica del producto geom´etricode vectores, e investigamos varias relaciones importantes entre estos tres productos. ´ En la Secci´on3, nos limitamos a las Algebras Geom´etricasm´asb´asicas G2 del 2 3 ´ plano euclidiano R y G3 del espacio euclidiano R . Estas Algebras Geom´etricas ofrecen ejemplos concretos y permiten realizar c´alculosbasados en los conocidos sistemas de coordenadas rectangulares en R2 y R3, aunque debemos tener en cuenta las discusiones generales de las secciones anteriores. A finales del siglo XIX, se libr´ola gran lucha entre el cuaterni´on y el Algebra´ Vectorial de Gibbs- Heaviside [3]. Mostramos c´omoel producto cruz est´andarde dos vectores es el dual natural del producto exterior de esos vectores, as´ıcomo la relaci´oncon otras identidades bien conocidas en el An´alisisVectorial est´andar.Estas ideas pueden generalizarse f´acilmente a Algebras´ Geom´etricasde mayor dimensi´on tanto en espacios euclidianos como no-euclidianos, utilizados ampliamente en las famosas Teor´ıasde la Relatividad de Einstein [5] y en diversos campos de las Matem´aticas[7, 8] y la Ingenier´ıa[2, 6]. En la Secci´on4 abordamos algunas ideas elementales de la Geometr´ıaAnal´ıtica, incluyendo la ecuaci´onvectorial de una l´ınearecta y la de un plano. Presenta- mos f´ormulas para la descomposici´onde un vector en componentes paralela y perpendicular a una l´ıneay a un plano, as´ıcomo expresiones para la reflexi´on y la rotaci´onde un vector en espacios de 2, 3 y m´asdimensiones. En la Secci´on5, la flexibilidad y el poder del Algebra´ Geom´etricase reve- lan completamente al discutir la proyecci´onestereogr´afica de la esfera unitaria en 2D, centrada en el origen, sobre el plano euclidiano. La proyecci´ones- tereogr´afica,y su generalizaci´ona dimensiones mayores, tienen profundas apli- caciones en muchas ´areasde las Matem´aticasy la F´ısica. Por ejemplo, los spinors de 2 componentes, fundamentales en Mec´anicaCu´antica, tienen una interpretaci´ondirecta en la proyecci´onestereogr´aficade la esfera bidimensional [12]. Es notable que a casi 140 a~nosde su descubrimiento, este poderoso sistema 2 num´erico-geom´etrico,el complemento natural del sistema de n´umerosreales que incluye el concepto de direcci´on,no sea universalmente conocido por la comu- nidad cient´ıfica,a pesar de que han habido muchos desarrollos y aplicaciones de esta teor´ıaa niveles avanzados en Matem´aticas, F´ısicaTe´oricay, m´asrecien- temente, en Inform´aticay Rob´otica. Creemos que la raz´onprincipal de esta lamentable situaci´onha sido la falta de una presentaci´onconcisa y rigurosa en los niveles b´asicosde ense~nanza. Por esta raz´on,prestamos mucha atenci´ona la introducci´onde los productos interno y exterior, y desarrollamos las identi- dades b´asicasde una manera clara y directa, de tal forma que su generalizaci´on a Algebras´ Geom´etricaseuclidianas y no-euclidianas de mayor dimensi´onno presente grandes obst´aculos. Finalmente, damos referencias cuidadosamente seleccionadas a material m´asavanzado, que el lector podr´aseguir seg´unsus propios intereses. 1 Suma geom´etricade vectores Los n´umerosnaturales se utilizan para expresar cantidades de objetos, como 3 vacas, 4 libras o 5 pasos hacia el norte. Hist´oricamente, los n´umerosnaturales se han ampliado gradualmente para incluir fracciones, n´umeros negativos y todos los n´umerosde la recta num´erica.Los vectores, o segmentos de l´ınea dirigidos, son un nuevo tipo de n´umeroque incluye la noci´onde direcci´on. Un vector v = jvjv^ tiene longitud jvj y direcci´onunitaria v^, como se muestra en la Figura 1, donde tambi´en se ilustra la suma w = u + v. Sean a, b y c vectores. Cada una de las gr´aficasen la Figura 2 muestra una propiedad geom´etricab´asicade la suma vectorial, junto con su correspondiente traducci´onalgebraica. Por ejemplo, el negativo del vector a es el vector −a, el cual tiene la misma longitud que el vector a pero direcci´on u orientaci´on opuesta, como se muestra en la Figura 2: 1). Procedemos ahora a resumir las leyes algebraicas que rigen la suma geom´etricade vectores, y su multiplicaci´on con n´umerosreales. (A1) a + (−a) = 0a = a0 = 0 Inverso aditivo de un vector (A2) a + b = b + a Ley Conmutativa de la suma vectorial Figure 1: Suma vectorial. 3 Figure 2: Propiedades geom´etricasde la suma vectorial. (A3)( a + b) + c = a + (b + c) := a + b + c Ley Asociativa de la suma vectorial (A4) Para toda α 2 R, αa = aα Los n´umeros reales conmutan con los vectores (A5) a − b := a + (−b) Definici´onde la resta vectorial En la regla (A1), el s´ımbolo 0 representa tanto el vector cero como el escalar cero. La regla (A4) nos indica que la multiplicaci´onde un vector con un n´umero real es una operaci´onconmutativa. Notemos que las reglas para la suma de vec- tores son las mismas que para la suma de n´umerosreales. Aunque los vectores usualmente se representan en t´erminos de alg´unsistema de coordenadas, de- seamos enfatizar que sus propiedades geom´etricasson independientes de ´el.En la Secci´on4 presentamos expl´ıcitamente c´alculosen las Algebras´ Geom´etricas 2 3 G2 y G3, empleando los sistemas de coordenadas ortonormales de R y R , respectivamente. 2 Producto geom´etricode vectores El significado geom´etricode la suma de vectores se representa en las Figuras 1 y 2, y lo formalizamos a trav´esde las reglas (A1) - (A5). Pero, >qu´ehay acerca de la multiplicaci´onentre vectores? Sumamos y multiplicamos n´umerosreales, 4 >por qu´eno podr´ıamoshacer lo mismo con vectores? Veamos c´omomultiplicar vectores de una forma geom´etricamente consistente. Recordemos que, para todo vector, a = jaja^. Elevando al cuadrado esta igualdad, obtenemos a2 = (jaja^)(jaja^) = jaj2a^2 = jaj2: (1) En el ´ultimopaso, hemos introducido una nueva regla que establece que el cuadrado de un vector unitario da como resultado el escalar +1. Esto es siempre cierto para vectores euclidianos unitarios, que son aquellos con los que estamos m´asfamiliarizados.1 Bajo esta premisa se sigue inmediatamente que el cuadrado de un vector euclideano es igual a su magnitud o longitud al cuadrado, a2 = jaj2 ≥ 0, y es cero s´olocuando su longitud es nula. Dividiendo ambos lados de la ecuaci´on(1) por jaj2, obtenemos a2 a a = a = a = 1; (2) jaj2 jaj2 jaj2 o aa−1 = a−1a = 1 donde 1 a a^ a−1 := = = (3) a jaj2 jaj es el inverso multiplicativo del vector a.
Recommended publications
  • Symmetry and Tensors Rotations and Tensors
    Symmetry and tensors Rotations and tensors A rotation of a 3-vector is accomplished by an orthogonal transformation. Represented as a matrix, A, we replace each vector, v, by a rotated vector, v0, given by multiplying by A, 0 v = Av In index notation, 0 X vm = Amnvn n Since a rotation must preserve lengths of vectors, we require 02 X 0 0 X 2 v = vmvm = vmvm = v m m Therefore, X X 0 0 vmvm = vmvm m m ! ! X X X = Amnvn Amkvk m n k ! X X = AmnAmk vnvk k;n m Since xn is arbitrary, this is true if and only if X AmnAmk = δnk m t which we can rewrite using the transpose, Amn = Anm, as X t AnmAmk = δnk m In matrix notation, this is t A A = I where I is the identity matrix. This is equivalent to At = A−1. Multi-index objects such as matrices, Mmn, or the Levi-Civita tensor, "ijk, have definite transformation properties under rotations. We call an object a (rotational) tensor if each index transforms in the same way as a vector. An object with no indices, that is, a function, does not transform at all and is called a scalar. 0 A matrix Mmn is a (second rank) tensor if and only if, when we rotate vectors v to v , its new components are given by 0 X Mmn = AmjAnkMjk jk This is what we expect if we imagine Mmn to be built out of vectors as Mmn = umvn, for example. In the same way, we see that the Levi-Civita tensor transforms as 0 X "ijk = AilAjmAkn"lmn lmn 1 Recall that "ijk, because it is totally antisymmetric, is completely determined by only one of its components, say, "123.
    [Show full text]
  • A Brief Tour of Vector Calculus
    A BRIEF TOUR OF VECTOR CALCULUS A. HAVENS Contents 0 Prelude ii 1 Directional Derivatives, the Gradient and the Del Operator 1 1.1 Conceptual Review: Directional Derivatives and the Gradient........... 1 1.2 The Gradient as a Vector Field............................ 5 1.3 The Gradient Flow and Critical Points ....................... 10 1.4 The Del Operator and the Gradient in Other Coordinates*............ 17 1.5 Problems........................................ 21 2 Vector Fields in Low Dimensions 26 2 3 2.1 General Vector Fields in Domains of R and R . 26 2.2 Flows and Integral Curves .............................. 31 2.3 Conservative Vector Fields and Potentials...................... 32 2.4 Vector Fields from Frames*.............................. 37 2.5 Divergence, Curl, Jacobians, and the Laplacian................... 41 2.6 Parametrized Surfaces and Coordinate Vector Fields*............... 48 2.7 Tangent Vectors, Normal Vectors, and Orientations*................ 52 2.8 Problems........................................ 58 3 Line Integrals 66 3.1 Defining Scalar Line Integrals............................. 66 3.2 Line Integrals in Vector Fields ............................ 75 3.3 Work in a Force Field................................. 78 3.4 The Fundamental Theorem of Line Integrals .................... 79 3.5 Motion in Conservative Force Fields Conserves Energy .............. 81 3.6 Path Independence and Corollaries of the Fundamental Theorem......... 82 3.7 Green's Theorem.................................... 84 3.8 Problems........................................ 89 4 Surface Integrals, Flux, and Fundamental Theorems 93 4.1 Surface Integrals of Scalar Fields........................... 93 4.2 Flux........................................... 96 4.3 The Gradient, Divergence, and Curl Operators Via Limits* . 103 4.4 The Stokes-Kelvin Theorem..............................108 4.5 The Divergence Theorem ...............................112 4.6 Problems........................................114 List of Figures 117 i 11/14/19 Multivariate Calculus: Vector Calculus Havens 0.
    [Show full text]
  • Divergence, Gradient and Curl Based on Lecture Notes by James
    Divergence, gradient and curl Based on lecture notes by James McKernan One can formally define the gradient of a function 3 rf : R −! R; by the formal rule @f @f @f grad f = rf = ^{ +| ^ + k^ @x @y @z d Just like dx is an operator that can be applied to a function, the del operator is a vector operator given by @ @ @ @ @ @ r = ^{ +| ^ + k^ = ; ; @x @y @z @x @y @z Using the operator del we can define two other operations, this time on vector fields: Blackboard 1. Let A ⊂ R3 be an open subset and let F~ : A −! R3 be a vector field. The divergence of F~ is the scalar function, div F~ : A −! R; which is defined by the rule div F~ (x; y; z) = r · F~ (x; y; z) @f @f @f = ^{ +| ^ + k^ · (F (x; y; z);F (x; y; z);F (x; y; z)) @x @y @z 1 2 3 @F @F @F = 1 + 2 + 3 : @x @y @z The curl of F~ is the vector field 3 curl F~ : A −! R ; which is defined by the rule curl F~ (x; x; z) = r × F~ (x; y; z) ^{ |^ k^ = @ @ @ @x @y @z F1 F2 F3 @F @F @F @F @F @F = 3 − 2 ^{ − 3 − 1 |^+ 2 − 1 k:^ @y @z @x @z @x @y Note that the del operator makes sense for any n, not just n = 3. So we can define the gradient and the divergence in all dimensions. However curl only makes sense when n = 3. Blackboard 2. The vector field F~ : A −! R3 is called rotation free if the curl is zero, curl F~ = ~0, and it is called incompressible if the divergence is zero, div F~ = 0.
    [Show full text]
  • Spherical Coordinates
    Spherical Coordinates z r^ Transforms ^ " r The forward and reverse coordinate transformations are ! ^ ! r = x2 + y2 + z 2 r x = rsin! cos" y arctan" x2 y2 , z$ y r sin sin ! = # + % = ! " z = rcos! & = arctan(y,x) x " where we formally take advantage of the two argument arctan function to eliminate quadrant confusion. Unit Vectors The unit vectors in the spherical coordinate system are functions of position. It is convenient to express them in terms of the spherical coordinates and the unit vectors of the rectangular coordinate system which are not themselves functions of position. ! r xxˆ + yyˆ + zzˆ rˆ = = = xˆ sin! cos" + yˆ sin! sin " + zˆ cos! r r zˆ #rˆ "ˆ = = $ xˆ sin " + yˆ cos" sin! !ˆ = "ˆ # rˆ = xˆ cos! cos" + yˆ cos! sin " $ zˆ sin! Variations of unit vectors with the coordinates Using the expressions obtained above it is easy to derive the following handy relationships: !rˆ = 0 !r !rˆ = xˆ cos" cos# + yˆ cos" sin # $ zˆ sin " = "ˆ !" !rˆ = $xˆ sin" sin # + yˆ sin " cos# = ($ xˆ sin # + yˆ cos #)sin" = #ˆ sin" !# !"ˆ = 0 !r !"ˆ = 0 !# !"ˆ = $xˆ cos" $ yˆ sin " = $ rˆ sin # + #ˆ cos# !" ( ) !"ˆ = 0 !r !"ˆ = # xˆ sin " cos$ # yˆ sin" sin $ # zˆ cos" = #rˆ !" !"ˆ = # xˆ cos" sin $ + yˆ cos" cos$ = $ˆ cos" !$ Path increment ! We will have many uses for the path increment d r expressed in spherical coordinates: ! $ !rˆ !rˆ !rˆ ' dr = d(rrˆ ) = rˆ dr + rdrˆ = rˆ dr + r& dr + d" + d#) % !r !" !# ( = rˆ dr +"ˆ rd " + #ˆr sin "d# Time derivatives of the unit vectors We will also have many uses for the time derivatives of the unit vectors
    [Show full text]
  • Divergence and Curl "Del", ∇ - a Defined Operator ∂ ∂ ∂ ∇ = , , ∂X ∂ Y ∂ Z
    Divergence and Curl "Del", ∇ - A defined operator ∂ ∂ ∂ ∇ = , , ∂x ∂ y ∂ z The gradient of a function (at a point) is a vec tor that points in the direction in which the function increases most rapidly. A vector field is a vector function that can be thou ght of as a velocity field of a fluid. At each point it assigns a vector that represents the velocity of a particle at that point. The flux of a vector field is the volume of fluid flowing through an element of surface area per unit time. The divergence of a vector field is the flux per u nit volume. The divergence of a vector field is a number that can be thought of as a measure of the rate of change of the density of the flu id at a point. The curl of a vector field measures the tendency of the vector field to rotate about a point. The curl of a vector field at a point is a vector that points in the direction of the axis of rotation and has magnitude represents the speed of the rotation. Vector Field Scalar Funct ion F = Pxyz()()(),,, Qxyz ,,, Rxyz ,, f( x, yz, ) Gra dient grad( f ) ∇f = fffx, y , z Div ergence div (F ) ∂∂∂ ∂∂∂P Q R ∇⋅=F , , ⋅PQR, , =++=++ PQR ∂∂∂xyz ∂∂∂ xyz x y z Curl curl (F ) i j k ∂ ∂ ∂ ∇×=F =−−−+−()RQyz ijk() RP xz() QP xy ∂x ∂ y ∂ z P Q R ∇×=F RQy − z, −() RPQP xzxy −, − F( x,, y z) = xe−z ,4 yz2 ,3 ye − z ∂ ∂ ∂ div()F=∇⋅= F ,, ⋅ xe−z ,4,3 yz2 ye − z = e−z+4 z2 − 3 ye − z ∂x ∂ y ∂ z i j k ∂ ∂ ∂ curl ()F=∇×= F = 3e− z − 8 yz 2 , − 0 − ( − xe − z ) , 0 ∂x ∂ y ∂ z ( ) xe−z4 yz2 3 ye − z 3e−z− 8, yz2 − xe − z ,0 grad( scalar function ) = Vector Field div(Vector Field ) = scalarfunction curl (Vector Field) = Vector Field Which of the 9 ways to combine grad, div and curl by taking one of each.
    [Show full text]
  • Del in Cylindrical and Spherical Coordinates - Wikipedia, the Free Encycl
    Del in cylindrical and spherical coordinates - Wikipedia, the free encycl... http://en.wikipedia.org/wiki/Nabla_in_cylindrical_and_spherical_coordi... Make a donation to Wikipedia and give the gift of knowledge! Del in cylindrical and spherical coordinates From Wikipedia, the free encyclopedia (Redirected from Nabla in cylindrical and spherical coordinates) This is a list of some vector calculus formulae of general use in working with standard coordinate systems. Table with the del operator in cylindrical and spherical coordinates Operation Cartesian coordinates (x,y,z) Cylindrical coordinates (ρ,φ,z) Spherical coordinates (r,θ,φ) Definition of coordinates A vector field Gradient Divergence Curl Laplace operator or Differential displacement Differential normal area Differential volume Non-trivial calculation rules: 1. (Laplacian) 2. 3. 4. (using Lagrange's formula for the cross product) 5. Remarks 1 of 2 10/20/2007 7:08 PM Del in cylindrical and spherical coordinates - Wikipedia, the free encycl... http://en.wikipedia.org/wiki/Nabla_in_cylindrical_and_spherical_coordi... This page uses standard physics notation; some (American mathematics) sources define φ as the angle from the z-axis instead of θ. The function atan2(y, x) is used instead of the mathematical function arctan(y/x) due to its domain and image. The classical arctan(y/x) has an image of (-π/2, +π/2), whereas atan2(y, x) is defined to have an image of (-π, π]. See also Orthogonal coordinates Curvilinear coordinates Vector fields in cylindrical and spherical coordinates Retrieved from "http://en.wikipedia.org/wiki/Del_in_cylindrical_and_spherical_coordinates" Categories: Vector calculus | Coordinate systems This page was last modified 11:17, 11 October 2007. All text is available under the terms of the GNU Free Documentation License.
    [Show full text]
  • Two-Dimensional Differential Operators
    Appendix E Two-dimensional differential operators E.1 The del-operator in two dimensions When we deal with scalar fields that do not depend on the third coordinate or with vector fields in which the third component is zero and the other two depend only on the first two coordinates, then it is expedient to introduce the horizontal del-operator ∂ ∂ ∂ ∂ ∇H = i + j = , . ∂x ∂y ∂x ∂y ! By means of this operator we can construct the horizontal gradient of a two- dimensional scalar field φ = φ(x, y) uH = ∇H φ, and the divergence of a two-dimensional vector field uH =(ux, uy) ∂ux ∂uy ξH = ∇H · uH =(∂x, ∂y) · (ux, uy) = + . ∂x ∂y 1041 1042 Franco Mattioli (University of Bologna) Analogously to the three-dimensional case, we introduce the two-dimensional Laplace operator ∂ ∂ ∂φ ∂φ ∂2φ ∂2φ ∇2 ∇ ·∇ · H φ = H H φ = , , = 2 + 2 . ∂x ∂y ! ∂x ∂y ! ∂x ∂y But for the curl is quite another matter. The curl, in fact, is an operator essentially three-dimensional. When applied to a two-dimensional vector field defined in a certain plane, it gives rise to a vector that does not belong to the same plane. This happens because it represents the velocity of rotation of the parcels (see problem [D.5]). If the motion occurs in a horizontal plane, it is clear that the angular velocity of the parcels must be vertical. So, we can define the vertical component of the curl as ∂u ∂u ζ = k · ∇ × u = y − x . H ∂x ∂y Similarly, the curl of a vector field defined in a vertical plane is a horizontal vector.
    [Show full text]
  • A Gentle Introduction to Tensors (2014)
    A Gentle Introduction to Tensors Boaz Porat Department of Electrical Engineering Technion – Israel Institute of Technology [email protected] May 27, 2014 Opening Remarks This document was written for the benefits of Engineering students, Elec- trical Engineering students in particular, who are curious about physics and would like to know more about it, whether from sheer intellectual desire or because one’s awareness that physics is the key to our understanding of the world around us. Of course, anybody who is interested and has some college background may find this material useful. In the future, I hope to write more documents of the same kind. I chose tensors as a first topic for two reasons. First, tensors appear everywhere in physics, including classi- cal mechanics, relativistic mechanics, electrodynamics, particle physics, and more. Second, tensor theory, at the most elementary level, requires only linear algebra and some calculus as prerequisites. Proceeding a small step further, tensor theory requires background in multivariate calculus. For a deeper understanding, knowledge of manifolds and some point-set topology is required. Accordingly, we divide the material into three chapters. The first chapter discusses constant tensors and constant linear transformations. Tensors and transformations are inseparable. To put it succinctly, tensors are geometrical objects over vector spaces, whose coordinates obey certain laws of transformation under change of basis. Vectors are simple and well-known examples of tensors, but there is much more to tensor theory than vectors. The second chapter discusses tensor fields and curvilinear coordinates. It is this chapter that provides the foundations for tensor applications in physics.
    [Show full text]
  • Chapter 1 Fluids and Vector Calculus
    CHAPTER 1 FLUIDS AND VECTOR CALCULUS Picturing fluids • The properties of fluids • Why we use partial derivatives • The del operator • The gradient of a scalar field • The law of conservation of mass • The divergence of a vector field • Constant density flows • The curl of a vector field • 1 Fluid Mechanics Matthew P.Juniper 1.1P ICTURING FLUIDS Fluids flow. This is because they cannot support a shear stress when in static equi- librium.1 Fluids are made up of very many molecules2 and we can picture these molecules as small rigid balls that obey Newton’s laws of motion. In gases, the molecules move in straight lines between one collision and the next with a mean free path that is much larger than the molecular diameter. In liquids, the molecules are in close contact with their neighbours, colliding and forming temporary bonds. These temporary bonds make some liquids difficult to model so we will consider gases first. Given that gas molecules obey Newton’s laws, could we simulate the behaviour of a gas by tracking the position of each molecule? In theory, we could. But how many molecules are there in a typical container? At all but the smallest lengthscales it would be impractical to follow every molecule. 3 Instead, we average all the molecular velocities, vi, around a point in space (x, y, z) and say that the fluid there has a velocity v(x, y, z). So now we can think of the fluid as a continuum, which is a continuous lump of stuff with no gaps and say that it has a certain velocity field.
    [Show full text]
  • Mathematical Modeling of Diverse Phenomena
    NASA SP-437 dW = a••n c mathematical modeling Ok' of diverse phenomena james c. Howard NASA NASA SP-437 mathematical modeling of diverse phenomena James c. howard fW\SA National Aeronautics and Space Administration Scientific and Technical Information Branch 1979 Library of Congress Cataloging in Publication Data Howard, James Carson. Mathematical modeling of diverse phenomena. (NASA SP ; 437) Includes bibliographical references. 1, Calculus of tensors. 2. Mathematical models. I. Title. II. Series: United States. National Aeronautics and Space Administration. NASA SP ; 437. QA433.H68 515'.63 79-18506 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock Number 033-000-00777-9 PREFACE This book is intended for those students, 'engineers, scientists, and applied mathematicians who find it necessary to formulate models of diverse phenomena. To facilitate the formulation of such models, some aspects of the tensor calculus will be introduced. However, no knowledge of tensors is assumed. The chief aim of this calculus is the investigation of relations that remain valid in going from one coordinate system to another. The invariance of tensor quantities with respect to coordinate transformations can be used to advantage in formulating mathematical models. As a consequence of the geometrical simplification inherent in the tensor method, the formulation of problems in curvilinear coordinate systems can be reduced to series of routine operations involving only summation and differentia- tion. When conventional methods are used, the form which the equations of mathematical physics assumes depends on the coordinate system used to describe the problem being studied. This dependence, which is due to the practice of expressing vectors in terms of their physical components, can be removed by the simple expedient.of expressing all vectors in terms of their tensor components.
    [Show full text]
  • Gradients and Directional Derivatives R Horan & M Lavelle
    Intermediate Mathematics Gradients and Directional Derivatives R Horan & M Lavelle The aim of this package is to provide a short self assessment programme for students who want to obtain an ability in vector calculus to calculate gradients and directional derivatives. Copyright c 2004 [email protected] , [email protected] Last Revision Date: August 24, 2004 Version 1.0 Table of Contents 1. Introduction (Vectors) 2. Gradient (Grad) 3. Directional Derivatives 4. Final Quiz Solutions to Exercises Solutions to Quizzes The full range of these packages and some instructions, should they be required, can be obtained from our web page Mathematics Support Materials. Section 1: Introduction (Vectors) 3 1. Introduction (Vectors) The base vectors in two dimensional Cartesian coordinates are the unit vector i in the positive direction of the x axis and the unit vector j in the y direction. See Diagram 1. (In three dimensions we also require k, the unit vector in the z direction.) The position vector of a point P (x, y) in two dimensions is xi + yj . We will often denote this important vector by r . See Diagram 2. (In three dimensions the position vector is r = xi + yj + zk .) y 6 Diagram 1 y 6 Diagram 2 P (x, y) 3 r 6 j yj 6- - - - 0 i x 0 xi x Section 1: Introduction (Vectors) 4 The vector differential operator ∇ , called “del” or “nabla”, is defined in three dimensions to be: ∂ ∂ ∂ ∇ = i + j + k . ∂x ∂y ∂z Note that these are partial derivatives! This vector operator may be applied to (differentiable) scalar func- tions (scalar fields) and the result is a special case of a vector field, called a gradient vector field.
    [Show full text]
  • Chapter 15 ∇ in Other Coordinates
    r in other coordinates 1 Chapter 15 r in other coordinates On a number of occasions we have noticed that del is geometrically determined | it does not depend on a choice of coordinates for Rn. This was shown to be true for rf, the gradient of a function from Rn to R (Section 2H). It was also veri¯ed for r ² F , the divergence of a function from Rn to Rn (Section 14B). And in the case n = 3, we saw in Section 13G that it is true for r £ F , the curl of a function from R3 to R3. These three instances beg the question of how we might express r in other coordinate systems for Rn. A recent example of this is found in Section 13G, where a formula is given for r £ F in terms of an arbitrary right-handed orthonormal frame for R3. We shall accomplish much more in this chapter. A very interesting book about r, by Harry Moritz Schey, has the interesting title Div, Grad, Curl, And All That. A. Biorthogonal systems We begin with some elementary linear algebra. Consider an arbitrary frame f'1;'2;:::;'ng for Rn. We know of course that the Gram matrix is of great interest: G = ('i ² 'j): This is a symmetric positive de¯nite matrix, and we shall denote its entries as gij = 'i ² 'j: Of course, G is the identity matrix () we have an orthonormal frame. We also form the matrix © whose columns are the vectors 'i. Symbolically we write © = ('1 '2 :::'n): We know that © is an orthogonal matrix () we have an orthonormal frame (Problem 4{20).
    [Show full text]