Mercury in Vegetation and Organic Soil at an Upland Boreal Forest Site in Prince Albert National Park, Saskatchewan, Canada H

Total Page:16

File Type:pdf, Size:1020Kb

Mercury in Vegetation and Organic Soil at an Upland Boreal Forest Site in Prince Albert National Park, Saskatchewan, Canada H JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, G01004, doi:10.1029/2005JG000061, 2007 Mercury in vegetation and organic soil at an upland boreal forest site in Prince Albert National Park, Saskatchewan, Canada H. R. Friedli,1 L. F. Radke,1 N. J. Payne,2 D. J. McRae,2 T. J. Lynham,2 and T. W. Blake2 Received 6 June 2005; revised 25 April 2006; accepted 21 August 2006; published 18 January 2007. [1] We studied an upland boreal forest plot located in the Prince Albert National Park, Saskatchewan, Canada, to measure the total mercury content in vegetation and organic soil with a view to assessing the potential for mercury release during forest fires. The study area consists of two stands of vegetation regrown after fires 39 and 130 years ago, with different carbon and mercury stocks in vegetation and organic soil. The mercury concentrations in ng gÀ1 (dry weight) were measured for moss (90–110), leaves (8), needles (10), bark (16–38), lichen (30–227), bole wood (2) and for organic soil layers (120–300). The combined mercury stock increased from 1.01 ± 0.28 to 3.45 ± 0.87 mg mÀ2 for the two stand ages; 93–97% of the mercury resided in the organic soil to the mineral layer. The mercury input to the ecosystem is from wet and dry deposition and is trapped in the organic soil layers as indicated by the high organic soil mercury concentrations and low mercury concentration in the underlying mineral layer. Extrapolation from the data measured for the two subplots to all boreal forests suggests a massive mercury stock in boreal forests (15,000 to 44,000 t). This is a low estimate because boreal lowlands have still higher mercury densities. Not all of the organic soil mercury was acquired since the last burns; some predates the more recent fires. The mercury being predominantly located in the organic soil makes fire severity the most important parameter for mercury release. The anticipated accelerated warming in northern latitudes would increase severity, frequency and burn area of future fires and result in large pulses of mercury to the atmosphere and further stress to the environment. Citation: Friedli, H. R., L. F. Radke, N. J. Payne, D. J. McRae, T. J. Lynham, and T. W. Blake (2007), Mercury in vegetation and organic soil at an upland boreal forest site in Prince Albert National Park, Saskatchewan, Canada, J. Geophys. Res., 112, G01004, doi:10.1029/2005JG000061. 1. Introduction and hydrology [Lindberg, 1996; St. Louis et al., 2001]. Mercury enters boreal ecosystems mostly by wet and dry [2] The cycling of mercury between atmosphere and deposition of particulate and ionic mercury onto live veg- biosphere is particularly important for boreal ecosystems etation and soil surfaces, and by stomatic assimilation of because of the huge amount of biomass contained in boreal gaseous elemental mercury (GEM) [Erickson et al., 2003; forests and peat lands [Kasischke, 2000]. The carbon stocks Frescholtz et al., 2003]. Depending on atmospheric con- are high because of the slow decomposition rate in the cold centrations, GEM can be exchanged in or out of stomata northern climate and low fire frequency of 60–200 years [Hanson et al., 1995]. Deposited mercury can be incorpo- [Stocks and Kauffman, 1997]. Positive correlations have rated into plant tissue, photo chemically reduced to and been reported between stored carbon and mercury in boreal released as GEM [Poissant et al., 2004] or washed off in ecosystems [Grigal, 2003; Grigal et al., 2000; Harden et throughfall. Xylem sap contribution to mercury in plants is al., 2004]: they are of great scientific and public interest minor except in soils with high mercury content [Bishop et because of global warming, which is accelerated in northern al., 1998]. Upon deposition to the ground in throughfall or latitudes [Ra¨isa¨nen, 1997] and likely results in heightened contained in senesced leaves, needles, bark and dead wood, wildfire activity [Stocks et al., 2000] and increased mercury mercury is sequestered by reduced sulfur groups in the and carbon release to the atmosphere. Mercury poses health humic matter of the organic soil [Stumm and Morgan, 1995; hazards to humans, particularly pregnant women and chil- Skyllberg et al., 2003]. dren [U.S. Environmental Protection Agency, 2004]. [4] During wildfires part or most of the mercury in the [3] Mercury is present in boreal ecosystems as a result of fuels is released. The release during biomass burning has multiple processes involving atmosphere, vegetation, soils, been demonstrated in experimental burns [Friedli et al., 1 2001, 2003a; Mailman and Bodaly, 2005], observed in National Center for Atmospheric Research, Boulder, Colorado, USA. prescribed burns [Veiga et al., 1994; Artaxo et al., 2000; 2Canadian Forest Service, Sault St. Marie, Ontario, Canada. Woodruff et al., 2001; Harden et al., 2004] and in wildfires Copyright 2007 by the American Geophysical Union. [Brunke et al., 2001; Friedli et al., 2003a, 2003b]. In most 0148-0227/07/2005JG000061 years sections of boreal forests in Siberia/Mongolia, Canada G01004 1of9 G01004 FRIEDLI ET AL.: MERCURY IN BOREAL VEGETATION AND SOIL G01004 Figure 1. Fire chronology for the study area: dates and areas of most recent burns. and Alaska suffer from massive wildfires, consuming on from invading fire from north of the park, or, conversely, average about 4, 2 and 0.3 million ha, respectively, each protect commercial forest property north of the park from a year [Lavoue´etal., 2000]. The emissions from boreal fire originating inside the park. The study area is composed wildfires, both particulate and gaseous combustion prod- of pine (46%), which is transitional between the immature ucts, have regional and global environmental impact be- (C4) and mature (C3) pine types. Boreal spruce (C2) stands cause they frequently are injected into the stratosphere (6%) are located, primarily, along the southern perimeter of [Fromm and Servranckx, 2003; Massie et al., 2003], where study area. Mixed wood (M1) stands (16%) dominated by they become subject to long-range transport and chemical mature conifers and aspen are located in the eastern region transformations, and in case of mercury, to conversion of of the unit. The rest of the study area (32%) consists of GEM into particulate and ionic mercury, which have much immature deciduous-dominated mixed wood (M1), imma- shorter life times than GEM [Schroeder and Munthe, 1998]. ture deciduous (D1) and shrub land communities. The Long-range transport of plumes originating from wildfires ground is covered with live Plueurozium or leaf/needle and containing carbon monoxide [Wotowa and Trainer, litter and a small number of vascular live plants. 2000; Lamarque et al., 2003] and mercury [Sigler et al., [7] The study area consists of two subplots: 114 ha of 2003] has been reported. forest last burned in 1870 (11%, stand age 133 years, [5] The objective of this paper is to quantify the mercury designated as ‘‘Old Stand’’) in the south east corner of the stocks in a previously unexplored upland boreal forest plot plot, and 949 ha of vegetation last burned in 1964 (89%, in Prince Albert National Park in Saskatchewan, Canada, stand age 39 years, designated as ‘‘Young Stand’’) and to assess the potential for mercury release during future (Figure 1). The ‘‘Old Stand’’ is represented by a 100-m wildfires. The research describes the mercury distribution in transect at N 54° 15.839; W 106° 09.1390 (TS-2) located in the standing forest, downed wood and in the organic soil for the mature mixed wood (M-1) fuel subplot. The larger subplots with different stand ages. The release potential ‘‘Young Stand’’ portion is represented by two 100-m trans- during a forest fire is explored on the basis of laboratory ects at N 54° 16.3480; W 106° 11.2530, (TS-1) and N 54° release experiments and the mercury profiles observed in 17.2640; W 106° 10.2900 (TS-3), both located in immature the organic soil and vegetation. jack pine (C-4) regrown since the 1964 fire. To broaden the range of stand ages we partially characterized the oldest 2. Plot Description forest in the park, called Treebeard, last burned 180 years ago and located at N 53° 58.2400; W 106° 17.5960, approx- [6] The study area consists of 1063 ha of forest in the imately 40 km outside and south of the study area. northeast upland region of the Prince Albert National Park (PANP) in Saskatchewan, located between Wassegam and Tibiska Lake. The topography consists of hummocky mo- 3. Methodology rainal uplands, the elevation increasing from the Tibiska 3.1. Sampling for Mercury in Soil and Vegetation Lake shore (502 m) to an interlake plateau at 570 m. The [8] Four sites along each transect were selected to repre- study area was selected by park management for a pre- sent the prevalence of surface coverage type: two sites scribed burn to form a fire break to protect the park lands covered with live moss and two with needle/leaf litter. 2of9 G01004 FRIEDLI ET AL.: MERCURY IN BOREAL VEGETATION AND SOIL G01004 Although not quantitatively determined, moss and needle/ [12] Woody debris was quantified using the line intersect leaf litter coverage is about equal, although the young method [van Wagner, 1968; McRae et al., 1979] using the stands are slightly more moss-covered. The mercury sam- 100-m PCQ transects. Intersections were recorded for all 1 1 pling was done independently from the fuel collection six woody debris diameter classes (0À =2, =2 –1, 1–3, 3–5, described on the next section. Organic material and mineral 5–7 and >7 cm) along the whole transects. soil samples were collected from 30 cm  30 cm squares [13] Ground fuel samples consisting of litter, the fermen- and transported in polyethylene bags with airtight seals.
Recommended publications
  • Protein Components of the Microbial Mercury Methylation Pathway
    Protein Components of the Microbial Mercury Methylation Pathway ______________________________________________________________ A Dissertation presented to the faculty of the Graduate School at the University of Missouri - Columbia ____________________________________________________ In partial fulfillment of the requirements for the degree Doctor of Philosophy __________________________________________ by Steven D. Smith Dr. Judy D. Wall, Dissertation Supervisor December 2015 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation titled Protein Components of the Microbial Mercury Methylation Pathway Presented by Steven D. Smith, a candidate for the degree of doctor of philosophy, and hereby certify that, in their opinion, it is worthy of acceptance. ____________________________________________ Dr. Judy D. Wall ____________________________________________ Dr. David W. Emerich ____________________________________________ Dr. Thomas P. Quinn ____________________________________________ Dr. Michael J. Calcutt Acknowledgements I would first like to thank my parents and family for their constant support and patience. They have never failed to be there for me. I would like to thank all members of the Wall Lab. At one time or another each one of them has helped me in some way. In particular I would like to thank Barb Giles for her insight into the dynamics of the lab and for her support of me through these years. I am greatly appreciative to Dr. Judy Wall for the opportunity to earn my PhD in her lab. Her constant support and unending confidence in me has been a great source of motivation. It has been an incredible learning experience that I will carry with me and draw from for the rest of my life. Table of Contents Acknowledgements ………………………………………………………………………………………………………… ii List of Figures ………………………………………………………………………………………………………………….
    [Show full text]
  • Mercury and the Methylmercury Exposure in the U.S
    Mercury and the Methylmercury Exposure in the U.S. Developing Brain Methylmercury is a neurotoxin – a substance Introduction that damages, destroys, or impairs the functioning of nerve tissue. In the U.S., the Children are most vulnerable to mercury general population is exposed to various exposure, whether exposed in utero or as forms of mercury through inhalation, young children. Mercury affects the consumption of contaminated food or water, developing brain, causing neurological and exposure to substances containing problems that manifest themselves as vision mercury, such as vaccines. Different and hearing difficulties, delays in the chemical types of mercury can adversely development of motor skills and language affect several organ systems, with the acquisition, and later, lowered IQ points, severity of effects depending largely on the problems with memory and attention magnitude and timing of the exposure (i.e., deficits. These developmental deficits may during fetal development or as a child or 1 translate into a wide range of learning adult). Outside of occupational settings, difficulties once children are in school. methylmercury is the most toxic form of mercury to which humans are regularly This report explains the sources of mercury exposed and this form of mercury is the in the environment and how people are focus of the health impacts discussed in this exposed. The physical changes that occur in report. Exposure to methylmercury in the the developing brain due to mercury U.S. is almost exclusively from eating fish exposure during pregnancy are described and shellfish. along with how these changes later translate into learning difficulties in school. The Methylmercury poses the greatest hazard to report estimates the societal and economic the developing fetus.
    [Show full text]
  • A Model of Mercury Cycling and Isotopic Fractionation in the Ocean
    Biogeosciences, 15, 6297–6313, 2018 https://doi.org/10.5194/bg-15-6297-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. A model of mercury cycling and isotopic fractionation in the ocean David E. Archer1 and Joel D. Blum2 1Department of the Geophysical Sciences, University of Chicago, Chicago, 60637, USA 2Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, 48109, USA Correspondence: David E. Archer ([email protected]) Received: 5 March 2018 – Discussion started: 7 March 2018 Revised: 21 August 2018 – Accepted: 21 September 2018 – Published: 26 October 2018 Abstract. Mercury speciation and isotopic fractionation pro- 1 Background cesses have been incorporated into the HAMOCC offline ocean tracer advection code. The model is fast enough to The element mercury (Hg) is a powerful neurotoxin (Clark- allow a wide exploration of the sensitivity of the Hg cycle son and Magos, 2006). When transformed to methyl mer- in the oceans, and of factors controlling human exposure to cury (MeHg) it is known to amplify its toxicity by bio- monomethyl-Hg through the consumption of fish. Vertical accumulating up the food chain. The main human exposure particle transport of Hg appears to play a discernable role to MeHg is via consumption of high trophic level seafood in setting present-day Hg distributions, which we surmise (Chen et al., 2016; Schartup et al., 2018). Humans have been by the fact that in simulations without particle transport, the mining and mobilizing Hg into the Earth surface environ- high present-day Hg deposition rate leads to an Hg maxi- ment for hundreds of years, as a by-product of coal com- mum at the sea surface, rather than a subsurface maximum bustion, for its use in gold mining, and in products such as as observed.
    [Show full text]
  • Mercury Cycling in Sulfur Rich Sediment from the Brunswick Estuary
    Georgia Southern University Digital Commons@Georgia Southern Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of Summer 2017 Mercury Cycling in Sulfur Rich Sediment From The Brunswick Estuary Travis William Nicolette Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd Part of the Environmental Engineering Commons Recommended Citation Nicolette, Travis William, "Mercury Cycling in Sulfur Rich Sediment From The Brunswick Estuary" (2017). Electronic Theses and Dissertations. 1626. https://digitalcommons.georgiasouthern.edu/etd/1626 This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. MERCURY CYCLING IN SULFUR RICH SEDIMENTS FROM THE BRUNSWICK ESTUARY by TRAVIS NICOLETTE (Under the direction of major professor Franciscan Cubas) ABSTRACT Mercury is potentially toxic to the environment. Mercury is absorbed into anaerobic sediments of surface waters, which may be converted to methylmercury, a toxic form of mercury that bio-accumulates in aquatic biota. Sources of mercury in the environment vary, but the production of methylmercury is common in sulfur-rich sediments containing mercury. In such environments, sulfur reducing bacteria (SRB) produce methylmercury as a by-product. The metabolic process uses energy from the reduction of sulfate to sulfide. This study focuses on determining the methylmercury production and release potential from sulfur-rich sediments extracted from different areas of the Brunswick Estuary. Previous studies note considerable levels of mercury in the Brunswick Estuary due to a local super fund site.
    [Show full text]
  • Mercury Biogeochemical Cycling: a Synthesis of Recent Scientific Advances
    Science of the Total Environment 737 (2020) 139619 Contents lists available at ScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Mercury biogeochemical cycling: A synthesis of recent scientific advances Mae Sexauer Gustin a,⁎, Michael S. Bank b,c, Kevin Bishop d, Katlin Bowman e,f, Brian Branfireun g, John Chételat h, Chris S. Eckley i, Chad R. Hammerschmidt j, Carl Lamborg f, Seth Lyman k, Antonio Martínez-Cortizas l, Jonas Sommar m, Martin Tsz-Ki Tsui n, Tong Zhang o a Department of Natural Resources and Environmental Science, University of Nevada, Reno, NV 89439, USA b Department of Contaminants and Biohazards, Institute of Marine Research, Bergen, Norway c Department of Environmental Conservation, University of Massachusetts, Amherst, MA 01255, USA d Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, 75007 Uppsala, Sweden e Moss Landing Marine Laboratories, 8272 Moss Landing Road, Moss Landing, CA 95039, USA f University of California Santa Cruz, Ocean Sciences Department, 1156 High Street, Santa Cruz, CA 95064, USA g Department of Biology and Centre for Environment and Sustainability, Western University, London, Canada h Environment and Climate Change Canada, National Wildlife Research Centre, 1125 Colonel By Drive, Ottawa, ON K1A 0H3, Canada i U.S. Environmental Protection Agency, Region-10, 1200 6th Ave, Seattle, WA 98101, USA j Wright State University, Department of Earth and Environmental Sciences, 3640 Colonel Glenn Highway, Dayton,
    [Show full text]
  • Biogeochemical Cycle
    Biogeochemical cycle In ecology and Earth science, a biogeochemical cycle or substance turnover or cycling of substances is a pathway by which a chemical substance moves through biotic (biosphere) and abiotic (lithosphere, atmosphere, and hydrosphere) compartments of Earth. There are biogeochemical cycles for the chemical elements calcium, carbon, hydrogen, mercury, nitrogen, oxygen, phosphorus, selenium, and sulfur; molecular cycles for water and silica; macroscopic cycles such as the rock cycle; as well as human-induced cycles for synthetic compounds such as An illustration of the oceanic whale pump polychlorinated biphenyl (PCB). In some showing how whales cycle nutrients cycles there are reservoirs where a through the water column substance remains for a long period of time. Contents Systems Reservoirs Important cycles See also References Further reading Systems Ecological systems (ecosystems) have many biogeochemical cycles operating as a part of the system, for example the water cycle, the carbon cycle, the nitrogen cycle, etc. All chemical elements occurring in organisms are part of biogeochemical cycles. In addition to being a part of living organisms, these chemical elements also cycle through abiotic factors of ecosystems such as water (hydrosphere), land (lithosphere), and/or the air (atmosphere).[1] The living factors of the planet can be referred to collectively as the biosphere. All the nutrients—such as carbon, nitrogen, oxygen, phosphorus, and sulfur—used in ecosystems by living organisms are a part of a closed system; therefore, these chemicals are recycled instead of being lost and replenished constantly such as in an open system.[1] The flow of energy in an ecosystem is an open system; the sun constantly gives the planet energy in the form of light while it is eventually used and lost in the form of heat throughout the trophic levels of a food web.
    [Show full text]
  • Mercury: Sources, Transport, Deposition and Impacts
    ARD-28 2019 Mercury: Sources, Transport, Deposition and Impacts What you should know: Mercury is a persistent, bioaccumulative, toxic pollutant. When released into the environment, it accumulates in water laid sediments where it converts into toxic methylmercury and enters the food chain. Mercury contamination is a significant public health and environmental problem because methylmercury easily enters the bloodstream and affects the brain. Due to decades of mercury deposition, mercury contamination in freshwater fish is widespread and significant enough to warrant fish consumption advisories in all 50 states. Mercury concentrations tend to be higher in larger, older fish and in fish from tea-colored and relatively acidic waters. How does mercury get into the environment? Mercury is introduced into the environment in three ways. First, mercury is emitted into the air naturally from volcanoes, the weathering of rocks, forest fires, and soils. Second, mercury is emitted into the air from the burning of fossil fuels and municipal or medical waste. Lastly, mercury can be re-introduced into the environment through natural processes such as evaporation of ocean water. According to the U.S. Environmental Protection Agency’s 2014 National Emissions Inventory report, power plants that burn coal to create electricity are the largest source of emissions; they account for about 42% of all manmade mercury emissions. Mercury deposited in New Hampshire is both emitted from in-state sources and carried here primarily from coal-fired utilities and municipal and medical waste incinerators in the Northeast and Midwest. Once it is released into the atmosphere, mercury can travel hundreds of miles with the wind before being deposited on the earth's surface.
    [Show full text]
  • Mercury Behaviour in Estuarine and Coastal Environment M. Horvat
    Transactions on Ecology and the Environment vol 14, © 1997 WIT Press, www.witpress.com, ISSN 1743-3541 Mercury behaviour in estuarine and coastal environment M. Horvat Department of Environmental Sciences, Jozef Stefan Institute, Jamova 39, Ljubljana, Slovenia E-mail: [email protected] Abstract General facts about the global mercury cycle with particular emphasis on the coastal and ocean environment are summarized. In the coastal environment the largest source of mercury is river-born particulate bound species. This portion of mercury is unreactive and is quickly buried in nearshore sediments. Only a small fraction of reactive mercury (ionic mercury in solution that is immediately available for reaction) originates from river inputs. The most important source of reactive mercury in the coastal and oceanic environment is through atmospheric input and via upwelling. Biologically-mediated processes, mainly connected to primary production, are responsible for active redistribution of reactive mercury. In this process a large part of reactive Hg is reduced to elemental mercury which is returned to the atmosphere by evasion, while the rest is scavenged by particles and transported to deeper oceanic waters. Because of the active atmospheric mercury cycle oceans acts as a source and a sink of atmospheric mercury and the global oceanic evasion is balanced by the deposition. Current studies show that methylated species are primarily formed in the deeper ocean and the mam source of monomethylmercury (MMHg) compounds in coastal areas is through upwelling of oceanic waters and from in-situ methylation in coastal waters. All these environmental processes occur at extremely low concentration levels of mercury species; however MMHg in marine organisms accounts for a high proportion of this toxic compounds owing to its property for bioaccumulation and biomagnification.
    [Show full text]
  • An International Study of the Global Marine Biogeochemical Cycles of Trace Elements and Their Isotopes SCOR Working Groupã1
    ARTICLE IN PRESS Chemie der Erde 67 (2007) 85–131 www.elsevier.de/chemer INVITED REVIEW GEOTRACES – An international study of the global marine biogeochemical cycles of trace elements and their isotopes SCOR Working GroupÃ1 Received 28 April 2006; accepted 19 September 2006 Abstract Trace elements serve important roles as regulators of ocean processes including marine ecosystem dynamics and carbon cycling. The role of iron, for instance, is well known as a limiting micronutrient in the surface ocean. Several other trace elements also play crucial roles in ecosystem function and their supply therefore controls the structure, and possibly the productivity, of marine ecosystems. Understanding the biogeochemical cycling of these micronutrients requires knowledge of their diverse sources and sinks, as well as their transport and chemical form in the ocean. Much of what is known about past ocean conditions, and therefore about the processes driving global climate change, is derived from trace-element and isotope patterns recorded in marine deposits. Reading the geochemical information archived in marine sediments informs us about past changes in fundamental ocean conditions such as temperature, salinity, pH, carbon chemistry, ocean circulation and biological productivity. These records provide our principal source of information about the ocean’s role in past climate change. Understanding this role offers unique insights into the future consequences of global change. The cycle of many trace elements and isotopes has been significantly impacted by human activity. Some of these are harmful to the natural and human environment due to their toxicity and/or radioactivity. Understanding the processes that control the transport and fate of these contaminants is an important aspect of protecting the ocean environment.
    [Show full text]
  • Origin, Reactivity, and Bioavailability of Mercury in Wildfire Ash By
    Origin, Reactivity, and Bioavailability of Mercury in Wildfire Ash By: Peijia Ku, Martin Tsz-Ki Tsui, Xiangping Nie, Huan Chen, Tham C. Hoang, Joel D. Blum, Randy A. Dahlgren, and Alex T. Chow Ku, Peijia; Tsui, Martin Tsz Ki; Nie, Xiangping; Chen, Huan; Hoang, Tham C.; Blum, Joel D.; Dahlgren, Randy A.; Chow, Alex T. Origin, Reactivity, and Bioavailability of Mercury in Wildfire Ash. Environmental Science and Technology. v52 n24 (Dec 18, 2018) 14149-14157. https://doi.org/10.1021/acs.est.8b03729 This document is the Accepted Manuscript version of a Published Work that appeared in final form in Environmental Science and Technology, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.est.8b03729. Abstract: Wildfires are expected to become more frequent and intensive at the global scale due to climate change. Many studies have focused on the loss of mercury (Hg) from burned forests; however, little is known about the origins, concentration, reactivity, and bioavailability of Hg in residual ash materials in postfire landscapes. We examine Hg levels and reactivity in black ash (BA, low burn intensity) and white ash (WA, high burn intensity) generated from two recent northern California wildfires and document that all ash samples contained measurable, but highly variable, Hg levels ranging from 4 to 125 ng/g dry wt. (n = 28). Stable Hg isotopic compositions measured in select ash samples suggest that most Hg in wildfire ash is derived from vegetation. Ash samples had a highly variable fraction of Hg in recalcitrant forms (0–75%), and this recalcitrant Hg pool appears to be associated with the black carbon fraction in ash.
    [Show full text]
  • Natural and Anthropogenic Mercury Sources and Their Impact on the Air-Surface Exchange of Mercury on Regional and Global Scales
    GKSS Natural and Anthropogenic Mercury Sources and Their Impact on the Air-Surface Exchange of Mercury on Regional and Global Scales Authors: R. Ebinghaus R. M. Tripathi D. Wallschlager S. E. Lindberg DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. KS002458351 R: KS DE012844914 *05012844914* Natural and Anthropogenic Mercury Sources and Their Impact on the Air-Surface Exchange of Mercury on Regional and Global Scales R. Ebingiiaus , R.M. T ripathi , D. Wali .sciii.ager , and S.E. L indberg 1 Introduction Mercury is outstanding among the global environmental pollutants of continuing concern. Especially in the last decade of the 20th century, environmental scientists, legislators, politicians and the public have become aware of mercury pollution in the global environment. It has often been suggested that anthro­ pogenic emissions are leading to a general increase in mercury on local, regional, and global scales (Lindqvist et al. 1991; Expert Panel 1994). Mercury is emitted into the atmosphere from a number of natural as well as anthropogenic sources. In contrast with most of the other heavy metals, mercury and manyof its compounds behave exceptionally in the environment due to their volatility and capability for methylation. Long-range atmospheric transport of mercury, its transformation to more toxic methylmercury compounds, and their bioaccumulation in the aquatic foodchain have motivated intensive research on mercury as a pollutant of global concern. Mercury takes part in a number of complex environmental cycles, and special interest is focused on the aquatic-biological and the atmospheric cycles.
    [Show full text]
  • Mercury Contamination of Aquatic Ecosystems
    Fact Sheet FS-216-95 Mercury Contamination of Aquatic Ecosystems U.S. Department of the Interior–U.S. Geological Survey Introduction 33 states have issued fish consumption Mercury has been well known as an envi­ advisories because of mercury contami­ ronmental pollutant for several decades. nation (fig. 1). These continental to As early as the 1950’s it was established global scale occurrences of mercury that emissions of mercury to the environ­ contamination cannot be linked to indi­ ment could have serious effects on vidual emissions of mercury, but human health. These early studies dem­ instead are due to widespread air pollu­ onstrated that fish and other wildlife from tion. When scientists measure mercury various ecosystems commonly attain mer­ levels in air and surface water, howev­ cury levels of toxicological concern when er, the observed levels are extraordinar­ directly affected by mercury-containing ily low (fig. 2). In fact, scientists have emissions from human-related activities. to take extreme precautions to avoid Human health concerns arise when fish direct contact with water samples or Figure 2. The droplet of mercury shown in this slide is about 1 gram; the same amount that is and wildlife from these ecosystems are sample containers, to avert sample con­ in a standard mercury thermometer and the consumed by humans. tamination (fig. 3). Herein lies an appa­ total amount that is deposited annually on a lake in northern Wisconsin with a surface area rent discrepancy: Why do fish from of 27 acres. During the past decade, a new trend has some remote areas have elevated mer­ emerged with regard to mercury pollution.
    [Show full text]