UNIVERSITY of CALIFORNIA, SAN DIEGO an Experimental And
Total Page:16
File Type:pdf, Size:1020Kb
UNIVERSITY OF CALIFORNIA, SAN DIEGO An Experimental and Theoretical Investigation of Atmospheric Hydrogen Bonded Systems in the Gas Phase A Thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Chemistry by Matthew Kenneth Louie Committee in charge: Professor Amitabha Sinha, Chair Professor Judy Kim Professor Joseph O’Connor 2014 The Thesis of Matthew Kenneth Louie is approved and it is accepted in quality and form for publication on microfilm and electronically: _______________________________________________________________________ _______________________________________________________________________ _______________________________________________________________________ Chair University of California, San Diego 2014 iii DEDICATION To my parents Edward and Louisa, and my older sisters, Lisa, Melissa, and Erica, for always giving me their love and support iv TABLE OF CONTENTS Signature Page ................................................................................................................... iii Dedication .......................................................................................................................... iv Table of Contents .................................................................................................................v List of Figures .................................................................................................................. viii List of Tables ..................................................................................................................... xi Acknowledgments............................................................................................................. xii Abstract of the Thesis ...................................................................................................... xiii Chapter 1. Introduction ........................................................................................................1 1.1. References .........................................................................................................7 Chapter 2. UV Photochemistry of Peroxyformic Acid (HC(O)OOH): An Experimental and Computational Study Investigating 355 nm Photolysis ...........................................9 2.1. Introduction .......................................................................................................9 2.2. Experimental method ......................................................................................11 2.3. Results .............................................................................................................14 2.3.1. Experimental results.........................................................................14 2.3.2. Computational results ......................................................................20 2.4. Discussion .......................................................................................................26 v 2.5. Conclusion ......................................................................................................32 2.6. Acknowledgement ..........................................................................................32 2.7. References .......................................................................................................52 Chapter 3. Hydration of Ketene Catalyzed by Formic Acid: Modification of Reaction Mechanism and Energetics with Organic Acid Catalysis .............................................57 3.1. Introduction .....................................................................................................57 3.2. Computational Methods ..................................................................................59 3.3. Results and Discussion ...................................................................................61 3.3.1. Hydration of ketene involving two water molecules and ene-diol formation ....................................................................61 3.3.2. Hydration of ketene involving one water molecule and formic acid ................................................................................65 3.3.3. Hydration of ketene involving two water molecules plus formic acid ...............................................................................67 3.4. Discussion .......................................................................................................68 3.5. Conclusion ......................................................................................................72 3.6. Acknowledgement ..........................................................................................73 3.7. Appendix .........................................................................................................91 3.8. References .....................................................................................................139 Chapter 4. Computational Study of the addition of Amines to Carbonyls: A Case Study with Dimethylamine and Formaldehyde .....................................................................144 4.1. Introduction ...................................................................................................144 4.2. Computational Methods ................................................................................146 4.3. Results and Discussion .................................................................................147 4.3.1. Ammonia........................................................................................148 4.3.2. Methylamine ..................................................................................150 vi 4.3.3. Dimethylamine ...............................................................................151 4.4. Conclusion ....................................................................................................153 4.5. Acknowledgement ........................................................................................153 4.6. Appendix .......................................................................................................166 4.7. References .....................................................................................................201 vii LIST OF FIGURES Figure 2.1: Peroxyformic acid (PFA) with internal hydrogen bonding. Structure constrained to Cs symmetry and optimized at MP2/aug-cc-pVTZ level of theory ............39 Figure 2.2: a) LIF spectrum of the OH (v"=0) Q1(N ") branch resulting from photodissociation of PFA at 355 nm; b) ............................................................................40 Figure 2.3: a) OH rotational population distributions from 355 nm photolysis of 2 2 PFA: the Π3/2 state is probed using the Q1 and P1 branches while the Π1/2 state probed using the Q2 branch. b) ..........................................................................................41 Figure 2.4: a) Doppler profile of the OH Q1(4) transition from 355nm photolysis of PFA; b) ...............................................................................................................................43 Figure 2.5: a) Comparison of OH fragment Q1(N") rotational state distribution from the photodissociation of PFA at 355 and 282 nm; b).........................................................44 Figure 2.6: Interpolation of UV cross section data in the absorption tail region for PFA, H2O2 and peroxyacetic acid (PAA). .........................................................................45 Figure 2.7: a) The potential energy curves of the ground and low-lying excited singlet states of H2O2 as a function of the O–O bond distance, b) ....................................46 Figure 2.8: a) Torsional potential energy curves for the ground and two low-lying excited states of H2O2 as a function of the torsion angle (HOOH), b) ........................47 Figure 2.9: The potential energy curves of the ground and low-lying excited states of PFA as a function of the torsion angle (COOH) for an extended O-O bond distance of 1.60 Å. .............................................................................................................48 Figure 2.10: The molecular orbitals involved in the transition to the first excited state of PFA. ...............................................................................................................................49 Figure 2.11: a) The orientations of the ground state dipole moment and the electronic transition dipole moment for the excitation from ground to first two excited electronic states of H2O2. b)................................................................................................................50 … Figure 3.1: Structures of several possible H2C=C=O H2O complexes (Structure-I, II and III) and other complexes used in investigating the ketene hydration reaction ........80 Figure 3.2: a) Optimized geometries of entrance reactant complex, transition state and product complex associated with the H2C=C=O + 2H2O reaction leading to ene- diol. b) ................................................................................................................................81 viii Figure 3.3: a) Optimized geometries of entrance reactant complex, transition state and product complex associated with conversion of the ene-diol to acetic acid aided by water (CH2C(OH)2 + 2H2O). b) .......................................................................................82 Figure 3.4: a) Optimized geometries of entrance reactant complex, transition state