LUMC Course Parasitology ESCMID Online Lecture Library © by Author

Total Page:16

File Type:pdf, Size:1020Kb

LUMC Course Parasitology ESCMID Online Lecture Library © by Author Giardia lamblia and Dientamoeba fragilis clinical aspects, diagnostics and epidemiology © Theoby Mankauthor ESCMID Online Lecture Library LUMC course parasitology Dientamoeba © by author ESCMID Online Lecture Library LUMC course parasitology Giardia lamblia the parasite that keeps surprising © by author ESCMID Online Lecture Library LUMC course parasitology Giardia lamblia • 1681: Giardia was first observed by Anthony van Leeuwenhoek, the pioneering microscopist from Delft, The Netherlands, in his watery stools • Late 70s: Giardia was recognized as a human pathogen, based on symptoms such as malabsorption and the pathology observed in the upper part of the small intestine in patients from whom the organism was isolated (Koulda and Nohynova 1978) • 1981: The World Health© Organization by author added Giardia to its list of parasitic pathogens • ESCMID2006: Giardia was Online added to the LectureWHO “Neglected Library Disease Initiative” (Savioli et al, 2006) LUMC course parasitology © by author ESCMID Online Lecture Library LUMC course parasitology © by author ESCMID Online Lecture Library LUMC course parasitology © by author ESCMID Online Lecture Library LUMC course parasitology © by author ESCMID Online Lecture Library LUMC course parasitology © by author ESCMID Online Lecture Library LUMC course parasitology © by author ESCMID Online Lecture Library LUMC course parasitology Prevalence • Cosmopolitan • Depending on the population – Higher in case of suboptimal sanitation – Quality of drinking water – Developing countries© by author ESCMID– Day care centers Online Lecture Library – Personal hygiene LUMC course parasitology The Netherlands total population 16 million © by author ESCMID Online Lecture Library LUMC course parasitology © by author ESCMID Online Lecture Library LUMC course parasitology water in The Netherlands © by author ESCMID Online Lecture Library LUMC course parasitology Prevalence NL • Depending on the population – Asymptomatic carriership 2-3% • N=360.000 – Duration of complaints© by author • acute GI in general practice ± 5% • persistent diarrhea in GP ≥ 1week ± 14% ESCMID Online Lecture Library – HospitalizedLUMC < General course Practice parasitology Age-distribution (N=892 patients; numbers represent percentages) 30 25 Cryptosporidium spp 20 D. fragilis G. lamblia 15 C. jejuni Salmonella spp 10 © by author 5 ESCMID Online Lecture Libraryp<0.01 0 p<0.01 1-4LUMC 5-14 course 15-24 25-45 parasitology 45-65 Seasonal distribution (N=892 patients; numbers represent percentages) 18 p<0.01 16 14 Cryptosporidium spp 12 D. fragilis 10 G. lamblia 8 © by author C. jejuni 6 Salmonella spp 4 ESCMID2 Online Lecture Library 0 WinterLUMC Spring courseSummer parasitology Autumn The “natural course“ of Giardia What happens after ingestion of the cysts? © by author ESCMID Online Lecture Library LUMC course parasitology © by author ESCMID Online Lecture Library LUMC course parasitology © by author ESCMID Online Lecture Library LUMC course parasitology © by author ESCMID Online Lecture Library LUMC course parasitology © by author ESCMID Online Lecture Library LUMC course parasitology Clinical presentation spectrum disease • Asymptomatic / beneficial • Mild; intermittent, not comfortable • Acute diarrhoea © by author • Chronic; persistent diarrhea, brush border abnormalities, malabsorption (children: failure to ESCMIDthrive / impaired Online cognitive Lecture development) Library LUMC course parasitology “some people benefit from their carrier state” • Observation: asymptomatic carriers in day care centers in Israel tended to have fewer symptoms related to GI- and respiratory tracts as compared to Giardia free children (Ish-Horowicz et al Asymptomatic giardiasis in children. the Journal of Infectious Diseases 1987;156:974-84) • Observation: asymptomatic giardiasis in rural Tanzanian children “protects” against diarrhea (J Veenemans, T Mank, M Ottenhof etal© Protection by against author diarrhea associated with Giardia intestinalis is lost with multi-nutrient supplementation: a study in Tanzanian Children. Plos Neglected Tropical Diseases, Research Article published 7 juni 2011 10.1371/journal.pntd 00158 ESCMID Online Lecture Library LUMC course parasitology Study Population and Design Study period: February 2008 - March 2009 Location: Kwedizinga ward, Tanzania (malaria endemic) Study population: children aged 6-60 months They randomly received daily oral supplement: - Zinc - Multinutrients with zinc - Multinutrients without zinc Zinc - Placebo Multinutrients Parents or caretakers were asked to bring their Multinutrients children immediately to the research dispensatory with zinc Placebo when they observed fever, diarrhoea or any other signs of illness. © by author Blood sample collection: at the start and at the end of the intervention, and at the time of fibrile attack. Stool sample collection: ESCMID at the start and at a median Online of 251 days of intervention.Lecture Library Intervention Groups LUMC course parasitology Invited for screening N=1265 No show N=236 Screened N=1029 Excluded (n=417) - Parents refused consent: 21 - Height-for-age >-1.5 SD: 359 - Medical reasons: 13 - Date of birth unclear: 8 Eligible - Unlikely to comply with intervention: 18 N=612 Multi-nutrients Multi-nutrients Zinc Placebo without zinc with zinc N=153 N=153 N=155 N=151 © by author Lost to follow- Lost to follow- Lost to follow- up: 3 Lost to follow- up: 5 up: 3 Refused: 1 up: 4 Refused: 1 Died: 2 ESCMID Online Lecture Died:Library 1 Completed Completed Completed Completed N=147 (96%) LUMCN=150 course(97%) parasitologyN=146 (97%) N=149 (97%) Complied: Complied: Complied: Complied: N=145 (95%) N=148 (95%) N=146 (97%) N=148 (97%) © by author ESCMID Online Lecture Library LUMC course parasitology Giardia infection at baseline protects against subsequent diarrhoea… 1.00 P <0.001 0.75 © by author Infected ESCMID OnlineNon-infected Lecture Library 0.50 LUMC course parasitology 0 100 200 300 400 Time to first reported episode of diarrhoea …but not when receiving multinutrients 1.00 Infected Non-infected 0.75 © by author Analysis restricted to children who ESCMID Onlinereceived Lecture multinutrients Library (with or without zinc) 0.50 LUMC course parasitology 0 100 200 300 400 Time to first reported episode of diarrhoea Association between Giardia infection at baseline and subsequent diarrhoea… 1.00 Placebo or zinc; Giardia + Multinutrients 0.75 ; Giardia + Multinutrients; © by author Giardia – Placebo or zinc; Giardia – ESCMID Online Lecture Library 0.50 LUMC course parasitology 0 100 200 300 400 Clinical presentation spectrum disease • Asymptomatic / beneficial • Mild; intermittent, not comfortable • Acute diarrhea (travellers) © by author • Chronic; persistent diarrhea, brush border abnormalities, malabsorption (children: failure to ESCMIDthrive / impaired Online cognitive Lecture development) Library LUMC course parasitology Compaints in symptomatic giardiasis • diarrhoea (persistent or intermittent) • frothy, greasy, smelly, sticky stools / floats on water • bloating • flatulence • abdominal pain • upper intestinal cramps • nausea © by author • vomiting ESCMID• anorexia Online Lecture Library • weight loss or reduced weight gain • feverishLUMC course parasitology Clinical presentation spectrum disease • Extra intestinal manifestations include: – Arthritis – Aphtous ulcerations – Biliary tract ©disease by author – Urticaria – Sensitisation towards food allergens ESCMID– Ocular Onlinedisorders (uveitis, Lecture retinal Libraryarteritis) – MicronutrientLUMC course deficiencies parasitology (Fe, Zn, Vit A, Vit B12) © by author ESCMID Online Lecture Library LUMC course parasitology “risk factors” chronic giardiasis • Host related factors • Immune status • Hypogammaglobulinemia (IgA def) • Age • Nutritional status © by author • Parasite related ESCMID• Number Online of cysts ingested Lecture Library • Genotype LUMC course parasitology Species and genotypes of Giardia spp © by author ESCMID Online Lecture Library LUMC course parasitology Molecular characterization of Giardia Targets (PCR-RFLP / sequencing / MLST) – 18s rDNA – GdH (glutamate dehydrogenase) – ß-giardine – tpi (triose phosphate isomerase) – Elongationfactor©-1α by author – GLORF-C4 (G lamblia open reading frame C4) ESCMID Online Lecture Library LUMC course parasitology Relationship of Giardia based on GDH locus © by author ESCMID Online Lecture Library LUMC course parasitology Ey et al, 1997 human Giardiasis • G duodenalis assemblage A & B only • Several studies on genotype in relation to clinical presentation have been performed • Controversial conclusions • differences in© study by design author • in- and exclusion criteria • other diarrheal agents tested for (eg bacterial / viral) ESCMID• multiplex Online PCR format /Lecture Luminex technology Library LUMC course parasitology Therapy First line: 5-nitro-imidazole derivates metronidazol / Flagyl® adults: 500 mg tid x 7-10d children: 30 mg/kg/d in 3 doses x 7-10 d © by author Pregnancy / breast feeding: ESCMID paromomycin Online / Humatin Lecture® Library 30 mg/kg/dLUMC in 3 coursedosis x 7d parasitology Outcomes of treatment - quick respons without sequelae - not effective (with or without persistent sequelae) - dose / compliance / resistence - temporary© by lactase author deficiency - post infectieus IBS ESCMID- bact Onlineerial overgrowth Lecture Library LUMC course parasitology “Bergen” outbreak • Bergen / Norway • Autumn 2004 • Drinking water contamination • N= 1262 • 2 years after giardiasis – Post-infectious fatigue 41%
Recommended publications
  • Exposure to Parasitic Protists and Helminths Changes the Intestinal Community Structure Of
    bioRxiv preprint doi: https://doi.org/10.1101/717165; this version posted July 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Title: Exposure to parasitic protists and helminths changes the intestinal community structure of 2 bacterial microbiota but not of eukaryotes in a cohort of mother-child binomial from a semi-rural 3 setting in Mexico 4 Running title: Parasites affect intestinal microbiome 5 Oswaldo Partida-Rodriguez1,2, Miriam Nieves-Ramirez1,2, Isabelle Laforest-Lapointe3,4, Eric Brown2, 6 Laura Parfrey5,6, Lisa Reynolds2, Alicia Valadez-Salazar1, Lisa Thorson2, Patricia Morán1, Enrique 7 Gonzalez1, Edgar Rascon1, Ulises Magaña1, Eric Hernandez1, Liliana Rojas-V1, Javier Torres7, Marie 8 Claire Arrieta2,3,4*, Cecilia Ximenez1*#, Brett Finlay2,8,9* 9 * Senior authors, contributed equally. 10 1Laboratorio de Inmunología del Departamento de Medicina Experimental, UNAM, Mexico City, Mexico 11 2Michael Smith Laboratories, Department of Microbiology & Immunology, University of British 12 Columbia, Vancouver, British Columbia, Canada 13 3Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada 14 4Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada 15 5Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada 16 6Department of Botany, University
    [Show full text]
  • Giardiasis Importance Giardiasis, a Gastrointestinal Disease Characterized by Acute Or Chronic Diarrhea, Is Caused by Protozoan Parasites in the Genus Giardia
    Giardiasis Importance Giardiasis, a gastrointestinal disease characterized by acute or chronic diarrhea, is caused by protozoan parasites in the genus Giardia. Giardia duodenalis is the major Giardia Enteritis, species found in mammals, and the only species known to cause illness in humans. This Lambliasis, organism is carried in the intestinal tract of many animals and people, with clinical signs Beaver Fever developing in some individuals, but many others remaining asymptomatic. In addition to diarrhea, the presence of G. duodenalis can result in malabsorption; some studies have implicated this organism in decreased growth in some infected children and Last Updated: December 2012 possibly decreased productivity in young livestock. Outbreaks are occasionally reported in people, as the result of mass exposure to contaminated water or food, or direct contact with infected individuals (e.g., in child care centers). People are considered to be the most important reservoir hosts for human giardiasis. The predominant genetic types of G. duodenalis usually differ in humans and domesticated animals (livestock and pets), and zoonotic transmission is currently thought to be of minor significance in causing human illness. Nevertheless, there is evidence that certain isolates may sometimes be shared, and some genetic types of G. duodenalis (assemblages A and B) should be considered potentially zoonotic. Etiology The protozoan genus Giardia (Family Giardiidae, order Giardiida) contains at least six species that infect animals and/or humans. In most mammals, giardiasis is caused by Giardia duodenalis, which is also called G. intestinalis. Both names are in current use, although the validity of the name G. intestinalis depends on the interpretation of the International Code of Zoological Nomenclature.
    [Show full text]
  • The Intestinal Protozoa
    The Intestinal Protozoa A. Introduction 1. The Phylum Protozoa is classified into four major subdivisions according to the methods of locomotion and reproduction. a. The amoebae (Superclass Sarcodina, Class Rhizopodea move by means of pseudopodia and reproduce exclusively by asexual binary division. b. The flagellates (Superclass Mastigophora, Class Zoomasitgophorea) typically move by long, whiplike flagella and reproduce by binary fission. c. The ciliates (Subphylum Ciliophora, Class Ciliata) are propelled by rows of cilia that beat with a synchronized wavelike motion. d. The sporozoans (Subphylum Sporozoa) lack specialized organelles of motility but have a unique type of life cycle, alternating between sexual and asexual reproductive cycles (alternation of generations). e. Number of species - there are about 45,000 protozoan species; around 8000 are parasitic, and around 25 species are important to humans. 2. Diagnosis - must learn to differentiate between the harmless and the medically important. This is most often based upon the morphology of respective organisms. 3. Transmission - mostly person-to-person, via fecal-oral route; fecally contaminated food or water important (organisms remain viable for around 30 days in cool moist environment with few bacteria; other means of transmission include sexual, insects, animals (zoonoses). B. Structures 1. trophozoite - the motile vegetative stage; multiplies via binary fission; colonizes host. 2. cyst - the inactive, non-motile, infective stage; survives the environment due to the presence of a cyst wall. 3. nuclear structure - important in the identification of organisms and species differentiation. 4. diagnostic features a. size - helpful in identifying organisms; must have calibrated objectives on the microscope in order to measure accurately.
    [Show full text]
  • Drugs for Amebiais, Giardiasis, Trichomoniasis & Leishmaniasis
    Antiprotozoal drugs Drugs for amebiasis, giardiasis, trichomoniasis & leishmaniasis Edited by: H. Mirkhani, Pharm D, Ph D Dept. Pharmacology Shiraz University of Medical Sciences Contents Amebiasis, giardiasis and trichomoniasis ........................................................................................................... 2 Metronidazole ..................................................................................................................................................... 2 Iodoquinol ........................................................................................................................................................... 2 Paromomycin ...................................................................................................................................................... 3 Mechanism of Action ...................................................................................................................................... 3 Antimicrobial effects; therapeutics uses ......................................................................................................... 3 Leishmaniasis ...................................................................................................................................................... 4 Antimonial agents ............................................................................................................................................... 5 Mechanism of action and drug resistance ......................................................................................................
    [Show full text]
  • Diversity and Prevalence of Gastrointestinal Parasites in Seven Non-Human Primates of the Taï National Park, Côte D’Ivoire
    Parasite 2015, 22,1 Ó R.Y.W. Kouassi et al., published by EDP Sciences, 2015 DOI: 10.1051/parasite/2015001 Available online at: www.parasite-journal.org RESEARCH ARTICLE OPEN ACCESS Diversity and prevalence of gastrointestinal parasites in seven non-human primates of the Taï National Park, Côte d’Ivoire Roland Yao Wa Kouassi1,2,4,6,*, Scott William McGraw3, Patrick Kouassi Yao1, Ahmed Abou-Bacar4,6, Julie Brunet4,5,6, Bernard Pesson4, Bassirou Bonfoh2, Eliezer Kouakou N’goran1, and Ermanno Candolfi4,6 1 Unité de Formation et de Recherche Biosciences, Université Félix Houphouët Boigny, 22 BP 770, Abidjan 22, Côte d’Ivoire 2 Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, 01 BP 1303, Abidjan 01, Côte d’Ivoire 3 Department of Anthropology, Ohio State University, 4064 Smith Laboratory, 174 West 18th Avenue, Columbus, Ohio 43210, USA 4 Laboratoire de Parasitologie et de Mycologie Médicale, Plateau Technique de Microbiologie, Hôpitaux Universitaires de Strasbourg, 1 rue Koeberlé, 67000 Strasbourg, France 5 Laboratoire de Parasitologie, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch cedex, France 6 Institut de Parasitologie et de Pathologie Tropicale, EA 7292, Fédération de Médecine Translationnelle, Université de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France Received 25 July 2014, Accepted 14 January 2015, Published online 27 January 2015 Abstract – Parasites and infectious diseases are well-known threats to primate populations. The main objective of this study was to provide baseline data on fecal parasites in the cercopithecid monkeys inhabiting Côte d’Ivoire’s Taï National Park. Seven of eight cercopithecid species present in the park were sampled: Cercopithecus diana, Cercopithecus campbelli, Cercopithecus petaurista, Procolobus badius, Procolobus verus, Colobus polykomos, and Cercocebus atys.
    [Show full text]
  • Dientamoeba Fragilis – the Most Common Intestinal Protozoan in the Helsinki Metropolitan Area, Finland, 2007 to 2017
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Helsingin yliopiston digitaalinen arkisto Research Dientamoeba fragilis – the most common intestinal protozoan in the Helsinki Metropolitan Area, Finland, 2007 to 2017 Jukka-Pekka Pietilä1, Taru Meri2, Heli Siikamäki1, Elisabet Tyyni3, Anne-Marie Kerttula3, Laura Pakarinen1, T Sakari Jokiranta4,5, Anu Kantele1,6 1. Inflammation Center, Infectious Diseases, Helsinki University Hospital and Helsinki University, Helsinki, Finland 2. Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland 3. Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, Helsinki, Finland 4. Medicum, University of Helsinki, Finland 5. SYNLAB Finland, Helsinki, Finland 6. Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Finland Correspondence: Anu Kantele ([email protected]) Citation style for this article: Pietilä Jukka-Pekka, Meri Taru, Siikamäki Heli, Tyyni Elisabet, Kerttula Anne-Marie, Pakarinen Laura, Jokiranta T Sakari, Kantele Anu. Dientamoeba fragilis – the most common intestinal protozoan in the Helsinki Metropolitan Area, Finland, 2007 to 2017. Euro Surveill. 2019;24(29):pii=1800546. https://doi.org/10.2807/1560- 7917.ES.2019.24.29.1800546 Article submitted on 08 Oct 2018 / accepted on 12 Apr 2019 / published on 18 Jul 2019 Background: Despite the global distribution of of Dientamoeba-like structures in formalin-fixed sam- the intestinal protozoan Dientamoeba fragilis, its ples, an approach applicable also in resource-poor clinical picture remains unclear. This results from settings. Symptoms of dientamoebiasis differ slightly underdiagnosis: microscopic screening methods from those of giardiasis; patients with distressing either lack sensitivity (wet preparation) or fail to symptoms require treatment.
    [Show full text]
  • 204684Orig1s000
    CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 204684Orig1s000 MICROBIOLOGY / VIROLOGY REVIEW(S) Division of Anti-Infective Products Clinical Microbiology Review NDA 204684 (Original NDA) Page 2 of 129 PROPOSED DOSAGE FORM AND STRENGTH: Capsules, each containing 50 mg miltefosine. ROUTE OF ADMINISTRATION AND DURATION OF TREATMENT: Impavido is recommended to be taken orally daily for 28 days with food. The number of 50 mg capsules per day will be determined by bodyweight: • 30–44 kg (66–97 lbs): one 50 mg capsule twice daily with food. • ≥45 kg (99 lbs): one 50 mg capsule three times daily with food. DISPENSED: Rx RELATED DOCUMENTS: IND 105,430 REMARKS The subject of this NDA is miltefosine for the treatment of visceral, mucosal, and cutaneous leishmaniasis. The nonclinical and clinical microbiology studies, submitted by the applicant or obtained by an independent literature search, support the activity of miltefosine against visceral, mucosal, and cutaneous leishmaniasis. A potential for development of resistance to miltefosine exists and may be due increase in drug efflux, mediated by the overexpression of the ABC transporter P-glycoprotein and/or a decrease in drug uptake by the inactivation of the miltefosine transport machinery that consists of the miltefosine transporter and its beta subunit. Mutation in the transporter gene was reported in a relapsed patient in one study. Also, some strains of L. braziliensis with intrinsic resistance to miltefosine have been identified. Such information should be included in ‘Microbiology’ subsection of the labeling. In clinical studies, the parasitological measurements at the time of screening included direct examination of aspirates/smears; at the end of treatment or follow-up visits parasitological measurements were made if clinically indicated.
    [Show full text]
  • Catalogue of Protozoan Parasites Recorded in Australia Peter J. O
    1 CATALOGUE OF PROTOZOAN PARASITES RECORDED IN AUSTRALIA PETER J. O’DONOGHUE & ROBERT D. ADLARD O’Donoghue, P.J. & Adlard, R.D. 2000 02 29: Catalogue of protozoan parasites recorded in Australia. Memoirs of the Queensland Museum 45(1):1-164. Brisbane. ISSN 0079-8835. Published reports of protozoan species from Australian animals have been compiled into a host- parasite checklist, a parasite-host checklist and a cross-referenced bibliography. Protozoa listed include parasites, commensals and symbionts but free-living species have been excluded. Over 590 protozoan species are listed including amoebae, flagellates, ciliates and ‘sporozoa’ (the latter comprising apicomplexans, microsporans, myxozoans, haplosporidians and paramyxeans). Organisms are recorded in association with some 520 hosts including mammals, marsupials, birds, reptiles, amphibians, fish and invertebrates. Information has been abstracted from over 1,270 scientific publications predating 1999 and all records include taxonomic authorities, synonyms, common names, sites of infection within hosts and geographic locations. Protozoa, parasite checklist, host checklist, bibliography, Australia. Peter J. O’Donoghue, Department of Microbiology and Parasitology, The University of Queensland, St Lucia 4072, Australia; Robert D. Adlard, Protozoa Section, Queensland Museum, PO Box 3300, South Brisbane 4101, Australia; 31 January 2000. CONTENTS the literature for reports relevant to contemporary studies. Such problems could be avoided if all previous HOST-PARASITE CHECKLIST 5 records were consolidated into a single database. Most Mammals 5 researchers currently avail themselves of various Reptiles 21 electronic database and abstracting services but none Amphibians 26 include literature published earlier than 1985 and not all Birds 34 journal titles are covered in their databases. Fish 44 Invertebrates 54 Several catalogues of parasites in Australian PARASITE-HOST CHECKLIST 63 hosts have previously been published.
    [Show full text]
  • Giardiasis Public Information
    Louisiana Office of Public Health Infectious Disease Epidemiology Section Phone: 1-800-256-2748 www.infectiousdisease.dhh.louisiana.gov Information on Giardiasis Public Information What is the treatment for giardiasis? What is giardiasis? Several prescription drugs are available to treat Giardia; you Giardiasis (GEE-are-DYE-uh-sis) is a diarrheal illness caused by should consult with your health care provider. Young children a very small parasite, Giardia intestinalis (also known as Giar- and pregnant women may be more likely to get dehydrated dia lamblia). Once an animal or person is infected with Giar- from diarrhea, and should drink plenty of fluids while ill. In dia, the parasite lives in the intestine and is passed in the some cases, symptoms of giardiasis will go away without any stool. The parasite is protected by an outer shell and can sur- treatment. vive outside the body and in the environment for a long time. Giardia and drinking water In the past two decades, Giardia infection has become one of the most common causes of waterborne disease (found in both Where and how does Giardia get into drinking water? drinking and recreational water) in humans in the U.S.. Giar- dia infections are more common in warmer climates, though Millions of Giardia parasites can be released in a bowel move- they may be found worldwide and in every region of the US. ment of an infected human or animal. Feces from these hu- mans or animals can get into your well through different ways How do I become infected with giardia? including sewage overflows, polluted storm water runoff, and agricultural runoff.
    [Show full text]
  • Common Intestinal Protozoa of Humans
    Common Intestinal Protozoa of Humans* Life Cycle Charts M.M. Brooke1, Dorothy M. Melvin1, and 2 G.R. Healy 1 Division of Laboratory Training and Consultation Laboratory Program Office and 2Division of Parasitic Diseases Center for Infectious Diseases Second Edition* 1983 U .S. Department of Health and Human Services Public Health Service Centers for Disease Control Atlanta, Georgia 30333 *Updated from the original printed version in 2001. ii Contents Page I. INTRODUCTION 1 II. AMEBAE 3 Entamoeba histolytica 6 Entamoeba hartmanni 7 Entamoeba coli 8 Endolimax nana 9 Iodamoeba buetschlii 10 III. FLAGELLATES 11 Dientamoeba fragilis 14 Pentatrichomonas (Trichomonas) hominis 15 Trichomonas vaginalis 16 Giardia lamblia (syn. Giardia intestinalis) 17 Chilomastix mesnili 18 IV. CILIATE 19 Balantidium coli 20 V. COCCIDIA** 21 Isospora belli 26 Sarcocystis hominis 27 Cryptosporidium sp. 28 VI. MANUALS 29 **At the time of this publication the coccidian parasite Cyclospora cayetanensis had not been classified. iii Introduction The intestinal protozoa of humans belong to four groups: amebae, flagellates, ciliates, and coccidia. All of the protozoa are microscopic forms ranging in size from about 5 to 100 micrometers, depending on species. Size variations between different groups may be considerable. The life cycles of these single- cell organisms are simple compared to those of the helminths. With the exception of the coccidia, there are two important growth stages, trophozoite and cyst, and only asexual development occurs. The coccidia, on the other hand, have a more complicated life cycle involving asexual and sexual generations and several growth stages. Intestinal protozoan infections are primarily transmitted from human to human. Except for Sarcocystis, intermediate hosts are not required, and, with the possible exception of Balantidium coli, reservoir hosts are unimportant.
    [Show full text]
  • Molecular Diagnosis and Genotype Analysis of Giardia Duodenalis In
    Infection, Genetics and Evolution 32 (2015) 208–213 Contents lists available at ScienceDirect Infection, Genetics and Evolution journal homepage: www.elsevier.com/locate/meegid Molecular diagnosis and genotype analysis of Giardia duodenalis in asymptomatic children from a rural area in central Colombia ⇑ Juan David Ramírez a, , Rubén Darío Heredia b, Carolina Hernández a, Cielo M. León a, Ligia Inés Moncada b, Patricia Reyes b, Análida Elizabeth Pinilla c, Myriam Consuelo Lopez b a Grupo de Investigaciones Microbiológicas – UR (GIMUR), Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia b Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia c Departamento de Medicina, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia article info abstract Article history: Giardiasis is a parasitic infection that affects around 200 million people worldwide. This parasite presents Received 10 November 2014 a remarkable genetic variability observed in 8 genetic clusters named as ‘assemblages’ (A–H). These Received in revised form 9 March 2015 assemblages are host restricted and could be zoonotic where A and B infect humans and animals around Accepted 12 March 2015 the globe. The knowledge of the molecular epidemiology of human giardiasis in South-America is scarce Available online 18 March 2015 and also the usefulness of PCR to detect this pathogen in fecal samples remains controversial. The aim of this study was to conduct a cross-sectional study to compare the molecular targets employed for the Keywords: molecular diagnosis of Giardia DNA and to discriminate the parasite assemblages circulating in the stud- Molecular epidemiology ied population.
    [Show full text]
  • New Finding of Giardia Intestinalis (Eukaryote, Metamonad) in Old World Archaeological Site Using Immunofluorescence and Enzyme-Linked Immunosorbent Assays
    New finding of Giardia intestinalis (Eukaryote, Metamonad) in Old World archaeological site using immunofluorescence and enzyme-linked immunosorbent assays. Matthieu Le Bailly, Marcelo L.C. Gonçalves, Stéphanie Harter-Lailheugue, Frédéric Prodéo, Adauto Araujo, Françoise Bouchet To cite this version: Matthieu Le Bailly, Marcelo L.C. Gonçalves, Stéphanie Harter-Lailheugue, Frédéric Prodéo, Adauto Araujo, et al.. New finding of Giardia intestinalis (Eukaryote, Metamonad) in Old World archae- ological site using immunofluorescence and enzyme-linked immunosorbent assays.. Memórias do Instituto Oswaldo Cruz, Instituto Oswaldo Cruz, Ministério da Saúde, 2008, 103 (3), pp.298-300. 10.1590/s0074-02762008005000018. hal-00451147 HAL Id: hal-00451147 https://hal.archives-ouvertes.fr/hal-00451147 Submitted on 7 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License 298 Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 103(3): 298-300, May 2008 New finding of Giardia intestinalis
    [Show full text]