Endangered Species Day Celebrate Endangered Species Day at Omaha’S Henry Doorly Zoo and Aquarium®

Total Page:16

File Type:pdf, Size:1020Kb

Endangered Species Day Celebrate Endangered Species Day at Omaha’S Henry Doorly Zoo and Aquarium® Endangered Species Day Celebrate Endangered Species Day at Omaha’s Henry Doorly Zoo and Aquarium®. Take yourself on a self-guided tour through the Zoo to learn about these amazing animals! African Grasslands Expedition Madagascar Lied Jungle® Suzanne and Walter Scott Okapi Madagascar teal Northern white cheeked Aquarium Giraffe Radiated tortoise gibbon Loggerhead turtle Cheetah Fossa Greater slow loris Southern giant clam Plains zebra Aye aye Cotton headed tamarin Southern rockhopper Bongo African straw colored fruit bat Bairds tapir penguin African lion Collared brown lemur Malayan tapir Atlantic puffin African elephant Crowned lemur Fancois langur Giant grouper Mongoose lemur Painted terrapin Red grouper Butterfly and Insect Malagasy giant jumping rat Soa soa water lizard Coral cat shark Pavilion Ring tailed lemur Home hinge back turtle Cactus coral Madagascar crested ibis Malaysian giant turtle Red knee tarantula Black grouper Parkers golden frog Yellow spotted river turtle Salt creek tiger beetle Zebra shark Green golden frog Pig nosed turtle White cockatoo Atlantic green sea turtle Standings day gecko African softshell turtle Crested partridge Goliath grouper Marbles rain frog Panamanian golden frog Horseshoe crab Cat Complex Golden matella Giant thai catfish Black botched stingray Amur tiger Clown knife fish Staghorn coral Black handed spider monkey Garden of the Senses Aruli barb Red panda (animals on display are weather Golden dragon fish dependent) Komodo dragon Yellow headed amazon Animals Off Display: Mutual of Omaha’s Wild Green cheeked amazon White cockatoo Kingdom Desert Dome and Salmon crested cockatoo Cotton headed tamarin Kingdoms of the Night® Military macaw Pavilion Northern white cheek gibbon Pignosed turtle Hyancinth macaw Argentina horned frog Golden lion tamarin African spurred tortoise Dusky gopher frog Diana monkey Spotted turtle Hubbard Gorilla Valley and Emperor newt Indian rhino Nicobar pigeon American crocodile Orangutan Forest Sri Lankan sloth bear Gopher tortoise Barbours map turtle Western lowland gorilla Santa Catalina island Barbours map turtle Burmese mountain tortoise Sulawesi crested macaque rattlesnake Yellow blotched map turtle Chinese crocodile lizard Bornean orangutan Madagascar bigheaded turtle Ringed map turtle Eastern box turtle Francois langur Cork bark leaf tailed gecko Pearl river map turtle Tiger stingray Siamang Homes hinge backed tortoise Alabama map turtle Agile gibbon Frilled leaf tailed gecko Giant Asian pond turtle Grays monitor Simmons Aviary Jamaican boa Alligator snapping turtle Yellow backed duiker West African crowned crane Aldabra giant tortoise Eastern box turtle Marbled teal Hellbender Ornate box turtle Lied Jungle® Inca tern Yuman desert fringe toed lizard African softshell turtle Baers pochard Great argus Panamanian golden frog African penguin White winged duck Suzanne and Walter Scott Grey bellied owl monkey East African crowned crane Nicobar pigeon Aquarium Fossa White naped crane Western crowned pigeon Cownose ray African straw colored fruit Elkhorn coral Crested partridge Fox fish bat Leopard grouper Asian small clawed otter Bubble coral Black footed cat Brown headed spider monkey Jokers cap coral Yellow footed rock wallaby Geoffroys spider monkey California sheephead wrasse Little golden mantled flying Diana monkey Bocaccio fox Pygmy hippo Banggai cardinal fish Southern three banded White handed gibbon Long nosed file fish armadillo Southern gray gibbon White spotted bamboo shark Variable harlequin frog Golden lion tamarin Sandbar shark Puerto Rican crested toad Atlantic tarpon Cantil .
Recommended publications
  • Table 7: Species Changing IUCN Red List Status (2014-2015)
    IUCN Red List version 2015.4: Table 7 Last Updated: 19 November 2015 Table 7: Species changing IUCN Red List Status (2014-2015) Published listings of a species' status may change for a variety of reasons (genuine improvement or deterioration in status; new information being available that was not known at the time of the previous assessment; taxonomic changes; corrections to mistakes made in previous assessments, etc. To help Red List users interpret the changes between the Red List updates, a summary of species that have changed category between 2014 (IUCN Red List version 2014.3) and 2015 (IUCN Red List version 2015-4) and the reasons for these changes is provided in the table below. IUCN Red List Categories: EX - Extinct, EW - Extinct in the Wild, CR - Critically Endangered, EN - Endangered, VU - Vulnerable, LR/cd - Lower Risk/conservation dependent, NT - Near Threatened (includes LR/nt - Lower Risk/near threatened), DD - Data Deficient, LC - Least Concern (includes LR/lc - Lower Risk, least concern). Reasons for change: G - Genuine status change (genuine improvement or deterioration in the species' status); N - Non-genuine status change (i.e., status changes due to new information, improved knowledge of the criteria, incorrect data used previously, taxonomic revision, etc.); E - Previous listing was an Error. IUCN Red List IUCN Red Reason for Red List Scientific name Common name (2014) List (2015) change version Category Category MAMMALS Aonyx capensis African Clawless Otter LC NT N 2015-2 Ailurus fulgens Red Panda VU EN N 2015-4
    [Show full text]
  • Dental and Temporomandibular Joint Pathology of the Kit Fox (Vulpes Macrotis)
    Author's Personal Copy J. Comp. Path. 2019, Vol. 167, 60e72 Available online at www.sciencedirect.com ScienceDirect www.elsevier.com/locate/jcpa DISEASE IN WILDLIFE OR EXOTIC SPECIES Dental and Temporomandibular Joint Pathology of the Kit Fox (Vulpes macrotis) N. Yanagisawa*, R. E. Wilson*, P. H. Kass† and F. J. M. Verstraete* *Department of Surgical and Radiological Sciences and † Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California, USA Summary Skull specimens from 836 kit foxes (Vulpes macrotis) were examined macroscopically according to predefined criteria; 559 specimens were included in this study. The study group consisted of 248 (44.4%) females, 267 (47.8%) males and 44 (7.9%) specimens of unknown sex; 128 (22.9%) skulls were from young adults and 431 (77.1%) were from adults. Of the 23,478 possible teeth, 21,883 teeth (93.2%) were present for examina- tion, 45 (1.9%) were absent congenitally, 405 (1.7%) were acquired losses and 1,145 (4.9%) were missing ar- tefactually. No persistent deciduous teeth were observed. Eight (0.04%) supernumerary teeth were found in seven (1.3%) specimens and 13 (0.06%) teeth from 12 (2.1%) specimens were malformed. Root number vari- ation was present in 20.3% (403/1,984) of the present maxillary and mandibular first premolar teeth. Eleven (2.0%) foxes had lesions consistent with enamel hypoplasia and 77 (13.8%) had fenestrations in the maxillary alveolar bone. Periodontitis and attrition/abrasion affected the majority of foxes (71.6% and 90.5%, respec- tively).
    [Show full text]
  • Box Turtles July 2017
    The HERP Project, Herpetology Education in Rural Places and Spaces In Awe of Nature: Treasuring Terrestrial Turtles By Ann Berry Somers, Catherine Matthews, and Lacey Huffling The Herp Project is supported by the National Science Foundation, Grant No. DRL-1114558. Any opinions, findings, and conclusions or recommendations expressed in this manuscript are those of the authors and do not necessarily reflect the views of the National Science Foundation. Treasuring Terrestrial Turtles Before starting a project like the one described in this curriculum, contact your state wildlife resources commission or state division of fish and game to see what permits you need to work with box turtles. I. Project Description This curriculum was developed by The HERP (Herpetology Education in Rural Places and Spaces) Project to introduce participants to the wonders of nature and science through the study of box turtles (Terrapene spp.). The curriculum was developed over several years of working with high school students in our Herpetological Research Experience (HRE) residential program. Feel free to modify this curriculum as needed. In our program, participants are introduced to turtle biology as well as to The Box Turtle Connection (BTC), our long-term mark/recapture box turtle study in North Carolina. The BTC is designed to follow temporal trends in population size and structure (sex, age class) as well as the health and condition of individual box turtles from numerous sites across North Carolina. The data collected are important to help scientists determine if box turtles need special conservation measures to maintain their populations and thrive in their natural habitat. Our box turtle studies are enhanced by use of Boykin Spaniel dogs to locate and retrieve box turtles and use of radio tracking to determine activity ranges for male and female box turtles.
    [Show full text]
  • AN INTRODUCTION to Texas Turtles
    TEXAS PARKS AND WILDLIFE AN INTRODUCTION TO Texas Turtles Mark Klym An Introduction to Texas Turtles Turtle, tortoise or terrapin? Many people get confused by these terms, often using them interchangeably. Texas has a single species of tortoise, the Texas tortoise (Gopherus berlanderi) and a single species of terrapin, the diamondback terrapin (Malaclemys terrapin). All of the remaining 28 species of the order Testudines found in Texas are called “turtles,” although some like the box turtles (Terrapene spp.) are highly terrestrial others are found only in marine (saltwater) settings. In some countries such as Great Britain or Australia, these terms are very specific and relate to the habit or habitat of the animal; in North America they are denoted using these definitions. Turtle: an aquatic or semi-aquatic animal with webbed feet. Tortoise: a terrestrial animal with clubbed feet, domed shell and generally inhabiting warmer regions. Whatever we call them, these animals are a unique tie to a period of earth’s history all but lost in the living world. Turtles are some of the oldest reptilian species on the earth, virtually unchanged in 200 million years or more! These slow-moving, tooth­ less, egg-laying creatures date back to the dinosaurs and still retain traits they used An Introduction to Texas Turtles | 1 to survive then. Although many turtles spend most of their lives in water, they are air-breathing animals and must come to the surface to breathe. If they spend all this time in water, why do we see them on logs, rocks and the shoreline so often? Unlike birds and mammals, turtles are ectothermic, or cold- blooded, meaning they rely on the temperature around them to regulate their body temperature.
    [Show full text]
  • An Educator's Resource to Texas Mammal Skulls and Skins
    E4H-014 11/17 An Educator’s Resource to Texas Mammal Skulls and Skins for use in 4-H Wildlife Programs and FFA Wildlife Career Development Events By, Denise Harmel-Garza Program Coordinator I, Texas A&M AgriLife Extension Service, 4-H Photographer and coauthor, Audrey Sepulveda M.Ed. Agricultural Leadership, Education and Communications, Texas A&M University College Station, Texas 2017 “A special thanks to the Biodiversity Research and Teaching Collections at Texas A&M University for providing access to their specimens.” Texas A&M AgriLife Extension provides equal opportunities in its programs and employment to all persons, regardless of race, color, sex, religion, national origin, disability, age, genetic information, veteran status, sexual orientation, or gender identity. The Texas A&M University System, U.S. Department of Agriculture, and the County Commissioners Courts of Texas Cooperating. Introduction Texas youth that participate in wildlife programs may be asked to identify a skull, skin, scat, tracks, etc. of an animal. Usually, educators must find this information and assemble pictures of skulls and skins from various sources. They also must ensure that what they find is relevant and accurate. Buying skulls and skins to represent all Texas mammals is costly. Most educators cannot afford them, and if they can, maintaining these collections over time is problematic. This study resource will reduce the time teachers across the state need to spend searching for information and allow them more time for presenting the material to their students. This identification guide gives teachers and students easy access to information that is accurate and valuable for learning to identify Texas mammals.
    [Show full text]
  • In AR, FL, GA, IA, KY, LA, MO, OH, OK, SC, TN, and TX): Species in Red = Depleted to the Point They May Warrant Federal Endangered Species Act Listing
    Southern and Midwestern Turtle Species Affected by Commercial Harvest (in AR, FL, GA, IA, KY, LA, MO, OH, OK, SC, TN, and TX): species in red = depleted to the point they may warrant federal Endangered Species Act listing Common snapping turtle (Chelydra serpentina) – AR, GA, IA, KY, MO, OH, OK, SC, TX Florida common snapping turtle (Chelydra serpentina osceola) - FL Southern painted turtle (Chrysemys dorsalis) – AR Western painted turtle (Chrysemys picta) – IA, MO, OH, OK Spotted turtle (Clemmys gutatta) - FL, GA, OH Florida chicken turtle (Deirochelys reticularia chrysea) – FL Western chicken turtle (Deirochelys reticularia miaria) – AR, FL, GA, KY, MO, OK, TN, TX Barbour’s map turtle (Graptemys barbouri) - FL, GA Cagle’s map turtle (Graptemys caglei) - TX Escambia map turtle (Graptemys ernsti) – FL Common map turtle (Graptemys geographica) – AR, GA, OH, OK Ouachita map turtle (Graptemys ouachitensis) – AR, GA, OH, OK, TX Sabine map turtle (Graptemys ouachitensis sabinensis) – TX False map turtle (Graptemys pseudogeographica) – MO, OK, TX Mississippi map turtle (Graptemys pseuogeographica kohnii) – AR, TX Alabama map turtle (Graptemys pulchra) – GA Texas map turtle (Graptemys versa) - TX Striped mud turtle (Kinosternon baurii) – FL, GA, SC Yellow mud turtle (Kinosternon flavescens) – OK, TX Common mud turtle (Kinosternon subrubrum) – AR, FL, GA, OK, TX Alligator snapping turtle (Macrochelys temminckii) – AR, FL, GA, LA, MO, TX Diamond-back terrapin (Malaclemys terrapin) – FL, GA, LA, SC, TX River cooter (Pseudemys concinna) – AR, FL,
    [Show full text]
  • Habitat Alteration and Survival Rates of the Ornate Box Turtle Sarah M
    Ecology, Evolution and Organismal Biology Ecology, Evolution and Organismal Biology Publications 11-2016 Habitat alteration and survival rates of the ornate box turtle Sarah M. Mitchell Iowa State University Brooke L. Bodensteiner Iowa State University Jeramie T. Strickland U.S. Fish and Wildlife Service James K. Quick North Carolina A & T State University Fredric J. Janzen Iowa State University, [email protected] Follow this and additional works at: https://lib.dr.iastate.edu/eeob_ag_pubs Part of the Animal Sciences Commons, and the Terrestrial and Aquatic Ecology Commons The ompc lete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ eeob_ag_pubs/275. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Ecology, Evolution and Organismal Biology at Iowa State University Digital Repository. It has been accepted for inclusion in Ecology, Evolution and Organismal Biology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Habitat alteration and survival rates of the ornate box turtle Abstract Habitat destruction and modification may be the most prominent anthropogenic forces affecting extant biological systems. Growing evidence suggests that turtles are especially vulnerable to many anthropogenic stressors. We evaluated the effects of habitat modification on survival rates of the threatened ornate box turtle (Terrapene ornata) in northwest Illinois, USA, using a 20‐year mark‐recapture dataset. Longstanding development (i.e., cottages, outbuildings, landscape management) reduced the apparent survival of the ornate box turtle, especially among females.
    [Show full text]
  • Box Turtle Care Compiled by Dayna Willems, DVM
    Box Turtle Care Compiled by Dayna Willems, DVM Brief Description There are several species of box turtle native to North America (ornate box turtles in Colorado) but their wild populations are declining rapidly due to habitat loss, being hit by cars on roads, and from collection for the pet trade. Unfortunately once taken from the wild box turtles can have trouble adapting to captivity, however unless they can be released in the location they were found they will wander aimlessly searching for their lost territory for months often into roads or neighborhoods. The box turtle is known for being able to completely withdraw its body into its protective shell and a hinge on the bottom part of the shell allows it to close completely like a box. The shell is living tissue and should never be pierced or painted. Three-toed Box Turtle Lifespan With good care the expected lifespan is 60-80 years on average. Sexing Once mature male box turtles will usually have red eyes and females will have brown eyes in most cases, however not always. Males will have an indent on their plastron (belly of the shell) and a longer, more pointed tail with a longer distance between vent and tail tip than the stubby tail of females where the vent is closer to the shell. Ornate Box Turtle Caging Box turtles need large enclosures and when able should be housed outdoors in a protected outdoor pen. Box turtles are great climbers so the pen will need to be secure to keep turtles in and predators (especially dogs) out.
    [Show full text]
  • H420/02 Biological Diversity
    A Level Biology A H420/02 Biological Diversity Question Set 11 1 The cheetah, Acinonyx jubatus, is a member of the cat family, Felidae. Cheetahs display less intraspecific variation than other members of the family Felidae. Fig. 20.1 shows the mean body length of a population of cheetahs from southern Africa. The error bars on Fig. 20.1 show the standard deviation of mean body length. Fig. 20.1 (a) (i) At between 2.5 and 4 years old, the mean length of female cheetahs is less than that of males. Calculate how much shorter than males female cheetahs are. Show your working. Express your answer as a percentage to two significant figures. Answer……………% [2] (ii) Using only Fig. 20.1 and your answer to (i), what can be concluded about the significance of the difference between the length of male and female cheetahs aged between 2.5 and 4 years? Explain your answer. [2] (iii) A student looked at Fig. 20.1 and wrote: “The longest male cheetah that was measured was 1.52 m long”. Explain whether the information in Fig. 20.1 supports the student’s answer. [1] (iv) State the likely causes of variation in body length in cheetahs. [2] (b) The population of cheetahs has been declining for the past 100 years and is estimated to be between 6000 and 7000. Within the remaining cheetah population, intraspecific genetic diversity is very low. One isolated population of cheetahs in Iran has fewer than 100 individuals. (i) State one way in which genetic diversity can be measured.
    [Show full text]
  • A Field Guide to South Dakota Turtles
    A Field Guide to SOUTH DAKOTA TURTLES EC919 South Dakota State University | Cooperative Extension Service | USDA U.S. Geological Survey | South Dakota Cooperative Fish and Wildlife Research Unit South Dakota Department of Game, Fish & Parks This publication may be cited as: Bandas, Sarah J., and Kenneth F. Higgins. 2004. Field Guide to South Dakota Turtles. SDCES EC 919. Brookings: South Dakota State University. Copies may be obtained from: Dept. of Wildlife & Fisheries Sciences South Dakota State University Box 2140B, NPBL Brookings SD 57007-1696 South Dakota Dept of Game, Fish & Parks 523 E. Capitol, Foss Bldg Pierre SD 57501 SDSU Bulletin Room ACC Box 2231 Brookings, SD 57007 (605) 688–4187 A Field Guide to SOUTH DAKOTA TURTLES EC919 South Dakota State University | Cooperative Extension Service | USDA U.S. Geological Survey | South Dakota Cooperative Fish and Wildlife Research Unit South Dakota Department of Game, Fish & Parks Sarah J. Bandas Department of Wildlife and Fisheries Sciences South Dakota State University NPB Box 2140B Brookings, SD 57007 Kenneth F. Higgins U.S. Geological Survey South Dakota Cooperative Fish and Wildlife Research Unit South Dakota State University NPB Box 2140B Brookings, SD 57007 Contents 2 Introduction . .3 Status of South Dakota turtles . .3 Fossil record and evolution . .4 General turtle information . .4 Taxonomy of South Dakota turtles . .9 Capturing techniques . .10 Turtle handling . .10 Turtle habitats . .13 Western Painted Turtle (Chrysemys picta bellii) . .15 Snapping Turtle (Chelydra serpentina) . .17 Spiny Softshell Turtle (Apalone spinifera) . .19 Smooth Softshell Turtle (Apalone mutica) . .23 False Map Turtle (Graptemys pseudogeographica) . .25 Western Ornate Box Turtle (Terrapene ornata ornata) .
    [Show full text]
  • Comparative Craniometric Measurements of Two Sympatric Species of Vulpes in Ikh Nart Nature Reserve, Mongolia
    © 2018 Journal compilation ISSN 1684-3908 (print edition) http://mjbs.num.edu.mn Mongolian Journal of Biological http://biotaxa.org./mjbs Sciences MJBS Volume 16(1), 2018 ISSN 2225-4994 (online edition) http://dx.doi.org/10.22353/mjbs.2018.16.03 Original Article Comparative Craniometric Measurements of Two Sympatric Species of Vulpes in Ikh Nart Nature Reserve, Mongolia Tserendorj Munkhzul1, Richard P. Reading2, Bayarbaatar Buuveibaatar3 & James D. Murdoch4 1Mammalian Ecology Laboratory, Institute of General and Experimental Biology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia 2International Conservation Coalition, Denver, Colorado 80220 USA, Butterfly Pavilion, Westminster, Colorado 80020 USA & Mongolian Conservation Coalition, Ulaanbaatar, Mongolia 3Wildlife Conservation Society, Mongolia Program, Ulaanbaatar, Mongolia 4Rubenstein School of Environment and Natural Resources, University of Vermont, George Aiken Center, Burlington, Vermont 05405 USA Abstract Key words: Corsac fox; In Mongolia, both the red fox (Vulpes vulpes) and corsac fox (Vulpes corsac) occupy cranium; morphometry; broad sympatric ranges, but despite their expansive ranges, few published details of red fox; Vulpes; skull. the craniometry of either species exist in Mongolia and other parts of northern and Article information: central Asia. To determine the morphological differences between two species of Received: 08 Febr. 2018 foxes, we tested for morphological and morphometrical differences between the red Accepted: 31 May 2018 (n = 13) and corsac (n = 11) foxes using 63 cranium measurements. All significantly Published online: different skull variables were larger for red foxes than corsac foxes. This paper 12 June 2018 reports comparison of the cranial measurements from skulls of red and corsac foxes Correspondence: and serves as a preliminary investigation of interspecific variation between these [email protected] species.
    [Show full text]
  • Return of a Lost Structure in the Evolution of Felid Dentition Revisited: a Devoevo Perspective on the Irreversibility of Evolution
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.04.429820; this version posted February 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. RUNNING HEAD: LYNX M2 AND IRREVERSIBILE EVOLUTION Return of a lost structure in the evolution of felid dentition revisited: A DevoEvo perspective on the irreversibility of evolution Vincent J. Lynch Department of Biological Sciences, University at Buffalo, SUNY, 551 Cooke Hall, Buffalo, NY, 14260, USA. Correspondence: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.04.429820; this version posted February 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. RUNNING HEAD: LYNX M2 AND IRREVERSIBILE EVOLUTION Abstract There is a longstanding interest in whether the loss of complex characters is reversible (so-called “Dollo’s law”). Reevolution has been suggested for numerous traits but among the first was Kurtén (1963), who proposed that the presence of the second lower molar (M2) of the Eurasian lynx (Lynx lynx) was a violation of Dollo’s law because all other Felids lack M2. While an early and often cited example for the reevolution of a complex trait, Kurtén (1963) and Werdelin (1987) used an ad hoc parsimony argument to support their proposition that M2 reevolved in Eurasian lynx. Here I revisit the evidence that M2 reevolved in Eurasian lynx using explicit parsimony and maximum likelihood models of character evolution and find strong evidence that Kurtén (1963) and Werdelin (1987) were correct – M2 reevolved in Eurasian lynx.
    [Show full text]