Module 7 Study Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
End-To-End Performance of 10-Gigabit Ethernet on Commodity Systems
END-TO-END PERFORMANCE OF 10-GIGABIT ETHERNET ON COMMODITY SYSTEMS INTEL’SNETWORK INTERFACE CARD FOR 10-GIGABIT ETHERNET (10GBE) ALLOWS INDIVIDUAL COMPUTER SYSTEMS TO CONNECT DIRECTLY TO 10GBE ETHERNET INFRASTRUCTURES. RESULTS FROM VARIOUS EVALUATIONS SUGGEST THAT 10GBE COULD SERVE IN NETWORKS FROM LANSTOWANS. From its humble beginnings as such performance to bandwidth-hungry host shared Ethernet to its current success as applications via Intel’s new 10GbE network switched Ethernet in local-area networks interface card (or adapter). We implemented (LANs) and system-area networks and its optimizations to Linux, the Transmission anticipated success in metropolitan and wide Control Protocol (TCP), and the 10GbE area networks (MANs and WANs), Ethernet adapter configurations and performed sever- continues to evolve to meet the increasing al evaluations. Results showed extraordinari- demands of packet-switched networks. It does ly higher throughput with low latency, so at low implementation cost while main- indicating that 10GbE is a viable intercon- taining high reliability and relatively simple nect for all network environments. (plug and play) installation, administration, Justin (Gus) Hurwitz and maintenance. Architecture of a 10GbE adapter Although the recently ratified 10-Gigabit The world’s first host-based 10GbE adapter, Wu-chun Feng Ethernet standard differs from earlier Ether- officially known as the Intel PRO/10GbE LR net standards, primarily in that 10GbE oper- server adapter, introduces the benefits of Los Alamos National ates only over fiber and only in full-duplex 10GbE connectivity into LAN and system- mode, the differences are largely superficial. area network environments, thereby accom- Laboratory More importantly, 10GbE does not make modating the growing number of large-scale obsolete current investments in network infra- cluster systems and bandwidth-intensive structure. -
Securing the Everywhere Perimeter Iot, BYOD, and Cloud Have Fragmented the Traditional Network Perimeter
White Paper Securing the Everywhere Perimeter IoT, BYOD, and Cloud have fragmented the traditional network perimeter. This revolution necessitates a new approach that is comprehensive, pervasive, and automated. Businesses need an effective strategy to differentiate critical applications and confidential data, partition user and devices, establish policy boundaries, and reduce their exposure. Leveraging Extreme Networks technology, organizations can hide much of their network and protect those elements that remain visible. Borders are established that defend against unauthorized lateral movement, the attack profile is reduced, and highly effective breach isolation is delivered. This improves the effectiveness of anomaly scanning and the value of specialist security appliances. Redundant network configuration is rolled back, leaving an edge that is “clean” and protected from hacking. Businesses avoid many of the conventional hooks and tools that hackers seek to exploit. Additionally, flipping the convention of access-by-default, effective access control policy enforcement denies unauthorized connectivity. The Business Imperative As businesses undertake the digital transformation, the trends of cloud, mobility, and IoT converge. Organizations need to take a holistic approach to protecting critical systems and data, and important areas for attention are the ability to isolate traffic belonging to different applications, to reduce the network’s exposure and attack profile, and to dynamically control connectivity to network assets. In addition to all of the normal challenges and demands, businesses are also starting to experience IoT. This networking phenomenon sees unconventional embedded system devices appearing, seemingly from nowhere, requiring connectivity. WWW.EXTREMENETWORKS.COM 1 IoT is being positioned as the enabling technology for all manner of “Smart” initiatives. -
Mikrodenetleyicili Endüstriyel Seri Protokol Çözümleyici Sisteminin Programi
YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MİKRODENETLEYİCİLİ ENDÜSTRİYEL SERİ PROTOKOL ÇÖZÜMLEYİCİ SİSTEMİNİN PROGRAMI Elektronik ve Haberleşme Müh. Kemal GÜNSAY FBE Elektronik ve Haberleşme Anabilim Dalı Elektronik Programında Hazırlanan YÜKSEK LİSANS TEZİ Tez Danışmanı : Yrd. Doç. Dr. Tuncay UZUN (YTÜ) İSTANBUL, 2009 YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MİKRODENETLEYİCİLİ ENDÜSTRİYEL SERİ PROTOKOL ÇÖZÜMLEYİCİ SİSTEMİNİN PROGRAMI Elektronik ve Haberleşme Müh. Kemal GÜNSAY FBE Elektronik ve Haberleşme Anabilim Dalı Elektronik Programında Hazırlanan YÜKSEK LİSANS TEZİ Tez Danışmanı : Yrd. Doç. Dr. Tuncay UZUN (YTÜ) İSTANBUL, 2009 İÇİNDEKİLER Sayfa KISALTMA LİSTESİ ................................................................................................................ v ŞEKİL LİSTESİ ...................................................................................................................... viii ÇİZELGE LİSTESİ .................................................................................................................... x ÖNSÖZ ...................................................................................................................................... xi ÖZET ........................................................................................................................................ xii ABSTRACT ............................................................................................................................ xiii 1. GİRİŞ ...................................................................................................................... -
Gigabit Ethernet - CH 3 - Ethernet, Fast Ethernet, and Gigabit Ethern
Switched, Fast, and Gigabit Ethernet - CH 3 - Ethernet, Fast Ethernet, and Gigabit Ethern.. Page 1 of 36 [Figures are not included in this sample chapter] Switched, Fast, and Gigabit Ethernet - 3 - Ethernet, Fast Ethernet, and Gigabit Ethernet Standards This chapter discusses the theory and standards of the three versions of Ethernet around today: regular 10Mbps Ethernet, 100Mbps Fast Ethernet, and 1000Mbps Gigabit Ethernet. The goal of this chapter is to educate you as a LAN manager or IT professional about essential differences between shared 10Mbps Ethernet and these newer technologies. This chapter focuses on aspects of Fast Ethernet and Gigabit Ethernet that are relevant to you and doesn’t get into too much technical detail. Read this chapter and the following two (Chapter 4, "Layer 2 Ethernet Switching," and Chapter 5, "VLANs and Layer 3 Switching") together. This chapter focuses on the different Ethernet MAC and PHY standards, as well as repeaters, also known as hubs. Chapter 4 examines Ethernet bridging, also known as Layer 2 switching. Chapter 5 discusses VLANs, some basics of routing, and Layer 3 switching. These three chapters serve as a precursor to the second half of this book, namely the hands-on implementation in Chapters 8 through 12. After you understand the key differences between yesterday’s shared Ethernet and today’s Switched, Fast, and Gigabit Ethernet, evaluating products and building a network with these products should be relatively straightforward. The chapter is split into seven sections: l "Ethernet and the OSI Reference Model" discusses the OSI Reference Model and how Ethernet relates to the physical (PHY) and Media Access Control (MAC) layers of the OSI model. -
LAB MANUAL for Computer Network
LAB MANUAL for Computer Network CSE-310 F Computer Network Lab L T P - - 3 Class Work : 25 Marks Exam : 25 MARKS Total : 50 Marks This course provides students with hands on training regarding the design, troubleshooting, modeling and evaluation of computer networks. In this course, students are going to experiment in a real test-bed networking environment, and learn about network design and troubleshooting topics and tools such as: network addressing, Address Resolution Protocol (ARP), basic troubleshooting tools (e.g. ping, ICMP), IP routing (e,g, RIP), route discovery (e.g. traceroute), TCP and UDP, IP fragmentation and many others. Student will also be introduced to the network modeling and simulation, and they will have the opportunity to build some simple networking models using the tool and perform simulations that will help them evaluate their design approaches and expected network performance. S.No Experiment 1 Study of different types of Network cables and Practically implement the cross-wired cable and straight through cable using clamping tool. 2 Study of Network Devices in Detail. 3 Study of network IP. 4 Connect the computers in Local Area Network. 5 Study of basic network command and Network configuration commands. 6 Configure a Network topology using packet tracer software. 7 Configure a Network topology using packet tracer software. 8 Configure a Network using Distance Vector Routing protocol. 9 Configure Network using Link State Vector Routing protocol. Hardware and Software Requirement Hardware Requirement RJ-45 connector, Climping Tool, Twisted pair Cable Software Requirement Command Prompt And Packet Tracer. EXPERIMENT-1 Aim: Study of different types of Network cables and Practically implement the cross-wired cable and straight through cable using clamping tool. -
The Future Is 40 Gigabit Ethernet White Paper Cisco Public
The Future Is 40 Gigabit Ethernet White Paper Cisco Public The Future Is 40 Gigabit Ethernet © 2016 Cisco and/or its affiliates. All rights reserved. The Future Is 40 Gigabit Ethernet White Paper Cisco Public Executive Summary The business case for 40 Gigabit Ethernet is becoming inescapably compelling. While 10 Gigabit Ethernet is still making its way into the data centers, CIOs and IT managers must now consider how they are going to handle what’s coming next: high-bandwidth applications such as server virtualization and cloud computing; fabric consolidation within the data center; and a greater demand for high-performance computing among end users (see Figure 1). The need for faster data transfer rates is relentless and carries significant implications with regard to network productivity as well as operating expenditure (OpEx) costs. Figure 1. Current Trends Driving the Demand for This report addresses the impending move to 40 Higher-Speed Ethernet Gigabit Ethernet, how it may change the network architecture, and what IT managers can do now to Market Drivers for More Bandwidth prepare to migrate to the new standard. Consumer & Broadband Access Introduction: The Business Case for Content 40 Gigabit Ethernet Providers Since February 1980, when the first IEEE 802 Server Virtualization standards committee convened, speeds in Ethernet Video on delivery to all layers have made increasingly greater Demand leaps over increasingly shorter intervals. In 2016, Blade Server Higher eight years after the adoption of 10 Gigabit Ethernet, Speed Service the IEEE has adopted 802.3ba, paving the way for Providers & Ethernet IXCs 40 Gigabit Ethernet and 100 Gigabit Ethernet. -
Fact Sheet: Single-Pair Ethernet Trade Article
Fact sheet Single Pair Ethernet Matthias Fritsche – product manager device connectivity & Jonas Diekmann – technical editor HARTING Technology group – October 2016– November 2016 Wireless technology and optical cable have already been often heralded as the future transmission technology. However, simple twisted pair cable based on plain old copper, often pronounced dead, is the most common transmission medium. Simple, robust, and perhaps with 100GBASE T1 soon to be also incredibly fast. From the beginnings of Ethernet in the 1970s, then via diverse multi-pair Ethernet developments with multiple parallel transmission paths, now apparently we are taking a step back. Back to single twisted-pair. With a new protocol and new PHYs transmission rates of up to 10 Gbit/s and PoDL capacities of up to 60 W are no longer a problem. Ultimately one pair is enough. When the team surrounding David Boggs and Robert Metcalf in the 1970s developed Ethernet at the Xerox Palo Alto Research Center (PARC), no one could foresee that this transmission method would develop so dynamically and dominate data transmission worldwide to this day. The original 10BASE5 Ethernet still used coax cable as the common medium. Today, next to wireless and optical cables, twisted-pair cable, often pronounced dead, is the most frequently used transmission medium. Starting in 1990 with 10BASE-T, the data transmission rate of the IEEE standards increased by a factor of 10 approximately every 5 years over 100BASE-TX and 1000BASE-T up to 10GBASE-T. This series could not be continued for the jump to 100GBASE-T, instead however four new IEEE standards were finalized in 2016. -
Ethernet Coax Transceiver Interface 1CY7B8392 Functional Description
CY7B8392 Ethernet Coax Transceiver Interface 1CY7B8392 Functional Description Features The CY7B8392 is a low power coaxial transceiver for Ethernet 10BASE5 and 10BASE2 applications. The device contains all • Compliant with IEEE802.3 10BASE5 and 10BASE2 the circuits required to perform transmit, receive, collision de- • Pin compatible with the popular 8392 tection, heartbeat generation, jabber timer and attachment • Internal squelch circuit to eliminate input noise unit interface (AUI) functions. In addition, the CY7B8392 fea- • Hybrid mode collision detect for extended distance tures an advanced hybrid collision detection. • Automatic AUI port isolation when coaxial connector is The transmitter output is connected directly to a double termi- not present nated 50Ω cable. • Low power BiCMOS design The CY7B8392 is fabricated with an advanced low power • 16-Pin DIP or 28-Pin PLCC BiCMOS process. Typical standby current during idle is 25 mA. Logic Block Diagram RX+ HIGH PASS AUI CCM EQUALIZATION DRIVER RX– RXI LOW PASS FILTER CD+ AUI GND – CARRIER DRIVER LOW PASS SENSE CD– FILTER + TX+ TX– – COLLISION CDS LOW PASS + RCV FILTER TXO WAVEFORM + DC/AC SHAPING SQUELCH – VEE 10 MHz CLK WATCHDOG JABBER RESET OSC TIMER26 ms TIMER0.4 sec RR+ REFERENCE 1K CIRCUIT TRANSMIT RECEIVE RR– STATE STATE MACHINE MACHINE HBE 8392–1 Pin Configurations PLCC DIP Top View Top View – RX+ CD CD+ CDS NC RXI TXO CD+ 1 16 CDS 432 1 28 2726 CD– 2 15 TXO VEE (NC) 5 25 VEE (NC) RX+ 3 14 RXI VEE (NC) 6 24 VEE V VEE 7 23 VEE (NC) EE 4 13 VEE 7B8392 7B8392 VEE 8 22 VEE (NC) VEE 5 12 RR– VEE (NC) 9 21 VEE RX– 6 11 RR+ VEE (NC) 10 20 VEE (NC) TX+ 7 10 GND VEE (NC) 11 121314 15 16 1718 RR– TX– 8 9 HBE – – TX+ TX RX 8392–3 RR+ HBE GND GND 8392–2 Cypress Semiconductor Corporation • 3901 North First Street • San Jose • CA 95134 • 408-943-2600 Document #: 38-02016 Rev. -
Towards 100 Gbps Ethernet: Development of Ethernet / Physical Layer Aspects
SEMINAR ON TOPICS IN COMMUNICATIONS ENGINEERING 1 Towards 100 Gbps Ethernet: Development of Ethernet / Physical Layer Aspects Ömer Bulakci Abstract — Physical layer features of Ethernet from the first released clauses and ongoing architecture researches for 100 realization towards the 100 Gb Ethernet (100 GbE) development GbE are elaborated. have been considered. Comparisons of these features are made according to the standardized data rates. Feasible physical layer TABLE I options are then discussed for high data rates. Milestones of 802.3 IEEE Standard I. INTRODUCTION Clause Date of Bit Physical THERNET is the most widely deployed Local Area Name Release Rate Medium Network (LAN) protocol and has been extended to E 802.3a Single Metropolitan Area Networks (MAN) and Wide Area (Thin Ethernet) 1985 10 Mbps Thin Coaxial Networks (WAN) [1]. The major advantages that characterize (Cheapernet) Cable Ethernet can be stated as its cost efficiency, traditional tenfold bit rate increase (from 10 Mbps to 100 Gbps), simplicity, high 802.3i 1990 10 Mbps TP Copper transmission reliability and worldwide interoperability 802.3j 1993 10 Mbps Two MMFs between vendors [2]. TP Copper The first experimental Ethernet was developed during the 802.3u 1995 100 Mbps Two Fibers early 1970s by XEROX Corporation in a coaxial cable (Fast Ethernet) (MMF,SMF) network with a data rate about 3 Mbps [3]. The initial 802.3z 1998 1 Gbps MMF, SMF standardization process of Ethernet was started in 1979 by (Gigabit Ethernet) Digital Equipment Corporation (DEC), Intel and Xerox. In 802.3ab 1999 1 Gbps TP Copper 1980, DIX Standard known as the “Thick Ethernet” was 802.3ae 2002 10 Gbps MMF,SMF released. -
Understanding CIDR Notation Used for IP Address Display on 2500 Series® Processors
Application Note 2500 Series® Programmable Automation Control System Understanding CIDR Notation Used for IP Address Display on 2500 Series® Processors Newer CTI products featuring Ethernet ports, such as the 2500 Series® processor, the 2500P-ECC1, and 2500P-ACP1, display the IP address of the product on the front panel multi-segment display. This information has proven very useful to most customers, facilitating the connection of browsers to obtain diagnostic data and providing visual confirmation of the operating IP address. Beginning with Version 8.02 of the 2500 Series® processor firmware, we’ve added the capability to display the subnet mask in CIDR notation. This gives users more complete information about the IP address setting to allow them to easily get connected. This application note shows how to interpret the CIDR notation displayed on the front of the processor. What is CIDR Notation? CIDR notation (Classless Inter-Domain Routing) is an alternate method of representing a subnet mask. It is simply a count of the number of network bits (bits that are set to 1) in the subnet mask. Subnet mask bits are explained in a following section. The CIDR number is typically preceded by a slash “/” and follows the IP address. For example, an IP address of 131.10.55.70 with a subnet mask of 255.0.0.0 (which has 8 network bits) would be represented as 131.10.55.70 /8. CIDR notation is more concise method for designating the subnet mask. Compared to Dotted Decimal notation, which represents the mask as four values, each representing the decimal value of an octet of the mask, the CIDR format represents the mask as a single value. -
LAN Topologies
0390.book Page 13 Wednesday, November 14, 2001 3:28 PM C H A P T E R 2 LAN Topologies The application in use, such as multimedia, database updates, e-mail, or file and print sharing, generally determines the type of data transmission. LAN transmissions fit into one of three categories: • Unicast • Multicast • Broadcast Unicast With unicast transmissions, a single packet is sent from the source to a destination on a network. The source-node addresses the packet by using the network address of the destination node. The packet is then forwarded to the destination network and the network passes the packet to its final destination. Figure 2-1 is an example of a unicast network. Figure 2-1 Unicast Network Server Client Client Client 0390.book Page 14 Wednesday, November 14, 2001 3:28 PM 14 Chapter 2: LAN Topologies Multicast With a multicast transmission, a single data packet is copied and forwarded to a specific subset of nodes on the network. The source node addresses the packet by using a multicast address. For example, the TCP/IP suite uses 224.0.0.0 to 239.255.255.255. The packet is then sent to the network, which makes copies of the packet and sends a copy to each segment with a node that is part of the multicast address. Figure 2-2 is an example of a multicast network. Figure 2-2 Multicast Network Server Client Client Client Broadcast Broadcasts are found in LAN environments. Broadcasts do not traverse a WAN unless the Layer 3 edge-routing device is configured with a helper address (or the like) to direct these broadcasts to a specified network address. -
Draft NIST SP 800-125B, Secure Virtual Network Configuration for Virtual Machine
The attached DRAFT document (provided here for historical purposes) has been superseded by the following publication: Publication Number: NIST Special Publication (SP) 800-125B Title: Secure Virtual Network Configuration for Virtual Machine (VM) Protection Publication Date: 3/29/2016 • Final Publication: http://dx.doi.org/10.6028/NIST.SP.800-125B (which links to http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-125B.pdf). • Related Information on CSRC: http://csrc.nist.gov/publications/PubsSPs.html#SP-800-125-B • Information on other NIST cybersecurity publications and programs can be found at: http://csrc.nist.gov/ The following information was posted with the attached DRAFT document: Sep. 29, 2015 SP 800-125 B DRAFT Secure Virtual Network Configuration for Virtual Machine (VM) Protection NIST requests public comments on Draft Special Publication 800-125B, Secure Virtual Network Configuration for Virtual Machine (VM) Protection. VMs constitute the primary resource to be protected in a virtualized infrastructure, since they are the compute engines on which business/mission critical applications of the enterprise are run. Further, since VMs are end-nodes of a virtual network, the configuration of virtual network forms an important element in the security of VMs and their hosted applications. The virtual network configuration areas considered for VM protection in this document are – Network Segmentation, Network Path Redundancy, Firewall Deployment Architecture and VM Traffic Monitoring. The configuration options in each of these areas are analyzed for their advantages and disadvantages and security recommendations are provided. The specific areas where comments are solicited are: • Advantages and Disadvantages of the various configuration options in the four virtual network configuration areas.