Comparison of Usability Between Gear Shifters with Varied Visual and Haptic Patterns and Complexities

Total Page:16

File Type:pdf, Size:1020Kb

Comparison of Usability Between Gear Shifters with Varied Visual and Haptic Patterns and Complexities Multimodal Technologies and Interaction Article Comparison of Usability between Gear Shifters with Varied Visual and Haptic Patterns and Complexities Sanna Lohilahti Bladfält * , Camilla Grane and Peter Bengtsson Department of Business Administration, Technology and Social Sciences, Luleå University of Technology, 971 87 Luleå, Sweden; [email protected] (C.G.); [email protected] (P.B.) * Correspondence: [email protected]; Tel.: +46-920-49-33-86 Received: 3 April 2020; Accepted: 27 May 2020; Published: 29 May 2020 Abstract: Shift-by-wire technology enables more options concerning the design, placement and functions of gear shifters compared to traditional gear shifters with manual transmission. These variations can impact usability and driver performance. There is a lack of research regarding the potential advantages and disadvantages of different types of gear shifters. The purpose of this study was to investigate the efficiency and subjective ease-of-use of mono- and polystable joystick gear shifter types at different complexity levels and with full or limited visibility. An experimental study with 36 participants was conducted. The results showed that monostable joysticks, especially those with an I/J-shape, were overall less efficient and easy to use than polystable joysticks. The highest complexity level clearly affected the efficiency for the monostable joystick with an I/J-shape (mono I/J) compared with the other gear shifter types. The monostable joystick with an I/J-shape (mono I/J) was also most affected by reduced visibility at the highest level of complexity, indicating that it was more prone to causing users to take their eyes off the road. Keywords: usability; complexity; shift-by-wire; gear shifter 1. Introduction In 1968, the US National Highway Traffic Safety Administration (NHTSA) alleged that diversity among automatic gear shifters could potentially negatively affect traffic safety [1]. Thus, the NHTSA introduced legislation to prevent errors by standardizing the well-established PRND (Park, Reverse, Neutral and Drive) shift lever sequence. The NHTSA was particularly concerned about shifter errors in association with unfamiliar vehicles and infrequent drivers. This reasoning was in accordance with contemporary research emphasizing that the infrequently used functions in a vehicle should have good learnability and memorability [2]. The linkage between the gear shifter and transmission has traditionally been mechanical, with large and heavy components such as a Bowden cable [3]. Today, the mechanical components can be removed and replaced by electronic shift-by-wire technology, which is becoming increasingly common in modern cars with automatic transmissions [4]. Shift-by-wire gear shifters are often monostable, meaning that the gear shifter will return to one position when the driver releases it. Gear shifters with mechanical transmissions are instead polystable, and the gear shifter will stay in the position to which the driver moves it. Shift-by-wire technology enables new options concerning the design and function of the gear shifter as well as the overall interior design and functionality of the car since the gear shifter is no longer restricted by a mechanical connection [3]. However, as electronic by-wire technology offers car designers increased degrees of freedom, the drivers might face issues regarding usability. A monostable gear shifter lacks the typical spatial haptic feedback when moving the shifter into park, drive or reverse. Monostable shifting requires the driver to devote time to confirm the desired gear position on a display. In a worst-case scenario, this could have fatal consequences. Multimodal Technol. Interact. 2020, 4, 24; doi:10.3390/mti4020024 www.mdpi.com/journal/mti Multimodal Technol. Interact. 2020, 4, 24 2 of 16 The NHTSA concluded that the operation of a monostable shifter is not intuitive, which increases the potential for unintended gear selection [5]. Studies into both manual and automatic gear shifting suggest that drivers might fail to notice traffic information and also make gear-shift errors when gear shifting in attention-demanding or stressful situations [6,7]. A tragic accident caused by a miss-shift occurred in 2015, in which a driver tried to reverse her car that was standing too close a railway crossing. Instead of reversing, the driver drove the car forward; the driver and five train passengers were killed [8]. Based on consumer reports, there have been numerous incidents related to electronic gear shifters [9–12]. One driver described a situation in which he exited the car, believing the gear was in “Park”, and the car began to reverse out of the driveway. Another driver made a similar mistake and reversed into a car [10]. Due to several hundred numbers of unintended vehicle rollaway incidents and alleged crashes associated with a 2014–2015 specific car model, the NHTSA opened an investigation into monostable gear shifters [13]. The problems identified involved more than one model and manufacturer; consequently, the car industry recalled more than a million vehicles on account of traffic safety. The cars were equipped with electronic monostable gear shifters, conveying the selected gear by indicator lights instead of the gear shifter position [13]. According to [14–17], haptics can be used to relieve the visual load and make the vehicle interface more intuitive to use. Findings like these emphasize the importance of haptics when handling secondary tasks such as gear shifting in cars. Consequently, the transition towards monostable gear shifters raises several questions from a traffic safety perspective. There are several studies available on gear shifters [18–20]; however, the implications for usability have not been thoroughly explored. Studies comparing and evaluating monostable and polystable gear shifters are lacking [21,22]. Nevertheless, developers and producers of monostable gear shifters have to continuously make design solutions related to usability and safety issues with the new technology. A study on monostable gear shifters in new vehicles [21] concluded that highly innovative gear shifter designs might confuse drivers and have a negative impact on usability. Furthermore, there seemed to be differences in usability between various monostable designs such as a joystick, stalk, rotary or button shifters. The aim of this paper is to evaluate the usability aspects of monostable versus polystable joystick gear shifters at different complexity levels, with or without visual feedback. Since some cognitive functions, such as the speed of processing information, seems to begin to decline for adults at the age of 20 or 30 with an acceleration of decline at the age of 50 [23,24], only younger drivers under the age of 35 were chosen as participants in this study. More specifically, three hypotheses were tested. Hypothesis 1. There is a difference in efficiency and ease-of-use between shifter types, i.e., monostable and polystable joystick gear shifters. Hypothesis 2. There is a difference in efficiency and ease-of-use between joystick gear shifters at different complexity levels, i.e., with a different number of choices. Hypothesis 3. There is a difference in efficiency and ease-of-use between joystick gear shifters depending on visual feedback. 2. Materials and Methods 2.1. Participants The study comprised 36 participants (29 M; 7 W) with driver’s licenses who were between 19 and 31 years old (M = 22.8; SD = 2.7). All participants drove on a regular basis and had—except for two participants—experience of driving a car with automatic transmission. The participants were students at Luleå University of Technology and received information regarding the study by email. If the students had driver’s licenses, they could apply to participate by choosing an appropriate time and date. Multimodal Technol. Interact. 2020, 4, 24 3 of 16 Participation was voluntary, and the students were not in any position of dependency with the project team. Participants received detailed verbal, as well as written, information about their participation in the study. They were informed about the plan and purpose of the study, the methods to be used, the parties responsible for the study, that participation was voluntary and that they could interrupt and discontinue their participation at any time. The participants received information stating that their anonymity would be maintained and that the study was not measuring individual performance; the study solely measured the performance of the gear shifters. After this, the participants gave their written and verbal consent before actual participation. The study followed Swedish laws regarding conducting experimental research, [25] as well as research rules and guidelines [26]. The participants received a cinema ticket voucher to the value of 135 Swedish crowns. 2.2. Equipment A gear shifter prototype with exchangeable movement patterns was used in the study (Figure1). The gear shifter prototype was developed by Kongsberg Automotive in the form of a joystick, one of the most common gear shifter types in production today. The structural components were made of aluminum with a gimbal joint equipped with ball bearings. The shift force was generated by a spring-loaded plunger acting against an index landscape; the shift pattern and number of shift positions could be altered by exchanging the index component. The panel and knob were made out of 3D-printed, painted polyamide (SLS). The movement patterns were constructed based on vehicle standards regarding movement resistance and the distance between shift positions. The gear shifter visibility was regulated through a blanket fixed on a stick that was lowered over the participant’s right shoulder, which limited their vision but not their hand movement between the steering wheel and gear shifter. The participants were seated in a car seat in front of a desktop driving simulator. The gear shifter was placed on the right-hand side of the participant, at a height and distance that could be assumed to be a common distance in a traditional passenger car with a joystick gear shifter, i.e., approximately 33 cm from the backrest of the seat and 12 cm above the sitting surface of the seat.
Recommended publications
  • Development of Plug-In Air Powered Four Wheels Motorcycle Drivetrain Control Unit
    DEVELOPMENT OF PLUG-IN AIR POWERED FOUR WHEELS MOTORCYCLE DRIVETRAIN CONTROL UNIT TAN BENG LENG Report submitted in partial fulfillment of requirements for award of the Degree of Bachelor of Mechanical Engineering with Automotive Engineering Faculty of Mechanical Engineering UNIVERSITI MALAYSIA PAHANG JUNE 2013 v ABSTRACT This thesis is related to the development of plug-in air powered four wheel motorcycles drive train system that transfers rotational energy from power train to the driving wheel. The objective of this thesis is to develop an air hybrid drivetrain unit and control the power and torque from the powertrain to the driving wheel by using sequential manual transmission. This thesis describes the process of developing sequential shift-by-wire system to make gear shifting for easier for 4 wheel motorcycle. The controller used in this project was 18F PIC 4550 microprocessor. The system programming performed using FLOWCODE version 4.0. 2 units of electromechanical linear actuator were used in this project as an actuator for gear shifting on a manual transmission. Chain drives were selected as power transfer linkage from air hybrid engine to the driving wheel with under drive configuration. Besides the development of shift-by-wire system, the torque on the driving wheel also had been calculated and analysed. In additional, the maximum speed that can be achieved by four wheel motorcycles was also calculated. vi ABSTRAK Tesis ni berkaitan dengan pembangunan sistem pacuan yang memindahkan tenaga putaran ke roda pacuan untuk “plug-in hybrid air powered” motosikal empat roda. Objectif tesis ini ialah untuk membangunkan pacaun “ air hybrid” and mengawal kuasa and tork daripada janakuasa kepada roda paduan mengunakan transmisi manual berturutan.
    [Show full text]
  • Modern Design and Control of Automatic Transmission and The
    Review Paper doi:10.5937/jaes13-7727 Paper number: 13(2015)1, 313, 51 - 59 MODERN DESIGN AND CONTROL OF AUTOMATIC TRANSMISSION AND THE PROSPECTS OF DEVELOPMENT Dejan Matijević The School of Electrical and Computer Engineering of Applied Studies, Belgrade, Serbia Ivan Ivanković* University of Belgrade, Faculty of Mechanical Engineering, Belgrade, Serbia Dr Vladimir Popović University of Belgrade, Faculty of Mechanical Engineering, Belgrade, Serbia The paper provides an overview of modern technical solutions of automatic transmissions in auto- motive industry with their influence on sustainable development. The objective of the first section is a structural view of specific constructions and control systems of presently used automatic transmis- sions, with emphasis on mechatronics implementation. The second section is based on perspectives of development, by integrating some branches of soft computing, such as fuzzy logic and artificial neural networks in order to create an optimal control algorithm for obtaining a contribution to fuel economy, exhaust emission, comfort and vehicle performance. Key words: Automatic transmission, Mechatronics, Automotive industry, Soft Computing INTRODUCTION which is depended by coefficient of friction and normal load on the drive axle. Lower limitation Almost all automobiles in use today are driven by is defined by maximal speed that vehicle can internal combustion engines, which are charac- reach. Shaded areas between traction forces terized by many advantages, such as relatively through gears are power losses. To decrease good efficiency, relatively compact energy stor- power losses and to be as closely as possible age and high power – to – weight ratio [07]. to the ideal traction hyperbola, the gearbox with But, fundamental disadvantages are: enough gear ratios is needed.
    [Show full text]
  • XC40 RECHARGE Mpge MPG Gallons PERFORMANCE AUTHORIZED RETAILER PRICING Per 100
    2021Volvo Fuel Economy and Environment Plug-In Hybrid Vehicle Electricity-Gasoline Fuel Economy Small SUV range from 16 to 120 MPGe. The best vehicle rates 120 MPGe. Volvo Car USA LLC Electricity + Gasoline Gasoline Only You save www.volvocars.com/us Charge Time: 8hours ( 240 V) XC40 RECHARGE MPGe MPG gallons PERFORMANCE AUTHORIZED RETAILER PRICING per 100 ...................................................................................................... ...................................................................................................... .................................................................................................................... 1.0 miles .0 kW-hrs $ 3,250 Pure Electric, Zero Tailpipe Emission VOLVO CARS BELLEVUE 5702 IMPORTER'S SUGGESTED LIST PRICE P.O.E.: $ 53,990.00 gallons per per 100 85 72 Front and Rear Electric Motors 420 116TH AVENUE NE 43 miles 100 miles in fuel costs combined city/highway 0combined city/highway 78 kWh Lithium Ion High Voltage Battery BELLEVUE, WA 98004 Climate Package 750.00 79 over 5 years Shift-by-Wire Single Speed Transmission Heated Windshield Wiper Blades Driving Range Anti-Lock Braking Sys (ABS) w/ Hill Start Assist compared to the 402 Horsepower and 486 lb-ft torque Heated Rear Seats Electricity + Gasoline Gasoline Only Electric Power Assisted Steering Heated Steering Wheel 0 0 0 0 0 average new vehicle. All-Wheel-Drive with Instant Traction All Electric range = 0 to 8 miles 0 miles Dynamic Chassis Advanced Package 1,300.00 19" Alloy Wheels Headlight High Pressure Cleaning Fuel Economy & Greenhouse Gas Rating (tailpipe only) Smog Rating (tailpipe only) ......................................................................................................WARRANTY Pilot Assist Driver Assistance System with Annual Fuel 48 Month/50,000 Mile Limited Warranty Coverage cost MPG Adaptive Cruise Control 144 Month Corrosion Protection "Unlimited Mileage" 360 Surround View Camera Refer to Warranty Info Book for Specific Limitations.
    [Show full text]
  • Analysis and Simulation of a Torque Assist Automated Manual Transmission
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PORTO Publications Open Repository TOrino Post print (i.e. final draft post-refereeing) version of an article published on Mechanical Systems and Signal Processing. Beyond the journal formatting, please note that there could be minor changes from this document to the final published version. The final published version is accessible from here: http://dx.doi.org/10.1016/j.ymssp.2010.12.014 This document has made accessible through PORTO, the Open Access Repository of Politecnico di Torino (http://porto.polito.it), in compliance with the Publisher's copyright policy as reported in the SHERPA- ROMEO website: http://www.sherpa.ac.uk/romeo/issn/0888-3270/ Analysis and Simulation of a Torque Assist Automated Manual Transmission E. Galvagno, M. Velardocchia, A. Vigliani Dipartimento di Meccanica - Politecnico di Torino C.so Duca degli Abruzzi, 24 - 10129 Torino - ITALY email: [email protected] Keywords assist clutch automated manual transmission power-shift transmission torque gap filler drivability Abstract The paper presents the kinematic and dynamic analysis of a power-shift Automated Manual Transmission (AMT) characterised by a wet clutch, called Assist-Clutch (ACL), replacing the fifth gear synchroniser. This torque-assist mechanism becomes a torque transfer path during gearshifts, in order to overcome a typical dynamic problem of the AMTs, that is the driving force interruption. The mean power contributions during gearshifts are computed for different engine and ACL interventions, thus allowing to draw considerations useful for developing the control algorithms. The simulation results prove the advantages in terms of gearshift quality and ride comfort of the analysed transmission.
    [Show full text]
  • How Automatic Transmissions Work by Karim Nice
    How Automatic Transmissions Work by Karim Nice Contents 1. Introduction to How Automatic Transmissions Work 2. Purpose of an Automatic Transmission 3. The Planetary Gearset 4. Planetary Gearset Ratios 5. Compound Planetary Gearset 6. First Gear If you have ever driven a car with an automatic transmission, then you know that there are two big differences between an automatic transmission and a manu al transmission: There is no clutch pedal in an automatic transmission car. There is no gear shift in an automatic transmission car. Once you put the transmission into drive, everything else is automatic. Both the automatic transmission (plus its torque converter) and amanual transmission (with itsclutch) accomplish exactly the same thing, but they do it in totally different ways. It turns out that the way an automatic transmission does it is absolutely amazing! In this article, we'll work our way through an automatic transmission. We'll start with the key to the whole system: planetary gearsets. Then we'll see how the transmission is put together, learn how the controls work and discuss some of the intricacies involved in controlling a transmission. Purpose of an Automatic Transmission Location of the automatic transmission. Just like that of a manual transmission, the automatic transmission's primary job is to allow the engine to operate in its narrow range of speeds while providing a wide range of output speeds. Without a transmission, cars would be limited to one gear ratio, and that ratio would have to be selected to allow the car to travel at the desired top speed.
    [Show full text]
  • Variable Automatic Gearbox Multitronic 01J Self
    228 228 Service. Variable Automatic Gearbox multitronic® 01J Design and Function Self-Study Programme 228 All rights reserved. Technical specifications subject to change without notice. AUDI AG Dept. I/VK-5 D-85045 Ingolstadt Fax +49 (0)841/89-36367 940.2810.47.20 Technical status: 09/99 Printed in Germany For internal use only multitronic® The name multitronic® stands for the new The CVT concept improved by Audi is based variable automatic gearbox developed by on the long-established principle of the Audi. “chain drive transmission”. According to this The variable automatic gearbox is commonly principle, the reduction ratio between the known as the CVT gearbox. shortest and the longest ratio can be controlled steplessly by means of a so-called “variator”. CVT is the English abbreviation for “Continuously Variable Transmission”. 228_023 The new Audi multitronic® with Tiptronic function offers a synergy of the best possible dynamics, optimal fuel utilisation and the highest possible level of drive comfort. 2 Contents Page Introduction multitronic® ............................................................................ 2 The gearbox concept .............................................................. 9 Specifications ........................................................................10 Gearbox modules The flywheel damper unit .................................................... 11 Sectional view of gearbox ....................................................13 The forward clutch/reverse clutch with planetary gear train ....................................................
    [Show full text]
  • 948TE Introduction Webinar Handout
    ZF9HP48 / 948TE Introduction Presented by: Mike Souza ATRA Senior Research Technician 948TE Intro Webinar ©2015 ATRA. All Rights Reserved. Vehicle Application Acura (ZF9HP48) Land Rover MDX 2014-15 AWD V6 3.5L Range Rover Evoque 2013-15 FWD/4X4 L4 2.0/2.2L RLX 2014-15 FWD V6 3.5L/3.7L Discovery (LR4) 2015 FWD/AWD L4 2.0 Chrysler (948TE) TL 2014-15 AWD V6 3.5L/3.7L 200 2014-15 FWD L4 2.4L V6 3.2L Town & Country 2013-15 FWD 2013-14 L4 2.4L V6 3.6L Dodge (948TE) Caravan 2014-15 FWD V6 3.6L Fiat (EP2) 500X 2014-15 FWD L4 2.4L Doblo 2015 FWD L4 2.4L Jeep (948TE) Cherokee (KL) 2013-15 FWD L4 2.4L V6 3.2L Renegade 2014-15 FWD L4 2.4L Honda (ZF9HP48) Civic 2014-15 FWD L4 1.6L CRV 2014-15 FWD L4 1.6L Transmission Identification Chrysler 948TE (Kokomo IN) ZF 9HP48 (Germany) • Externally the two units are visually similar • Parts cannot be interchanged. • VIN should always be used as the key for parts lookup. • Barcode label includes the manufacturer identification in the second and third characters of the traceability number. 9 Nine forward gear speeds 48 480 Nm torque capacity 354 lbs ft T Transverse mounted E Electronic control HP Hydraulic planetary Introduction ZF developed the first nine-speed automatic transmission for front wheel drive vehicles. Although it was built in June 2011 it did not make it’s debut until mid 2013. This new transmission delivers extremely short shifting times and exceptionally smooth shifts.
    [Show full text]
  • Transmission (Mechanics) - Wikipedia 8/28/20, 119 PM
    Transmission (mechanics) - Wikipedia 8/28/20, 119 PM Transmission (mechanics) A transmission is a machine in a power transmission system, which provides controlled application of the power. Often the term 5 speed transmission refers simply to the gearbox that uses gears and gear trains to provide speed and torque conversions from a rotating power source to another device.[1][2] In British English, the term transmission refers to the whole drivetrain, including clutch, gearbox, prop shaft (for rear-wheel drive), differential, and final drive shafts. In American English, however, the term refers more specifically to the gearbox alone, and detailed Single stage gear reducer usage differs.[note 1] The most common use is in motor vehicles, where the transmission adapts the output of the internal combustion engine to the drive wheels. Such engines need to operate at a relatively high rotational speed, which is inappropriate for starting, stopping, and slower travel. The transmission reduces the higher engine speed to the slower wheel speed, increasing torque in the process. Transmissions are also used on pedal bicycles, fixed machines, and where different rotational speeds and torques are adapted. Often, a transmission has multiple gear ratios (or simply "gears") with the ability to switch between them as speed varies. This switching may be done manually (by the operator) or automatically. Directional (forward and reverse) control may also be provided. Single-ratio transmissions also exist, which simply change the speed and torque (and sometimes direction) of motor output. In motor vehicles, the transmission generally is connected to the engine crankshaft via a flywheel or clutch or fluid coupling, partly because internal combustion engines cannot run below a particular speed.
    [Show full text]
  • Design of Automotive X-By-Wire Systems Cédric Wilwert, Nicolas Navet, Ye-Qiong Song, Françoise Simonot-Lion
    Design of automotive X-by-Wire systems Cédric Wilwert, Nicolas Navet, Ye-Qiong Song, Françoise Simonot-Lion To cite this version: Cédric Wilwert, Nicolas Navet, Ye-Qiong Song, Françoise Simonot-Lion. Design of automotive X-by- Wire systems. Richard Zurawski. The Industrial Communication Technology Handbook, CRC Press, 2005, 0849330777. inria-00000562 HAL Id: inria-00000562 https://hal.inria.fr/inria-00000562 Submitted on 27 Aug 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Design of automotive X-by-Wire systems Cédric Wilwert PSA Peugeot - Citroën 92000 La Garenne Colombe - France Fax: +33 3 83 58 17 01 Phone: +33 3 83 58 17 17 [email protected] Nicolas Navet LORIA UMR 7503 – INRIA Campus Scientifique - BP 239 - 54506 VANDOEUVRE-lès-NANCY CEDEX Fax: +33 3 83 58 17 01 Phone : +33 3 83 58 17 61 [email protected] Ye Qiong Song LORIA UMR 7503 – Université Henri Poincaré Nancy I Campus Scientifique - BP 239 - 54506 VANDOEUVRE-lès-NANCY CEDEX Fax: +33 3 83 58 17 01 Phone : +33 3 83 58 17 64 [email protected] Françoise Simonot-Lion LORIA UMR 7503 – Institut National Polytechnique de Lorraine Campus Scientifique - BP 239 - 54506 VANDOEUVRE-lès-NANCY CEDEX Fax: +33 3 83 27 83 19 Phone : +33 3 83 58 17 62 [email protected] CONTENTS Design of automotive X-by-Wire systems ......................................................................................................
    [Show full text]
  • Kia-K900-2016-CA.Pdf
    2016 K900 A NEW CONCEPT OF LUXURY. Why follow a well-worn path when you can follow a path of your own? That mode of thinking applies to the way you select a truly ground-breaking luxury automobile. It also describes how Kia Premium pursued its reinvention of luxury driving – a pursuit that reaches its ultimate expression in the newly redesigned 2016 Kia K900. It’s the rear-drive performance luxury sedan that embodies a fresh and unpretentious approach that’s sure to heighten your enthusiasm. Highlights include everything from the supremely confident performance of the available 420-horsepower9 5.0L Gasoline Direct Injection (GDI) V8 engine to such top-tier amenities as the concert-hall sound quality of the premium Lexicon Discrete Logic 7® 4 surround-sound audio system. The exquisite craftsmanship of the available glove-soft Nappa leather trim and available genuine wood trim accents rounds out the experience with exceptional refinement. In the 2016 K900. INTERNATIONAL MODEL SHOWN. Some features may vary. IT LEADS BY EXAMPLE. When you’re entering uncharted territory, you need to have a singular sense of direction. Kia knew exactly how it wanted to transform performance luxury driving to deliver on “The Power to Surprise”. The results are on vivid display in the K900, beginning with its evocative design. The superbly balanced, extended wheelbase rear-drive platform provides a solid foundation for the scintillating performance of the 311-horsepower 3.8L GDI V6 engine or the available 420-horsepower9 5.0L GDI V8. The robust power is complemented by the K900’s precision shifting eight-speed automatic transmission with its available shift-by-wire gear selector.
    [Show full text]
  • Learn the Facts: Transmission Technologies and Their Impact on Fuel Consumption
    Auto$mart Learn the facts: Transmission technologies and their impact on fuel consumption What is the issue? Progressively more stringent greenhouse gas emission standards for light-duty vehicles are in place in Canada. In response, vehicle manufacturers are improving transmission efficiency by using innovative technologies. What do I need to know? Manufacturers continue to improve transmission technology and efficiency, which reduces fuel consumption and carbon dioxide (CO2) emissions. These technologies include the following: Î Increasing the number of forward gears in automatic transmissions allows the engine to operate near optimal efficiency over a wider range of vehicle speeds, which helps reduce the vehicle’s fuel consumption. Older vehicles have three forward gears, in contrast to today’s vehicles, which often have as many as six to nine forward gears. Î Continuously variable transmissions (CVTs) are a type of automatic transmission that do not have a specific number of fixed gear ratios but rather allow for an “infinite” number of gear ratios. This arrangement enables the engine to operate at optimal efficiency over a wider range of vehicle speeds. CVTs provide the greatest efficiency improvements in urban “stop-and-go” driving conditions. Î Automated manual transmissions (AMTs) use a clutch reduced fuel consumption. The DCT can reduce fuel instead of a torque converter to couple the engine to the consumption by 6 to 9% compared to a conventional transmission and shift gears by using electronic actuators 4-speed automatic transmission and 3 to 4% compared to instead of wet clutches. AMTs operate like a conventional a conventional 6-speed automatic transmission.2 automatic transmission as far as the driver is concerned How can I help? but remove some of the inefficiencies associated with conventional automatic transmissions.
    [Show full text]
  • 2021 RDX Competitive Comparison
    2021 RDX Competitive Comparison 2020 Standard (S), Optional (O), Not Available (–) 2021 2021 Audi 2021 2020 2021 2021 Mercedes-Benz Acura RDX Q5 45 TFSI quattro BMW X3 30i Buick Envision Cadillac XT5 Lexus NX 300 GLC SUV ENGINE/MOTOR DOHC 4-cylinder DOHC turbocharged DOHC turbocharged DOHC turbocharged (FWD/AWD); DOHC turbocharged DOHC turbocharged DOHC turbocharged Engine type 4-cylinder 4-cylinder 4-cylinder DOHC turbocharged 4-cylinder 4-cylinder 4-cylinder 4-cylinder (AWD) Engine displacement 2.0 (turbocharged) (liters) 2.0 2.0 2.0 2.5 2.0 2.0 2.0 Power (hp @ rpm) 197 @ 6300 (2.5); (SAE net) 272 @ 6500 261 @ 5000–6000 248 @ 5200–6500 252 @ 5500 (2.0) 235 @ 5000 235 @ 4800–5600 255 @ 5800–6100 273 @ 258 @ 192 @ 4400 (2.5); Torque (lb-ft @ rpm) 280 @ 1600-4500 1600–4500 1450–4800 295 @ 3000 (2.0) 258 @ 1500–4000 258 @ 1650–4000 273 @ 1800–4000 S Direct fuel injection S S S S S (Plus port injection) S S S S S S S S Variable valve timing (VTEC®) Idle stop S S S S S – S DRIVETRAIN S S S S S S 2-wheel drive (Front-wheel) – (Rear-wheel) (Front-wheel) (Front-wheel) (Front-wheel) (Rear-wheel) O S O O O O All-wheel drive (Super Handling All-Wheel ® (Active Twin-Clutch Rear (Active Twin-Clutch Rear O ® Drive™ [SH-AWD®]) (quattro ) (xDrive) Differential) Differential) (4MATIC ) O O O Torque-vectoring (Super Handling All- – – (Active Twin-Clutch Rear (Active Twin-Clutch Rear – – all-wheel drive Wheel Drive™) Differential) Differential) S S S S (6-speed); S S S Automatic transmission (10-speed) (7-speed DCT) (8-speed) O (9-speed) (9-speed) (6-speed)
    [Show full text]