Synthesis of Novel Aporphine-Inspired Neuroreceptor Ligands

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis of Novel Aporphine-Inspired Neuroreceptor Ligands City University of New York (CUNY) CUNY Academic Works All Dissertations, Theses, and Capstone Projects Dissertations, Theses, and Capstone Projects 2-2016 Synthesis of Novel Aporphine-Inspired Neuroreceptor Ligands Nirav R. Kapadia Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/792 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] SYNTHESIS OF NOVEL APORPHINE-INSPIRED NEURORECEPTOR LIGANDS by Nirav R Kapadia A dissertation submitted to the Graduate Faculty in Chemistry in partial fulfillment of the requirements for the degree of Doctor of Philosophy, The City University of New York. 2016 © 2016 NIRAV R KAPADIA All Rights Reserved ii This manuscript has been read and accepted by the Graduate Faculty in Chemistry in satisfaction of the dissertation requirement for the degree of Doctor of Philosophy ____________________ _________________________ Date Dr. Wayne Harding Chair of Examining Committee ____________________ __________________________ Date Dr. Brian Gibney Executive Officer Dr. Adam Profit Dr. Shengping Zheng Dr. Wayne Harding Supervisory Committee THE CITY UNIVERSITY OF NEW YORK iii ABSTRACT Synthesis of Novel Aporphine-Inspired Neuroreceptor Ligands by Nirav R Kapadia Advisor: Dr. Wayne Harding Aporphines are a group of tetracyclic alkaloids that belong to the ubiquitous tetrahydroisoquinoline family. The aporphine template is known to be associated with a range of biological activities. Aporphines have been explored as antioxidants, anti-tuberculosis, antimicrobial and anticancer agents. Within the Central Nervous Systems (CNS), aporphine alkaloids are known to possess high affinity for several clinically valuable targets including dopamine receptors (predominantly D1 and D2), serotonin receptors (5-HT1A and 5-HT7) and α adrenergic receptors. Aporphines are also inhibitors of the acetylcholinesterase enzyme – a clinical target for the treatment of Alzheimer’s disease. Considering the diverse profile of aporphine alkaloids at CNS receptors they can be considered as “privileged scaffold” for the design of CNS drugs. The aporphine alkaloid nantenine is a 5-HT2A receptor antagonist and has moderate affinity for the 5-HT2A receptor. Selective 5-HT2A antagonists have therapeutic potential for the treatment of a number of neuropsychiatric disorders including depression, schizophrenia and sleep disorders. The aporphine core of nantenine serves as a valuable lead for the identification of selective 5-HT2A antagonists. In order to understand the structural tolerance of the aporphine core required for 5-HT2A antagonism an exhaustive Structure Activity Relationship (SAR) study was designed. Accordingly, a diverse library of nantenine analogues was synthesized and evaluated for affinity at the 5-HT2A iv receptor. Results from the SAR studies demonstrate that the nitrogen atom of nantenine is required for affinity and that introduction of a phenyl ring at the C4 position is detrimental for 5-HT2A receptor affinity. At the C3 position, introduction of halogen atoms is beneficial for 5-HT2A antagonistic activity. Furthermore, a library of C3 analogues having hydrophobic substituents as well as ring D indole analogues is currently being evaluated for affinity at the 5-HT2A receptors. These compounds will further expand our understanding of the tolerance of the aporphine core required for 5-HT2A antagonism. In order to rationalize the affinity of certain high affinity ligands, molecular docking studies were conducted. Selected compounds were docked into a homology model of the 5-HT2A receptor to extract information about possible binding modes. Based on results of these studies, it is concluded that the interaction of C3 halogenated aporphine analogues with Phe339/Phe340 residues might be responsible for their enhanced affinity. Information obtained from molecular docking studies is being utilized for design of advanced generations of analogues. Finally, a novel series of flexible tris-(phenylalkyl)amines were synthesized and evaluated to test the importance of a rigid aporphine core as well as incorporation of N-phenylalkyl substituents. These compounds featuring a halogen substituent in ring C, were found to have high affinity and selectivity for the 5-HT2B receptor, with some of the compounds being more potent than the selective 5-HT2B antagonist SB200646. Results from this study indicate that ring C of these compounds is generally tolerant for halogen substitution. The synthetic feasibility of this newly identified template (4 high-yielding synthetic steps from commercially available materials) makes this scaffold attractive for the synthesis of larger libraries of analogs and promise for optimization of 5-HT2B affinity and selectivity. v ACKNOWLEDGEMENTS Although the process of PhD terminates at the completion of a thesis, it also marks the commencement of a new scientific journey. I would like to take this opportunity to recognize and thank many people who have directly and indirectly contributed in this journey. First and foremost, I would like to thank my PhD mentor, Prof. Wayne W Harding for his mentorship. Your guidance has enabled me to successfully complete this thesis as well as helped me to evolve as a scientist. You displayed patience and confidence in me, whenever I encountered any problems. You also showed immense excitement and supported me when I had positive results. Under your mentorship, I have learned a lot about the application of modern organic chemistry in the field of drug discovery and drug design. Your discipline and passion for organic chemistry continue to inspire me. I will be forever grateful to be a part of your research group. I also thank my committee members, Prof. Shengping Zheng and Prof. Adam Profit for always providing their valuable feedback which help shaped the course of this thesis. I was fortunate to be trained by and to work alongside two highly talented post-doctoral researchers – Dr. Shashikanth Ponnala and Dr. Sudarshan Madapa. I thank both of them for having taught me as well as master me many synthetic chemistry and literature search techniques. I will be forever indebted to your assistance. I also thank the Dept. of Chemistry at Hunter College for setting up a unique and congenial research environment. A special thanks to Dr. Matthew Devany for maintaining a state of the art NMR facility. I would also like to thank Late. Dr. Cliff Soll, Dr. Srinivas Chakravartula as well as Dr. Barney Yoo for providing Mass spectrometry services. I thank Prof. Mootoo and his research vi group as well as Prof. Zheng and his research group for providing generous access to chemicals. I also appreciate the efforts put in by the Chemistry Department’s administrative and teaching staff: Ms. Mirela Settenhofer, Ms. Shontel Housten and Ms. Olena Shport - your consistent efforts always helped to reduce the impact of non-research activities on my research. This journey although difficult, was made to look easy because of the constant support of my friends. First I would like to thank my lab colleagues - Satish Gadhiya, Sujay Joseph and Sharear Ahmed for always providing me your assistance, feedback and lighter moments in the lab. A special thanks to Kriti Kalpana – you made me believe in me and gave me beautiful memories outside the lab to cherish. I thank Ashwini Goghare and Deven Patel for your help and encouragement. I also thank Zhwei Yin and Junior Gonzales for their support. Finally I am indebted to my family without whose love, support and motivation this work was impossible. I would like to thank my father, Mr. Raman Kapadia and mother Mrs. Saroj Kapadia for always instilling the importance of hard work and determination in my life. I also thank Nilesh, Hiren and Kalpana for all their help, moral support and encouragement. I could not have accomplished this without you. vii I dedicate this thesis to my parents and family. 滁 ڂમારા માતા-સિતા અને િરરવાર ને અિપણ કર ڂઆ થીસિિ હ कर्मण्येवाधिकारते र्ा फलेषु कदाचन। र्ा कर्मफलहते ुर्भमर्ाम ते सङ्गोऽ्वकर्मधि॥ २-४७ You have the right to work only but never to its fruits. Let not the fruits of action be your motive, nor let your attachment be to inaction. (Bhagwad Gita, Chapter 2, verse 47) viii TABLE OF CONTENTS ABSTRACT .................................................................................................................................. iv ACKNOWLEDGEMENTS…………………………………………………………………….vi TABLE OF CONTENTS………………………………………………………………………..ix LIST OF SYMBOLS AND ABBREVIATIONS………………………………………………xii LIST OF FIGURES .................................................................................................................. xvii LIST OF TABLES ..................................................................................................................... xxi LIST OF SCHEMES ................................................................................................................ xxii CHAPTER I: INTRODUCTION 1.1 Aporphine Alkaloids 1.1.1 Background and Occurrence………………………………………………...2 1.1.2 Biosynthesis of Aporphine Alkaloids………………………………………..2 1.1.3 Common Synthetic Approaches to Aporphine Alkaloids……………………5 1.1.4 Pharmacological Effects of Aporphine Alkaloids……………………….......8 1.2 5-HT2A Antagonists 1.2.1 Background………………………………………………………………...14 1.2.2 Clinical Significance of 5-HT2A Antagonists…............................................14
Recommended publications
  • Oxypertine (BAN, USAN, Rinn) However, US Licensed Product Information Recommends the Fol- Be Given Rectally in the Presence of Colitis
    Oxazepam/Penfluridol 1015 Oxypertine (BAN, USAN, rINN) However, US licensed product information recommends the fol- be given rectally in the presence of colitis. Old paraldehyde must lowing maximum doses: Oksipertiini; Oxipertin; Oxipertina; Oxypertinum; Win-18501- never be used. 2. 5,6-Dimethoxy-2-methyl-3-[2-(4-phenylpiperazin-1-yl)ethyl]- • CC 50 to 80 mL/minute: 6 mg once daily Paraldehyde must be well diluted before oral or rectal use; if it is deemed essential to give paraldehyde intravenously it must be indole. • CC 10 to 50 mL/minute: 3 mg once daily Paliperidone has not been studied in patients with a CC of less well diluted and given very slowly with extreme caution (see Оксипертин than 10 mL/minute; UK product information does not recom- also Adverse Effects, above and Uses, below). Intramuscular in- C23H29N3O2 = 379.5. mend its use in such patients. jections may be given undiluted but care should be taken to avoid CAS — 153-87-7 (oxypertine); 40523-01-1 (oxypertine nerve damage. Plastic syringes should be avoided (see Incompat- hydrochloride). Preparations ibility, above). ATC — N05AE01. Proprietary Preparations (details are given in Part 3) ATC Vet — QN05AE01. Cz.: Invega; Fr.: Invega; Port.: Invega; UK: Invega; USA: Invega. Interactions The sedative effects of paraldehyde are enhanced by CNS de- pressants such as alcohol, barbiturates, and other sedatives. A H Paraldehyde few case reports suggest that disulfiram may enhance the toxicity H3CO of paraldehyde; use together is not recommended. N Paracetaldehyde; Paraldehid; Paraldehidas; Paraldehído; Paralde- Pharmacokinetics CH3 hit; Paraldehyd; Paraldéhyde; Paraldehydi; Paraldehydum. The Paraldehyde is generally absorbed readily, although absorption is H CO trimer of acetaldehyde; 2,4,6-Trimethyl-1,3,5-trioxane.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2016/017.4603 A1 Abayarathna Et Al
    US 2016O174603A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/017.4603 A1 Abayarathna et al. (43) Pub. Date: Jun. 23, 2016 (54) ELECTRONIC VAPORLIQUID (52) U.S. Cl. COMPOSITION AND METHOD OF USE CPC ................. A24B 15/16 (2013.01); A24B 15/18 (2013.01); A24F 47/002 (2013.01) (71) Applicants: Sahan Abayarathna, Missouri City, TX 57 ABSTRACT (US); Michael Jaehne, Missouri CIty, An(57) e-liquid for use in electronic cigarettes which utilizes- a TX (US) vaporizing base (either propylene glycol, vegetable glycerin, (72) Inventors: Sahan Abayarathna, MissOU1 City,- 0 TX generallyor mixture at of a 0.001 the two) g-2.0 mixed g per with 1 mL an ratio. herbal The powder herbal extract TX(US); (US) Michael Jaehne, Missouri CIty, can be any of the following:- - - Kanna (Sceletium tortuosum), Blue lotus (Nymphaea caerulea), Salvia (Salvia divinorum), Salvia eivinorm, Kratom (Mitragyna speciosa), Celandine (21) Appl. No.: 14/581,179 poppy (Stylophorum diphyllum), Mugwort (Artemisia), Coltsfoot leaf (Tussilago farfara), California poppy (Eschscholzia Californica), Sinicuichi (Heimia Salicifolia), (22) Filed: Dec. 23, 2014 St. John's Wort (Hypericum perforatum), Yerba lenna yesca A rtemisia scoparia), CaleaCal Zacatechichihichi (Calea(Cal termifolia), Leonurus Sibericus (Leonurus Sibiricus), Wild dagga (Leono Publication Classification tis leonurus), Klip dagga (Leonotis nepetifolia), Damiana (Turnera diffiisa), Kava (Piper methysticum), Scotch broom (51) Int. Cl. tops (Cytisus scoparius), Valarien (Valeriana officinalis), A24B 15/16 (2006.01) Indian warrior (Pedicularis densiflora), Wild lettuce (Lactuca A24F 47/00 (2006.01) virosa), Skullcap (Scutellaria lateriflora), Red Clover (Trifo A24B I5/8 (2006.01) lium pretense), and/or combinations therein.
    [Show full text]
  • Pericardial, Retroperitoneal, and Pleural Fibrosis Induced by Pergolide
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.66.1.79 on 1 January 1999. Downloaded from J Neurol Neurosurg Psychiatry 1999;66:79–81 79 SHORT REPORT Pericardial, retroperitoneal, and pleural fibrosis induced by pergolide S Shaunak, A Wilkins, J B Pilling, D J Dick Abstract 1992, the emergence of motor fluctuations led Three patients with Parkinson’s disease to the introduction of pergolide, and the dose are described who developed pericardial, of this was gradually increased to a maximum retroperitoneal, and pleural fibrosis asso- of 1mg/day. 1n 1994, 2 years after the ciated with pergolide treatment. Surgical introduction of pergolide, the patient devel- intervention was required in all three oped left flank pain with weight loss, and was cases, either to reach a tissue diagnosis or found to have a mild anaemia (haemoglobin for potentially life threatening complica- 10.4 g/dl), with indices suggesting iron defi- tions. Symptoms emerged on average 2 ciency, and an ESR of 40 mm/h. Upper gastro- years after the institution of treatment, intestinal endoscopy and barium enema gave and were suYciently non-specific to cause negative results. Seven months later right sided significant delays in diagnosis in all cases. chest pain and a non-productive cough devel- The erythrocyte sedimentation rate (ESR) oped; investigations confirmed persistent anae- was raised in the two patients in whom it mia, an ESR of 55 mm/h, and bilateral pleural was measured. Serosal fibrosis is a rarely thickening on chest radiography and CT. Lung reported adverse eVect of pergolide treat- function tests showed a reduction in total lung ment, although it is well described with capacity of 36% with no fall in transfer factor, other dopamine agonists.
    [Show full text]
  • Final Program
    IPA-0716-539 Final Program #IPASanFran2016 ABOUT IPA Founded in 1982, the International Psychogeriatric Association (IPA) is a unique and diverse professional healthcare community promoting better geriatric mental health – across disciplines, across borders, and across geriatric issues. Psychiatrists, Scientists, Neurologists, Geriatricians, Primary Care Physicians, Epidemiologists, Nurses, Psychologists, Occupational Therapists, Social Workers and many other healthcare profession- als come to the IPA community from all over the world to discuss, learn, share and research information about behavioral and biological aspects of geriatric mental health. IPA Member Benefits • Subscription to International Psychogeriatrics, IPA’s multidisciplinary peer-reviewed journal published monthly • Subscription to the IPA Bulletin, IPA’s membership newsletter • Reduced rates and access to IPA congress and meetings • IPA Online – the IPA website – including the IPA Member Area with special features including access to fellow members and The IPA Complete Guide to Behavioral and Psychological Symptoms of Dementia (BPSD) • Participation in IPA Member Forums, IPA’s in-person and online groups which enable members to meet, communicate, and collaborate with IPA colleagues around the world. Groups include: Regional Initiative Forums (groups by geographic areas); Professional Discipline Forums (groups such as nurses, psychologists, primary care physicians, social workers, and occupational therapists); and Shared Interest Forums (interest groups including long term care, young onset dementia, testamentary capacity and others) IPA Board of Directors OFFICERS DIRECTORS EX OFFICIO Raimundo Mateos, President, Spain Sabine Bährer-Kohler, Switzerland Manabu Ikeda, Japan Mary Sano, President-Elect, United States David Conn, Canada IPA SECRETARIAT Huali Wang, Secretary, PR China Brian Draper, Australia Kate Filipiak, CAE, Executive Director Constantine G.
    [Show full text]
  • “Biosynthesis of Morphine in Mammals”
    “Biosynthesis of Morphine in Mammals” D i s s e r t a t i o n zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) vorgelegt der Naturwissenschaftlichen Fakultät I Biowissenschaften der Martin-Luther-Universität Halle-Wittenberg von Frau Nadja Grobe geb. am 21.08.1981 in Querfurt Gutachter /in 1. 2. 3. Halle (Saale), Table of Contents I INTRODUCTION ........................................................................................................1 II MATERIAL & METHODS ........................................................................................ 10 1 Animal Tissue ....................................................................................................... 10 2 Chemicals and Enzymes ....................................................................................... 10 3 Bacteria and Vectors ............................................................................................ 10 4 Instruments ........................................................................................................... 11 5 Synthesis ................................................................................................................ 12 5.1 Preparation of DOPAL from Epinephrine (according to DUNCAN 1975) ................. 12 5.2 Synthesis of (R)-Norlaudanosoline*HBr ................................................................. 12 5.3 Synthesis of [7D]-Salutaridinol and [7D]-epi-Salutaridinol ..................................... 13 6 Application Experiments .....................................................................................
    [Show full text]
  • Evidence from Horses with Pituitary Pars Intermedia Dysfunction Jessica S
    Fortin et al. BMC Veterinary Research (2020) 16:356 https://doi.org/10.1186/s12917-020-02565-3 RESEARCH ARTICLE Open Access Restoring pars intermedia dopamine concentrations and tyrosine hydroxylase expression levels with pergolide: evidence from horses with pituitary pars intermedia dysfunction Jessica S. Fortin1*, Matthew J. Benskey2, Keith J. Lookingland2, Jon S. Patterson1, Erin B. Howey1, John L. Goudreau2,3 and Harold C. Schott II4* Abstract Background: Pituitary pars intermedia dysfunction (PPID) develops slowly in aged horses as degeneration of hypothalamic dopaminergic neurons leads to proliferation of pars intermedia (PI) melanotropes through hyperplasia and adenoma formation. Dopamine (DA) concentrations and tyrosine hydroxylase (TH) immunoreactivity are markedly reduced in PI tissue of PPID-affected equids and treatment with the DA receptor agonist pergolide results in notable clinical improvement. Thus, we hypothesized that pergolide treatment of PPID-affected horses would result in greater DA and TH levels in PI tissue collected from PPID-affected horses versus untreated PPID-affected horses. To test this hypothesis, pituitary glands were removed from 18 horses: four untreated PPID-affected horses, four aged and four young horses without signs of PPID, and six PPID-affected horses that had been treated with pergolide at 2 µg/kg orally once daily for 6 months. DA concentrations and TH expression levels in PI tissues were determined by high performance liquid chromatography with electrochemical detection and Western blot analyses, respectively. Results: DA and TH levels were lowest in PI collected from untreated PPID-affected horses while levels in the pergolide treated horses were similar to those of aged horses without signs of PPID.
    [Show full text]
  • Dementia: Types, Stages and Sleep Disturbances
    DEMENTIA: TYPES, STAGES AND SLEEP DISTURBANCES Ericka L. Crouse, PharmD, BCPP, BCGP Associate Professor VCU School of Pharmacy Disclosures Dr. Crouse has nothing to disclose Objectives 1. Compare and contrast different types of dementia 2. Differentiate between stages of dementia and role of pharmacotherapy in each stage 3. List pros and cons of medications to treat sleep disturbances in dementia Pre-Assessment Question Which type of dementia is characterized by visual hallucinations especially of small animals and objects? A. Alzheimer’s B. Vascular C. Lewy-body D. Fronto-temporal Pre-Assessment Question Memantine is FDA indicated for which stage of Alzheimer’s disease? A. Mild cognitive impairment B. Mild/moderate C. Moderate/severe D. Only in combination with donepezil for mild/moderate Pre-Assessment Question Rapid-eye movement (REM) sleep behavior disorder is associated with which type of dementia? A. Alzheimer’s B. Vascular C. Lewy-body D. Fronto-temporal Pre-Assessment Question Which of the following is a risk associated with use of zolpidem in elderly patients? A. Falls with injury B. Decreased appetite C. Cognitive Impairment D. Anticholinergic effects Title TYPES OF DEMENTIA Change in Terminology DSM-IV DSM-5 • Dementia • Neurocognitive Disorder DSM = Diagnostic and Statistical Manual of Mental Disorders DSM-5 Am Psychiatric Assoc 2013 DSM-5 Criteria Evidence of a significant decline in cognitive function from previous level in ≥ 1 cognitive domain - Complex attention, executive function, learning and memory, language, perceptual-motor
    [Show full text]
  • WO 2014/106238 Al 3 July 2014 (03.07.2014) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/106238 Al 3 July 2014 (03.07.2014) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K 31/404 (2006.01) C07D 209/04 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, A61P 25/18 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, PCT/US2013/078453 MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (22) International Filing Date: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, 3 1 December 2013 (3 1.12.2013) SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (25) Filing Language: English ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 61/747,499 31 December 2012 (3 1. 12.2012) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (71) Applicant: FANG, Qun, Kevin [US/US]; 34 Atwood TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, Street, Westfield, MA 02482 (US).
    [Show full text]
  • Assessment of Insecticidal Activity of Benzylisoquinoline Alkaloids From
    molecules Article Assessment of Insecticidal Activity of Benzylisoquinoline Alkaloids from Chilean Rhamnaceae Plants against Fruit-Fly Drosophila melanogaster and the Lepidopteran Crop Pest Cydia pomonella Soledad Quiroz-Carreño 1, Edgar Pastene-Navarrete 1 , Cesar Espinoza-Pinochet 2, Evelyn Muñoz-Núñez 1, Luis Devotto-Moreno 3, Carlos L. Céspedes-Acuña 1 and Julio Alarcón-Enos 1,* 1 Laboratorio de Síntesis y Biotransformación de Productos Naturales, Dpto. Ciencias Básicas, Universidad del Bio-Bio, PC3780000 Chillán, Chile; [email protected] (S.Q.-C.); [email protected] (E.P.-N.); [email protected] (E.M.-N.); [email protected] (C.L.C.-A.) 2 Dpto. Agroindustria, Facultad de Ingeniería Agrícola, Universidad de Concepción, 3780000 Chillán, Chile; [email protected] 3 Instituto de Investigaciones Agropecuarias, INIA Quilamapu, 3780000 Chillán, Chile; [email protected] * Correspondence: [email protected] Academic Editors: Daniel Granato and Petri Kilpeläinen Received: 29 September 2020; Accepted: 27 October 2020; Published: 3 November 2020 Abstract: The Chilean plants Discaria chacaye, Talguenea quinquenervia (Rhamnaceae), Peumus boldus (Monimiaceae), and Cryptocarya alba (Lauraceae) were evaluated against Codling moth: Cydia pomonella L. (Lepidoptera: Tortricidae) and fruit fly Drosophila melanogaster (Diptera: Drosophilidae), which is one of the most widespread and destructive primary pests of Prunus (plums, cherries, peaches, nectarines, apricots, almonds), pear, walnuts, and chestnuts, among other. Four benzylisoquinoline alkaloids (coclaurine, laurolitsine, boldine, and pukateine) were isolated from the above mentioned plant species and evaluated regarding their insecticidal activity against the codling moth and fruit fly. The results showed that these alkaloids possess acute and chronic insecticidal effects. The most relevant effect was observed at 10 µg/mL against D.
    [Show full text]
  • Pharmacy and Poisons (Third and Fourth Schedule Amendment) Order 2017
    Q UO N T FA R U T A F E BERMUDA PHARMACY AND POISONS (THIRD AND FOURTH SCHEDULE AMENDMENT) ORDER 2017 BR 111 / 2017 The Minister responsible for health, in exercise of the power conferred by section 48A(1) of the Pharmacy and Poisons Act 1979, makes the following Order: Citation 1 This Order may be cited as the Pharmacy and Poisons (Third and Fourth Schedule Amendment) Order 2017. Repeals and replaces the Third and Fourth Schedule of the Pharmacy and Poisons Act 1979 2 The Third and Fourth Schedules to the Pharmacy and Poisons Act 1979 are repealed and replaced with— “THIRD SCHEDULE (Sections 25(6); 27(1))) DRUGS OBTAINABLE ONLY ON PRESCRIPTION EXCEPT WHERE SPECIFIED IN THE FOURTH SCHEDULE (PART I AND PART II) Note: The following annotations used in this Schedule have the following meanings: md (maximum dose) i.e. the maximum quantity of the substance contained in the amount of a medicinal product which is recommended to be taken or administered at any one time. 1 PHARMACY AND POISONS (THIRD AND FOURTH SCHEDULE AMENDMENT) ORDER 2017 mdd (maximum daily dose) i.e. the maximum quantity of the substance that is contained in the amount of a medicinal product which is recommended to be taken or administered in any period of 24 hours. mg milligram ms (maximum strength) i.e. either or, if so specified, both of the following: (a) the maximum quantity of the substance by weight or volume that is contained in the dosage unit of a medicinal product; or (b) the maximum percentage of the substance contained in a medicinal product calculated in terms of w/w, w/v, v/w, or v/v, as appropriate.
    [Show full text]
  • Download Final Program
    September 20 – 23 2016 FINAL PROGRAM Bringing the Parkinson’s Community Together! Welcome Letters ................................................... 1-3 Committee Members ................................................ 4 General Information ............................................... 5-8 Wellness Way ...................................................11-14 WPC Theater .........................................................15 WPC Art Walk ........................................................17 TABLE OF WPC Awards .........................................................18 CONTENTS Social Program and Special Events ............................... 20 Travel Grants and Travel Grants Supporters ............22-23 Continuing Education ............................................... 24 Program-at-a-Glance .......................................... 26-27 Congress Program .............................................29-56 Posters and Poster Tours .................................... 57-95 Exhibition ........................................................ 96-115 PD Glossary .................................................. 118-126 Faculty List ......................................................... 127 Oregon Convention Center ....................................... 128 Portland Map .......................................................129 Organizational Partners ......................................... 130 Acknowledgements ...............................................131 The purpose of the World Parkinson Congresses is to create
    [Show full text]
  • CAS Number Index
    2334 CAS Number Index CAS # Page Name CAS # Page Name CAS # Page Name 50-00-0 905 Formaldehyde 56-81-5 967 Glycerol 61-90-5 1135 Leucine 50-02-2 596 Dexamethasone 56-85-9 963 Glutamine 62-44-2 1640 Phenacetin 50-06-6 1654 Phenobarbital 57-00-1 514 Creatine 62-46-4 1166 α-Lipoic acid 50-11-3 1288 Metharbital 57-22-7 2229 Vincristine 62-53-3 131 Aniline 50-12-4 1245 Mephenytoin 57-24-9 1950 Strychnine 62-73-7 626 Dichlorvos 50-23-7 1017 Hydrocortisone 57-27-2 1428 Morphine 63-05-8 127 Androstenedione 50-24-8 1739 Prednisolone 57-41-0 1672 Phenytoin 63-25-2 335 Carbaryl 50-29-3 569 DDT 57-42-1 1239 Meperidine 63-75-2 142 Arecoline 50-33-9 1666 Phenylbutazone 57-43-2 108 Amobarbital 64-04-0 1648 Phenethylamine 50-34-0 1770 Propantheline bromide 57-44-3 191 Barbital 64-13-1 1308 p-Methoxyamphetamine 50-35-1 2054 Thalidomide 57-47-6 1683 Physostigmine 64-17-5 784 Ethanol 50-36-2 497 Cocaine 57-53-4 1249 Meprobamate 64-18-6 909 Formic acid 50-37-3 1197 Lysergic acid diethylamide 57-55-6 1782 Propylene glycol 64-77-7 2104 Tolbutamide 50-44-2 1253 6-Mercaptopurine 57-66-9 1751 Probenecid 64-86-8 506 Colchicine 50-47-5 589 Desipramine 57-74-9 398 Chlordane 65-23-6 1802 Pyridoxine 50-48-6 103 Amitriptyline 57-92-1 1947 Streptomycin 65-29-2 931 Gallamine 50-49-7 1053 Imipramine 57-94-3 2179 Tubocurarine chloride 65-45-2 1888 Salicylamide 50-52-2 2071 Thioridazine 57-96-5 1966 Sulfinpyrazone 65-49-6 98 p-Aminosalicylic acid 50-53-3 426 Chlorpromazine 58-00-4 138 Apomorphine 66-76-2 632 Dicumarol 50-55-5 1841 Reserpine 58-05-9 1136 Leucovorin 66-79-5
    [Show full text]