Algebra, Geometry, Topology

Total Page:16

File Type:pdf, Size:1020Kb

Algebra, Geometry, Topology Complex Arrangements: Algebra, Geometry, Topology Draft of March 29, 2009 Dan Cohen Graham Denham Michael Falk Hal Schenck Alex Suciu Hiro Terao Sergey Yuzvinsky 2000 Mathematics Subject Classification. Primary 32S22, 52C35; Secondary 14F35, 20E07, 20F14, 20J05, 55R80, 57M05 Key words and phrases. hyperplane arrangement, fundamental group, cohomology ring, characteristic variety, resonance variety Abstract. This is a book about complex hyperplane arrangements: their algebra, geometry, and topology. Contents Preface vii Introduction ix Chapter 1. Aspects of complex arrangements 1 1.1. Arrangements and their complements 1 1.2. Combinatorics 4 1.3. Topology 14 1.4. Algebra 18 1.5. Geometry 26 1.6. Compactifications 30 Chapter 2. Cohomology ring 35 2.1. Arnold-Brieskorn and Orlik-Solomon Theorems 35 2.2. Topological consequences 38 2.3. Geometric consequences 38 2.4. Homology and Varchenko’s bilinear form 41 2.5. Quadratic OS algebra 47 Chapter 3. Special classes of arrangements 49 3.1. Generic arrangements 49 3.2. Reflection arrangements 52 3.3. Simplicial arrangements 55 3.4. Supersolvable arrangements 55 3.5. Hypersolvable arrangements 61 3.6. Graphic arrangements 62 Chapter 4. Resonance varieties 65 4.1. The cochain complex determined by a one-form 65 4.2. Degree-one resonance varieties 69 4.3. Resonance over a field of zero characteristic 75 4.4. Nets and multinets 78 4.5. Bounds on dim H1(A, a) 82 4.6. Higher-degree resonance 87 Chapter 5. Fundamental Group 89 5.1. Fundamental group and covering spaces 89 5.2. The braid groups 90 5.3. Polynomial covers and Bn-bundles 91 5.4. Braid monodromy and fundamental group 94 5.5. Fox calculus and Alexander invariants 96 iii iv CONTENTS 5.6. The K(π, 1) problem and torsion-freeness 97 5.7. Residual properties 98 Chapter 6. Lie Algebras attached to arrangements 101 6.1. Lie algebras 101 6.2. Quadratic algebras, Koszul algebras, duality 103 6.3. Lie algebras attached to a group 105 6.4. The associated graded Lie algebra of an arrangement 105 6.5. The Chen Lie algebra of an arrangement 106 6.6. The homotopy Lie algebra of an arrangement 107 6.7. Examples 108 Chapter 7. Free Resolutions and the Orlik–Solomon algebra 109 7.1. Introduction 109 7.2. Resolution of the Orlik-Solomon algebra over the exterior algebra 110 7.3. The resolution of A∗ 116 7.4. The BGG correspondence 118 7.5. Resolution of k over the Orlik-Solomon algebra 123 7.6. Connection to DGAs and the 1-minimal model 130 Chapter 8. Local systems on complements of arrangements 135 8.1. Three views of local systems 135 8.2. General position arrangements 137 8.3. Aspherical arrangements 139 8.4. Representations ? 143 8.5. Minimality ? 143 8.6. Flat connections 143 8.7. Nonresonance theorems 145 Chapter 9. Logarithmic forms, -derivations, and free arrangements 149 9.1. Logarithmic forms and derivationsA along arrangements 149 9.2. Resolution of arrangements and logarithmic forms 150 9.3. Free arrangements 151 9.4. Multiarrangements and logarithmic derivations 152 9.5. Criteria for freeness 154 9.6. The contact-order filtration and the multi-Coxeter arrangements 155 9.7. Shi arrangements and Catalan arrangements 157 Chapter 10. Characteristic varieties 159 10.1. Computing characteristic varieties 159 10.2. The tangent cone theorem 160 10.3. Betti numbers of finite covers 160 10.4. Characteristic varieties over finite fields 161 Chapter 11. Milnor fibration 163 11.1. Definitions 163 11.2. (Co)homology 164 11.3. Examples 166 Chapter 12. Compactifications of arrangement complements 167 12.1. Introduction 167 CONTENTS v 12.2. Definition of M 167 12.3. Nested sets 168 12.4. Main theorems 171 Bibliography 173 Preface This is a book about the algebra, geometry, and topology of complex hyperplane arrangements. Dan Cohen Graham Denham Michael Falk Hal Schenck Alex Suciu Hiro Terao Sergey Yuzvinsky vii Introduction In the introduction to [171], Hirzebruch wrote: “The topology of the com- plement of an arrangement of lines in the projective plane is very interesting, the investigation of the fundamental group of the complement very difficult.” Much progress has occurred since that assessment was made in 1983. The fundamental groups of complements of line arrangements are still difficult to study, but enough light has been shed on their structure, that once seemingly intractable problems can now be attacked in earnest. This book is meant as an introduction to some recent developments, and as an invitation for further investigation. We take a fresh look at several topics studied in the past two decades, from the point of view of a unified framework. Though most of the material is expository, we provide new examples and applications, which in turn raise several questions and conjectures. In its simplest manifestation, an arrangement is merely a finite collection of lines in the real plane. These lines cut the plane into pieces, and understanding the topology of the complement amounts to counting those pieces. In the case of lines in the complex plane (or, for that matter, hyperplanes in complex ℓ-space), the complement is connected, and its topology (as reflected, for example, in its fundamental group) is much more interesting. An important example is the braid arrangement of diagonal hyperplanes in Cℓ. In that case, loops in the complement can be viewed as (pure) braids on ℓ strings, and the fundamental group can be identified with the pure braid group Pℓ. For an arbitrary hyperplane arrangement, = H1,...,Hn , with complement X( ) = ℓ n A { } A C i=1 Hi, the identification of the fundamental group, G( ) = π1(X( )), is more\ complicated, but it can be done algorithmically, using theA theory ofA braids. ThisS theory, in turn, is intimately connected with the theory of knots and links in 3-space, with its wealth of algebraic and combinatorial invariants, and its varied applications to biology, chemistry, and physics. A revealing example where devel- opments in arrangement theory have influenced knot theory is Falk and Randell’s [132] proof of the residual nilpotency of the pure braid group, a fact that has been put to good use in the study of Vassiliev invariants. A more direct link to physics is provided by the deep connections between ar- rangement theory and hypergeometric functions. Work by Schechtman-Varchenko [285] and many others has profound implications in the study of Knizhnik-Zamolod- chikov equations in conformal field theory. We refer to the recent monograph by Orlik and Terao [244] for a comprehensive account of this fascinating subject. Hyperplane arrangements, and the closely related configuration spaces, are used in numerous areas, including robotics, graphics, molecular biology, computer vision, and databases for representing the space of all possible states of a system characterized by many degrees of freedom. Understanding the topology of com- plements of subspace arrangements and configuration spaces is important in robot ix x INTRODUCTION motion planning (finding a collision-free motion between two placements of a given robot among a set of obstacles), and in multi-dimensional billiards (describing pe- riodic trajectories of a mass-point in a domain in Euclidean space with reflecting boundary). CHAPTER 1 Aspects of complex arrangements In this chapter we introduce the basic tools used in the study of complex hyper- plane arrangements. Along the way, we preview some of the more advanced topics to be treated in detail later in the text: the algebraic, topological, and geometric aspects of arrangements and their interplay. We begin with an elementary discussion of the main objects of interest: cen- tral and projective arrangements and their complements. In 1.2 we introduce the fundamental combinatorial invariants of arrangements: the intersection§ lattice, M¨obius function, and Poincar´epolynomial, the underlying matroid and dual point configuration. We also prove a useful result for inductive arguments: the deletion- restriction formula, which relates the Poincar´epolynomials of an arrangement , H A the deletion ′ = H, and the restriction , for any H . In 1.3 weA discussA\ in more detail the topologyA of the complement.∈ A We describe the braid§ monodromy presentation for the fundamental group of the complement, which is treated in depth in Chapter 5. This section closes with a first glimpse of fiber-type arrangements, where the fundamental group is an iterated semidirect product. In 1.4 we introduce the Orlik-Solomon algebra, which is a combinatorial al- gebra associated§ to any matroid, and define the nbc basis for the algebra. Using this basis, we prove that the Poincar´eseries of the OS-algebra is equal to Poincar´e polynomial of . We then introduceA in 1.5 some of the finer geometric invariants of an arrange- ment : the sheaf of logarithmic§ one-forms with poles along , and the sheaf of derivationsA tangent to . For a normal crossing divisor, Grothendieck’sA algebraic de Rham theorem showsA that the cohomology of the complement may be computed from the complex of logarithmic forms. In the case of arrangements, Solomon-Terao showed that the logarithmic forms determine the Poincar´epolynomial of , even though is not a normal crossing divisor in general. A Finally,A in 1.6 we sketch the construction of wonderful compactifications, com- pact algebraic§ manifolds in which the complement of is realized as the comple- ment of a normal-crossing divisor. This topic is treatedA in detail in Chapter 12. 1.1. Arrangements and their complements 1.1.1. Central and projective arrangements. The primary object of in- terest in this book is a central arrangement of hyperplanes in the complex vector A space Cℓ. A hyperplane is a linear subspace of (complex) codimension one; an ar- rangement is a finite set of hyperplanes.
Recommended publications
  • Arxiv:1907.02135V1 [Math.RA] 3 Jul 2019
    THE UNIVERSAL ENVELOPING ALGEBRA OF sl2 AND THE RACAH ALGEBRA SARAH BOCKTING-CONRAD AND HAU-WEN HUANG Abstract. Let F denote a field with char F 6= 2. The Racah algebra ℜ is the unital asso- ciative F-algebra defined by generators and relations in the following way. The generators are A, B, C, D. The relations assert that [A, B] = [B, C] = [C, A]=2D and each of the elements α = [A, D]+ AC − BA, β = [B,D]+ BA − CB, γ = [C,D]+ CB − AC is central in ℜ. Additionally the element δ = A + B + C is central in ℜ. In this paper we explore the relationship between the Racah algebra ℜ and the universal enveloping algebra U(sl2). Let a,b,c denote mutually commuting indeterminates. We show that there exists a unique F-algebra homomorphism ♮ : ℜ → F[a,b,c] ⊗F U(sl2) that sends A 7→ a(a + 1) ⊗ 1 + (b − c − a) ⊗ x + (a + b − c + 1) ⊗ y − 1 ⊗ xy, B 7→ b(b + 1) ⊗ 1 + (c − a − b) ⊗ y + (b + c − a + 1) ⊗ z − 1 ⊗ yz, C 7→ c(c + 1) ⊗ 1 + (a − b − c) ⊗ z + (c + a − b + 1) ⊗ x − 1 ⊗ zx, D 7→ 1 ⊗ (zyx + zx) + (c + b(c + a − b)) ⊗ x + (a + c(a + b − c)) ⊗ y +(b + a(b + c − a)) ⊗ z + (b − c) ⊗ xy + (c − a) ⊗ yz + (a − b) ⊗ zx, where x,y,z are the equitable generators for U(sl2). We additionally give the images of α, β, γ, δ, and certain Casimir elements of ℜ under ♮. We also show that the map ♮ is an injection and thus provides an embedding of ℜ into F[a,b,c] ⊗ U(sl2).
    [Show full text]
  • A View of Symplectic Lie Algebras from Quadratic Poisson Algebras
    Bolet´ınde Matem´aticas 26(1) 1{30 (2019) 1 A view of symplectic Lie algebras from quadratic Poisson algebras Una mirada a las ´algebrasde Lie simplecticas desde las ´algebrasde Poisson cuadr´aticas Andr´esRia~no1;a, Armando Reyes1;b Abstract. Using the concept of double extension, Benayadi [2] showed how to construct a new quadratic algebra (g(A);T ) given a quadratic algebra (A;B). With both algebras and an invertible skew-symmetric algebra D over A, he en- dowed (A;B) with a simplectic structure through a bilinear form !, obtaining a simplectic algebra (g(A);T; Ω). Our purpose in this short communication is to show the construction given by Benayadi and present the complete develop- ment of each one of his assertions. We remark that this communication does not have original results and it was made as a result of the undergraduated work titled “Construcci´onde ´algebrasde Lie simpl´ecticasdesde ´algebrasde Poisson cuadr´aticas"[5],which was awarded as the best mathematics under- graduated thesis in the XXVI Contest at Universidad Nacional de Colombia, Sede Bogot´a.The work was written by the first author under the direction of the second author. Keywords: Lie algebra, Poisson algebra, quadratic algebra, symplectic alge- bra. Resumen. A partir del concepto de doble extensi´on,Benayadi [2] mostr´o c´omoconstruir una nueva ´algebracuadr´atica(g(A);T ), a partir de un ´algebra cuadr´aticadada (A;B). Con estas dos ´algebrasy una derivaci´oninvertible anti-sim´etrica D sobre A, ´eldot´oa (A;B) de una estructura simpl´ectica a traves de una forma bilineal !, obteniendo as´ı una ´algebrasimpl´ectica (g(A);T; Ω).
    [Show full text]
  • Introduction to Koszul Algebras 1. Graded
    REVISTA DE LA UNION´ MATEMATICA´ ARGENTINA Volumen 48, N´umero 2, 2007, P´aginas 67–95 INTRODUCTION TO KOSZUL ALGEBRAS ROBERTO MART´INEZ-VILLA Dedicated to H´ector A. Merklen and Mar´ıa In´es Platzeck on their birthday. Abstract. Las ´algebras de Koszul fueron inventadas por Priddy [P] y han tenido un enorme desarrollo durante los ´ultimos diez a˜nos, el art´ıculo de Beilin- son, Ginsburg y Soergel [BGS] ha sido muy influyente. En estas notas veremos los teoremas b´asicos de Algebras´ de Koszul usando m´etodos de teor´ıa de anillos y m´odulos, como se hizo en los art´ıculos [GM1],[GM2], despu´es nos concen- traremos en el estudio de las ´algebras Koszul autoinyectivas, primero las de radical cubo cero y posteriormente el caso general y por ´ultimo aplicaremos los resultados obtenidos al estudio de las gavillas coherentes sobre el espacio proyectivo. 1. GRADED ALGEBRAS In this lecture we recall the basic notions and definitions that will be used throughout this mini-course. We will always denote the base field by K. We will say that an algebra R is a positively graded K-algebra, if • R = R0 ⊕ R1 ⊕ . ., • RiRj ⊆ Ri+j , for all i, j, and • R0 = K × . × K • R1 is a finite dimensional K-vector space We will say R is locally finite if in addition, for each i, Ri is a finite dimensional K-vector space. The elements of Ri are called homogeneous of degree i, and Ri is the degree i component of R. For example, the path algebra of any quiver is a graded algebra, whose degree i component is the K-vector space spanned by all the paths of length i.
    [Show full text]
  • Enhanced Koszul Properties in Galois Cohomology
    ENHANCED KOSZUL PROPERTIES IN GALOIS COHOMOLOGY ˜ JAN´ MINA´ C,ˇ MARINA PALAISTI, FEDERICO W. PASINI, NGUYENˆ DUY TANˆ Dedicated to David Eisenbud, with admiration and gratitude. Abstract. We prove that Galois cohomology satisfies several surprisingly strong versions of Koszul properties, under a well known conjecture, in the finitely generated case. In fact, these versions of Koszulity hold for all finitely generated maximal pro-p quotients of absolute Galois groups which are cur- rently understood. We point out several of these unconditional results which follow from our work. We show how these enhanced versions are preserved under certain natural operations on algebras, generalising several results that were previously established only in the commutative case. The subject matter in this paper contains topics which are used in various branches of algebra and computer science. Contents 1. Introduction 2 1.1. Motivation 2 1.2. Notation and results 3 Acknowledgements 6 2. Koszulity and relatives 6 2.1. Original Koszul property 6 2.2. Enhanced forms of Koszulity 9 3. Elementary type pro-p groups 13 4. Universal Koszulity of ET groups 17 4.1. Free pro-p groups 17 4.2. Demushkin groups 18 4.3. Direct sum 18 4.4. Twisted extension 19 5. Strong Koszulity of ET groups 20 5.1. Free pro-p groups 20 5.2. Demushkin groups 20 5.3. Direct sum 21 5.4. Twisted extension 22 arXiv:1811.09272v4 [math.RA] 21 Apr 2020 6. Exceptions to Strong Koszulity 22 6.1. Superpythagorean fields 23 6.2. 2-Rigid fields of level 2 25 7.
    [Show full text]
  • Koszul Duality for Algebras
    Koszul duality for algebras Christopher Kuo October 17, 2018 Abstract Let A be an algebra. The Koszul duality is a type of derived equivalence between modules over A and modules over its Koszul dual A!. In this talk, we will talk about the general framework and then focus on the classical cases as well as examples. 1 Introduction A standard way to obtain equivalence between categories of modules is through Morita theory. Let C be a representable, k-linear, cocomplete category. Let X 2 C be a compact generator which means the functor HomC(X; ·) is cocontinuous and conservative. Let op A = EndC(X) be the opposite algebra of the endomorphism algebra of X. Then we have ∼ the Morita equivalence, X = A−Mod which is given by the assignment Y 7! HomC(X; Y ). Let k be a field such that char(k) 6= 2 and A be an algebra over k. Following the above framework, one might hope that in some good cases there's an equivalence ∼ op A − Mod = HomA(k; k) − Mod. Unfortunately, this is not true in general. Consider the case A = k[x] and equip k with the trivial A-module structure. There is a two term x ∼ projective resolution of k by 0 ! k[x] −! k[x] ! k ! 0 and HomA(k; k) = k[] with 2 = 0. So we can ask if that the assignment M 7! Homk[x](k; M) induces a equivalence k[x] − Mod ∼= k[] − Mod? The answer is false. For example, the functor Homk[x](k; ·) kills non-zero objects.
    [Show full text]
  • Nonhomogeneous Quadratic Duality and Curvature
    ÆÓÒÓÑÓÒÓÙ× ÙÐØÝ Ò ÙÖÚØÙÖ Äº Eº ÈÓ×iØ×eÐ×ki Introduction A quadratic algebra is a graded algebra with generators of degree 1 and relations of degree 2. Let A be a quadratic algebra with the space of generators V and the space of relations I ⊂ V ⊗ V . The classical quadratic duality assigns the quadratic algebra A! with generators from V ∗ and the relations I⊥ ⊂ V ∗ ⊗ V ∗ to the algebra A. According to the classical results of Priddy and L¨ofwall [1, 3], A! is isomorphic to the subalgebra of ∗ 1 ExtA(k,k) generated by ExtA(k,k). Priddy called an algebra A a Koszul algebra if this ∗ subalgebra coincides with the whole of ExtA(k,k). Koszul algebras constitute a wonderful class of quadratic algebras, which is closed under a large set of operations, contains the main examples, and perhaps admits a finite classification. In this paper, we propose an extension of the quadratic duality to the nonhomogeneous case. Roughly speaking, a nonhomogeneous quadratic algebra (or a quadratic-linear-scalar algebra, a QLS-algebra) is an algebra defined by (generators and) nonhomogeneous relations of degree 2. A quadratic-linear algebra (QL-algebra) is an algebra defined by nonhomo- geneous quadratic relations without the scalar parts; in other words, it is an augmented QLS-algebra. The precise definition takes into account the fact that a collection of nonho- mogeneous relations does not necessarily “make sense” (its coefficients must satisfy some equations; the Jacobi identity is a classical example). The dual object for a QL-algebra is [6] a quadratic DG-algebra [7].
    [Show full text]
  • Quadratic Duals, Koszul Dual Functors, and Applications
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 361, Number 3, March 2009, Pages 1129–1172 S 0002-9947(08)04539-X Article electronically published on October 8, 2008 QUADRATIC DUALS, KOSZUL DUAL FUNCTORS, AND APPLICATIONS VOLODYMYR MAZORCHUK, SERGE OVSIENKO, AND CATHARINA STROPPEL Abstract. This paper studies quadratic and Koszul duality for modules over positively graded categories. Typical examples are modules over a path al- gebra, which is graded by the path length, of a not necessarily finite quiver with relations. We present a very general definition of quadratic and Koszul duality functors backed up by explicit examples. This generalizes the work of Beilinson, Ginzburg, and Soergel, 1996, in two substantial ways: We work in the setup of graded categories, i.e. we allow infinitely many idempotents and also define a “Koszul” duality functor for not necessarily Koszul categories. As an illustration of the techniques we reprove the Koszul duality (Ryom-Hansen, 2004) of translation and Zuckerman functors for the classical category O in a quite elementary and explicit way. From this we deduce a conjecture of Bern- stein, Frenkel, and Khovanov, 1999. As applications we propose a definition of a “Koszul” dual category for integral blocks of Harish-Chandra bimodules and for blocks outside the critical hyperplanes for the Kac-Moody category O. 1. Introduction This paper deals with (categories of) modules over positively graded categories, defines quadratic duality and studies Koszul duality. The first motivation behind this is to get a generalized Koszul or quadratic duality which also works for module categories over not necessarily finite-dimensional, not necessarily unital algebras.
    [Show full text]
  • Arxiv:2105.13457V1 [Math.RA] 27 May 2021 Inso Xeiragba.I Olw Rmwr Fpea[2 Peeva of Work from Follows It Algebras
    G-QUADRATIC, LG-QUADRATIC, AND KOSZUL QUOTIENTS OF EXTERIOR ALGEBRAS JASON MCCULLOUGH AND ZACHARY MERE Abstract. This paper introduces the study of LG-quadratic quotients of exterior algebras, showing that they are Koszul, as in the commutative case. We construct an example of an LG-quadratic algebra that is not G-quadratic and another example that is Koszul but not LG-quadratic. This is only the second known Koszul algebra that is not LG-quadratic and the first that is noncommutative. 1. Introduction K Let be a field and let E = VK e1,...,en denote an exterior algebra over K on n variables. The purpose ofh this paperi is to investigate the Koszul and G-quadratic properties of quotients of E. In the commutative setting, we have the following implications: quadratic GB G-quadratic LG-quadratic Koszul quadratic. ⇒ ⇒ ⇒ ⇒ Each of these implications is strict; see [9, p. 292]. The third implication is particularly interesting as there is only one known commutative Koszul algebra that is not LG-quadratic due to Conca [8, Example 1.20]. Over an exterior algebra, we show that the same implications hold and that all of them are strict. In particular, we introduce the notion of LG- quadratic quotients of an exterior algebra and prove that they are Koszul (Theorem 3.2). We construct an LG-quadratic quotient of an exterior algebra that is not G-quadratic (Theorem 4.5), thus answering a question of Thieu [34, Example 5.2.2]. We also construct a Koszul quotient of an exterior algebra that is not LG-quadratic (Theorem 5.4).
    [Show full text]
  • Arxiv:2108.00269V1 [Math.QA] 31 Jul 2021 Quantum
    Quantum Representation Theory and Manin matrices I: finite-dimensional case Alexey Silantyev∗ Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia State University ”Dubna”, 141980 Dubna, Moscow region, Russia Abstract We construct Quantum Representation Theory which describes quantum analogue of representations in frame of ‘non-commutative linear geometry’ developed by Manin in [Man88]. To do it we generalise the internal hom-functor to the case of adjunction with a parameter and construct a general approach to representations of a monoid in a symmetric monoidal category with a parameter subcategory. Quantum Representation Theory is obtained by application of this approach to a monoidal category of some class of graded algebras with Manin product, where the parameter subcategory consists of connected finitely generated quadratic algebras. We formulate this theory in the language of Manin matrices and obtain quantum analogues of direct sum and tensor product of representations. Finally, we give some examples of quantum representations. Keywords: quadratic algebras; Manin matrices; quantum groups; non-commutative spaces; Representation Theory; monoidal categories. Contents 1 Introduction 2 2 Preliminaries 4 2.1 Vectorspacesandalgebras. 4 arXiv:2108.00269v2 [math.QA] 24 Sep 2021 2.2 Algebraicsetsandaffineschemes . 6 2.3 Monoidalcategoriesandfunctors . .. 8 2.4 Monoidsandtheiractions ............................ 11 2.5 Monoids and groups in a category with finite products . ... 17 ∗[email protected] 1 3 Internal hom and representations 19 3.1 Internal (co)hom-functor and its generalisation . ....... 19 3.2 (Co)representationsof(co)monoids . .... 23 3.3 Translation of (co)representations under monoidal functors .......... 27 4 Quantum linear spaces 30 4.1 Operations with quadratic algebras . 31 4.2 Maninmatrices .................................
    [Show full text]
  • KOSZUL DUALITY and EQUIVALENCES of CATEGORIES Introduction Koszul Algebras Are Graded Associative Algebras Which Have Found Appl
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 358, Number 6, Pages 2373–2398 S 0002-9947(05)04035-3 Article electronically published on December 20, 2005 KOSZUL DUALITY AND EQUIVALENCES OF CATEGORIES GUNNAR FLØYSTAD Abstract. Let A and A! be dual Koszul algebras. By Positselski a filtered algebra U with gr U = A is Koszul dual to a differential graded algebra (A!,d). We relate the module categories of this dual pair by a ⊗−Hom adjunction. This descends to give an equivalence of suitable quotient categories and generalizes work of Beilinson, Ginzburg, and Soergel. Introduction Koszul algebras are graded associative algebras which have found applications in many different branches of mathematics. A prominent feature of Koszul algebras is that there is a related dual Koszul algebra. Many of the applications of Koszul algebras concern relating the module categories of two dual Koszul algebras and this is the central topic of this paper. Let A and A! be dual Koszul algebras which are quotients of the tensor algebras T (V )andT (V ∗) for a finite-dimensional vector space V and its dual V ∗.The classical example being the symmetric algebra S(V ) and the exterior algebra E(V ∗). Bernstein, Gel’fand, and Gel’fand [3] related the module categories of S(V )and E(V ∗), and Beilinson, Ginzburg, and Soergel [2] developed this further for general pairs A and A!. Now Positselski [21] considered filtered deformations U of A such that the asso- ciated graded algebra gr U is isomorphic to A. He showed that this is equivalent to giving A! the structure of a curved differential graded algebra (cdga), i.e.
    [Show full text]
  • Problems in the Classification Theory of Non-Associative Simple Algebras
    “62_Darpo_omslag” — 2009/1/13 — 14:24 — page 2 — #2 UPPSALA DISSERTATIONS IN MATHEMATICS 62 Problems in the classification theory of non-associative simple algebras Erik Darpö Department of Mathematics Uppsala University UPPSALA 2009 ! " # $%%# &' ( ) ) ) * ! + , * ,* $%%#* - ) ! ) . /0 1 0 * 2$* &2 * * 314. #56/# /(%2/$%(&/(* 3 ) (% ) ) ) / ) + * ! )) ) ) ) * 0 ) ) ) + ) * 7 ) / ) )* ! ) / ) + + )) ) )) * 3 + 8 9 ) * ! + ) ) ) * 0 , + ) * 0 ) ) / , ) * 0 ) :/; * < ) / /8 )* ) ) * !" # $%&'(") $ = ,> $%%# 311. ?% /$%?# 314. #56/# /(%2/$%(&/( ' ''' /#(&2 @ 'AA *>*A B C ' ''' /#(&2D List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Darpö, E., Dieterich, E., and Herschend, M. (2005) In which di- mensions does a division algebra over a given ground field exist? Enseign. Math., 51(3-4):255–263. II Darpö, E. (2006) On the classification of the real flexible division algebras. Colloq. Math., 105(1):1–17. III Darpö, E., Dieterich, E. (2007) Real commutative division algebras. Algebr. Represent. Theory, 10(2):179–196. IV Darpö, E. (2007) Normal forms for
    [Show full text]
  • Koszul Calculus
    Koszul calculus Roland Berger, Thierry Lambre and Andrea Solotar ∗ Abstract We present a calculus which is well-adapted to homogeneous quadratic algebras. We define this calculus on Koszul cohomology –resp. homology– by cup products – resp. cap products. The Koszul homology and cohomology are interpreted in terms of derived categories. If the algebra is not Koszul, then Koszul (co)homology provides different information than Hochschild (co)homology. As an application of our calculus, the Koszul duality for Koszul cohomology algebras is proved for any quadratic algebra, and this duality is extended in some sense to Koszul homology. So, the true nature of the Koszul duality theorem is independent of any assumption on the quadratic algebra. We compute explicitly this calculus on a non-Koszul example. 2010 MSC: 16S37, 16E35, 16E40, 16E45. Keywords: Quadratic algebras, Koszul algebras, Hochschild (co)homology, derived cate- gories, cup and cap products, Calabi-Yau algebras. Contents 1 Introduction 2 2 Koszul homology and cohomology 5 2.1 Recalling the bimodule complex K(A)...................... 5 2.2 The Koszul homology HK•(A, M) ........................ 6 2.3 The Koszul cohomology HK•(A, M)....................... 7 2.4 Coefficients in k ................................... 8 3 The Koszul cup product 9 arXiv:1512.00183v3 [math.RA] 20 Jun 2017 3.1 Definitionandfirstproperties . 9 3.2 TheKoszulcupbracket .............................. 10 3.3 Thefundamental1-cocycle . 10 3.4 Koszulderivations ................................. 12 3.5 HigherKoszulcohomology.. .. .. .. .. .. .. .. .. .. .. .. 12 3.6 Higher Koszul cohomology with coefficients in A ................ 13 3.7 Higher Koszul cohomology of symmetric algebras . .... 14 ∗This work has been partially supported by the projects UBACYT 20020130100533BA, PIP-CONICET 11220150100483CO and MATHAMSUD-REPHOMOL.
    [Show full text]