Regulation of Acute Inflammation by Oncostatin M Receptor-P

Total Page:16

File Type:pdf, Size:1020Kb

Regulation of Acute Inflammation by Oncostatin M Receptor-P REGULATION OF ACUTE INFLAMMATION BY ONCOSTATIN M RECEPTOR-P Emily Hams BSc (Hons) Thesis presented for the degree of Philosophiae Doctor October 2008 Medical Biochemistry and Immunology Tenovus Building School of Medicine Cardiff University Heath Park Cardiff CF14 4XN UMI Number: U584337 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U584337 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 DECLARATION This work has not previously been accepted in substance for any degree and is not concurrently submitted in candidature for any degree. STATEMENT 1 This thesis is being submitted in partial fulfillment of the requirements for the degree o f T.KD. .....................(insert MCh, MD, MPhil, PhD etc, as appropriate) Signed . ..rrr..............................................................(candidate) Date ..\Q(o7rlQ.°\................ STATEMENT 2 This thesis is the result of my own independent work/investigation, except where otherwise stated. Other sources are acknowledged by explicit references. Signed . (candidate) Date AGl.&hl.QZ.................. STATEMENT 3 I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-library loan, and for the title and summary to be made available to outside organisations. Signed . .............................................................(candidate) Date .A Q .lp ^io................. ^ STATEMENT 4 - BAR ON ACCESS APPROVED I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-library loans after expiry of a bar on access approved by the Graduate Development Committee. Signed (candidate) Date .. Dedication This thesis is dedicated to my family. Acknowledgements There are many people to whom I owe a great deal of thanks for their help and support throughout the past three years. Firstly I would like to take this opportunity to thank my supervisors Nick and Simon for their support, guidance, and above all patience during my PhD, and their invaluable assistance with the preparation of this thesis. I would also like to thank all my colleagues from both the Institute of Nephrology and Tenovus for their help, advice and continued friendship. Special thanks must go to Ann, Ceri, Chantal, Vikki, John and Rob for their technical assistance. I would also like to thank Daz and John, without you I would never have completed my PhD. Finally I would like to thank my family for their continued love and support. Thank you! Summary Although the interleukin (IL)-6 related cytokine Oncostatin M (OSM) affects a variety of inflammatory events associated with disease progression, the function of OSM in the face of an inflammatory challenge remains unclear. In this thesis a peritoneal model of inflammation, in association with in vitro studies using human primary cell lines, has been used to define the influence of OSM on chemokine-mediated leukocyte recruitment. When compared to wild type mice (WT) the induction of peritoneal inflammation in Oncostatin M receptor-p deficient mice (OSMR-KO) resulted in enhanced monocytic cell trafficking, with no differences in neutrophil or lymphocyte recruitment observed, suggesting that OSM control of leukocyte recruitment is functionally distinct from that of IL-6. Subsequent in vitro studies and an in vivo appraisal of inflammatory chemokine expression following peritoneal inflammation inferred that OSM regulation of CCL5 might account for the observed difference in monocytic cell trafficking. The OSM-mediated control of CCL5 is clearly distinct from the actions of IL-6, which acts as a more prominent in vivo regulator of CCL2 expression than OSM. Mechanistically, these studies inferred a hitherto unidentified interplay between OSM-mediated STAT signalling and NF-kB activation. In this respect, EMSA analysis of nuclear extracts from peritoneal membranes isolated during course of the inflammatory response showed that OSMR-KO mice display an enhanced profile of NF-kB activation as compared to WT mice. Initial in vivo appraisal of the role of OSMRP-mediated signalling in repeated episodes of inflammation and associated tissue damage suggest that OSM continues to regulate monocytic cell trafficking throughout recurrent inflammatory episodes and does not play a significant role in inflammation-associated peritoneal tissue damage, again a finding clearly distinct from the observed effects of IL-6 in tissue injury. These findings suggest that activation of gp 130 by IL-6 and OSM trigger distinct inflammatory responses to affect individual aspects of leukocyte trafficking. v Publications and Presentations Publications Hams E, Colmont CS, Dioszechy V, Hammond VJ, Fielding CA, Williams AS, Tanaka M, Miyajima A, Taylor PR, Topley N, Jones SA. Oncostatin M receptor-beta signaling limits monocytic cell recruitment in acute inflammation. J Immunol 2008; 181(3): 2174-80. Hams E. Topley N, Jones SA. Interplay between JFN-y and OSM- and IL-31- mediated control of chemokine expression. Currently in progress. Fielding CA, McLoughlin RM, Williams AS, Colmont CS, Jones G, Coles B, Hammond VJ, Hams E. Kift-Morgan AP, McLeod L, Nowell MA, Williams G, Jenkins B, Jones SA and Topley N. IL-6 driven fibrosis requires gamma-IFN mediated STAT1 signalling. Submission in progress. Presentations Hams E. Topley N and Jones SA (2006). The role of Oncostatin M in chemokine regulation (poster). 6th International Cytokine Conference, Vienna, August 27-31st 2006. Hams E. Topley N and Jones SA (2006). The role of Oncostatin M in chemokine regulation (poster). 21st Annual Postgraduate Research Day, Cardiff University, November 24th 2006. Hams E. Colmont CS, Fielding CA, Kelly CE, Dioszechy V, Hammond VJ, Topley N and Jones SA. Defining the inflammatory role of Oncostatin M receptor p signalling (oral). Infection, Immunity and Inflammation IRG meeting, Gregynog, Wales, July 13-14th 2007. Hams E. Colmont CS, Fielding CA, Kelly CE, Dioszechy V, Hammond VJ, Topley N and Jones SA. Defining the inflammatory role of Oncostatin M receptor P signalling (oral). 22nd Annual Postgraduate Research Day, Cardiff University, November 25th 2007. vi Hams E. Dioszechy V, Colmont C, Hammond VJ, Fielding CA, Williams AS, Tanaka M, Miyajima A, Taylor PR, Topley N and Jones SA (2007). Oncostatin M receptor signalling regulates monocytic cell trafficking during acute inflammation (poster). 15th Annual meeting of The International Cytokine Society, San Francisco, October 26-30th 2007. vii Abbreviations ADAM A Disintegrin and Metalloproteinase APC Antigen Presenting Cell APC Allophycocyanin Bel (2/x l ) B-Cell Lymphoma (2/x l ) BCR B Cell Receptor BDCA-2/4 Blood Dendritic Cell Antigen-2/4 BSA Bovine Serum Albumin Fraction V BSF-3 B-Cell Stimulating Factor-3 CD Cluster of Differentiation cDNA Complementary DNA CCR CC Chemokine Receptor CD40L CD40 Ligand CLC Ciliary Neurotrophic Factor-Like Cytokine CNTF Ciliary Neurotrophic Factor CNTFR Ciliary Neurotrophic Factor Receptor CRP C Reactive Protein CT-1 Cardiotrophin-1 Ctl Unstimulated Control CTLD C-Type Lectin-Like Domain CXCR CXC Chemokine Receptor DARC Duffy Antigen Receptor for Chemokines DC Dendritic Cell DC-SIGN Dendritic Cell-Specific Intracellular Adhesion Molecule 3-Grabbing Nonintegrin DD Death Domain DMEM Dulbecco’s Modified Eagle’s Medium dNTP Deoxynucleotide Triphosphate DS-sIL-6R Differentially Spliced Soluble Interleukin-6 Receptor DTT Dithiothreitol EAE Experimental Autoimmune Encephalomyelitis ECM Extracellular Matrix EDTA Ethylenediaminetetraacetic Acid ELISA Enzyme Linked Immunosorbent Assay EMSA Electrophoretic Mobility Shift Assay EMT Epithelial-to-Mesenchymal Transition ERF Established Renal Failure ERK1/2 Extracellular signal Related Kinase 1/2 FACS Fluorescence Activated Cell Sorting FCS Fetal Calf Serum FITC Fluorescein Isothiocyanate FoxP3 Forkhead box P3 GAPDH Glyceraldehyde 3-Phosphate Dehydrogenase GAT A3 GATA binding protein 3 G-CSF Granulocye Colony Stimulating Factor GDP Guanosine 5’-Diphosphate GLR gp 13 0-Like Receptor GM-CSF Granulocyte-Macrophage Colony Stimulating Factor gpl30 glycoprotein 130 GPI Glycosylphosphatidylinisotol GROa gro protein a Grb2 Growth Factor Receptor Bound Protein 2 GTP Guanosine 5 ’ -Triphosphate HHV Human Herpesvirus HIV Human Immunodeficiency Virus HPMC Human Peritoneal Mesothelial Cell HRP Horseradish Peroxidase Hrs Hours ICAM-1 Intracellular Adhesion Molecule-1 IFN-y Interferon-y IFNAR Interferon ot/p Receptor IFNGR Interferon y Receptor Ig Immunoglobulin IKK Inhibitor of Nuclear Factor-xB Kinase Ik B Inhibitor of Nuclear Factor-icB IL-(1 -31) Interleukin-1-31 IL-6KO Interleukin-6-deficient mice IL-11KO Interleukin-11-deficient mice IL-(1-31)R Interleukin-(1-31) Receptor IL-1RAP IL-1 Receptor Accessory Protein iNOS Inducible Nitric-Oxide Synthase Ip Intra-peritoneal IP-10 lOkDa Interferon-y induced Protein IRAK IL-1-Receptor Associated Kinase IRF3 Interferon-Regulatory Factor-3 I-TAC Interferon-inducible T cell A Chemoattractant iTreg Inducible Regulatory T Cell Jak Janus Kinase JNK Jun N-terminal
Recommended publications
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • A Model of Inflammatory Arthritis Highlights a Role for Oncostatin M In
    Available online http://arthritis-research.com/content/7/1/R57 ResearchVol 7 No 1 article Open Access A model of inflammatory arthritis highlights a role for oncostatin M in pro-inflammatory cytokine-induced bone destruction via RANK/RANKL Wang Hui1, Tim E Cawston1, Carl D Richards2 and Andrew D Rowan1 1Musculoskeletal Research Group, The Medical School, University of Newcastle, Newcastle upon Tyne, UK 2Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada Corresponding author: Andrew D Rowan, [email protected] Received: 21 Jul 2004 Revisions requested: 20 Sep 2004 Revisions received: 5 Oct 2004 Accepted: 11 Oct 2004 Published: 10 Nov 2004 Arthritis Res Ther 2005, 7:R57-R64 (DOI 10.1186/ar1460)http://arthritis-research.com/content/7/1/R57 © 2004 Hui et al., licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/ 2.0), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is cited. Abstract Oncostatin M is a pro-inflammatory cytokine previously shown to RANK and its ligand RANKL in the inflammatory cells, in promote marked cartilage destruction both in vitro and in vivo inflamed synovium and in articular cartilage of knee joints treated when in combination with IL-1 or tumour necrosis factor alpha. with the cytokine combinations compared with expression in However, the in vivo effects of these potent cytokine joints treated with the cytokines alone or the control. This model combinations on bone catabolism are unknown. Using of inflammatory arthritis demonstrates that, in vivo, oncostatin M adenoviral gene transfer, we have overexpressed oncostatin M in combination with either IL-1 or tumour necrosis factor alpha in combination with either IL-1 or tumour necrosis factor alpha represents cytokine combinations that promote bone intra-articularly in the knees of C57BL/6 mice.
    [Show full text]
  • Mechanism of Homodimeric Cytokine Receptor Activation and Dysregulation by Oncogenic Mutations
    This is a repository copy of Mechanism of homodimeric cytokine receptor activation and dysregulation by oncogenic mutations. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/155270/ Version: Accepted Version Article: Wilmes, Stephan, Hafer, Maximillian, Vuorio, Joni et al. (15 more authors) (2020) Mechanism of homodimeric cytokine receptor activation and dysregulation by oncogenic mutations. Science. pp. 643-652. ISSN 0036-8075 https://doi.org/10.1126/science.aaw3242 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Submitted Manuscript: Confidential Title: Mechanism of homodimeric cytokine receptor activation and dysregulation by oncogenic mutations Authors: 5 Stephan Wilmes1, 2*, Maximillian Hafer1*, Joni Vuorio3,4, Julie A. Tucker5, Hauke Winkelmann1, Sara Löchte1, Tess A. Stanly5, Katiuska D. Pulgar Prieto5, Chetan Poojari3, Vivek Sharma3,6, Christian P. Richter1, Rainer Kurre1, Stevan R. Hubbard7, K. Christopher Garcia8,9, Ignacio Moraga2, Ilpo Vattulainen3,4,10†, Ian S. Hitchcock5† and Jacob Piehler1† Affiliations: 10 1 Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany.
    [Show full text]
  • Oncostatin M Is a Proinflammatory Mediator. in Vivo Effects Correlate with Endothelial Cell Expression of Inflammatory Cytokines and Adhesion Molecules
    Oncostatin M is a proinflammatory mediator. In vivo effects correlate with endothelial cell expression of inflammatory cytokines and adhesion molecules. V Modur, … , G A Zimmerman, T M McIntyre J Clin Invest. 1997;100(1):158-168. https://doi.org/10.1172/JCI119508. Research Article Oncostatin M is a member of the IL-6 family of cytokines that is primarily known for its effects on cell growth. Endothelial cells have an abundance of receptors for oncostatin M, and may be its primary target. We determined if oncostatin M induces a key endothelial cell function, initiation of the inflammatory response. We found that subcutaneous injection of oncostatin M in mice caused an acute inflammatory reaction. Oncostatin M in vitro stimulated: (a) polymorphonuclear leukocyte (PMN) transmigration through confluent monolayers of primary human endothelial cells; (b) biphasic PMN adhesion through rapid P-selectin expression, and delayed adhesion mediated by E-selectin synthesis; (c) intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 accumulation; and (d) the expression of PMN activators IL-6, epithelial neutrophil activating peptide-78, growth-related cytokine alpha and growth-related cytokine beta without concomitant IL-8 synthesis. The nature of the response to oncostatin M varied with concentration, suggesting high and low affinity oncostatin M receptors independently stimulated specific responses. Immunohistochemistry showed that macrophage-like cells infiltrating human aortic aneurysms expressed oncostatin M, so it is present during a chronic inflammatory reaction. Therefore, oncostatin M, but not other IL-6 family members, fulfills Koch's postulates as an inflammatory mediator. Since its effects on endothelial cells differ significantly from established mediators like TNFalpha, it may uniquely contribute to the inflammatory cycle.
    [Show full text]
  • Stony Brook University
    SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook University. ©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr... Regulation of Dimerization and Activation of the Thrombopoietin Receptor A Dissertation Presented by Miki Itaya to The Graduate School in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biochemistry and Structural Biology Stony Brook University December 2012 Copyright by Miki Itaya 2012 Stony Brook University The Graduate School Miki Itaya We, the dissertation committee for the above candidate for the Doctor of Philosophy degree, hereby recommend acceptance of this dissertation. Steven O. Smith, Ph.D. - Dissertation Advisor Professor, Department of Biochemistry and Cell Biology Erwin London, Ph.D. - Chairperson of Defense Professor, Department of Biochemistry and Cell Biology Robert C. Rizzo, Ph.D. Associate Professor, Department of Applied Mathematics and Statistics Nancy Reich Marshall, Ph.D. Professor, Department of Molecular Genetics and Microbiology This dissertation is accepted by the Graduate School Charles Taber Interim Dean of the Graduate School ii Abstract of the Dissertation Regulation of Dimerization and Activation of the Thrombopoietin Receptor by Miki Itaya Doctor of Philosophy in Biochemistry and Structural Biology Stony Brook University 2012 The thrombopoietin receptor (TpoR) is
    [Show full text]
  • Immuno-Endocrine Interactions in Intestinal Inflammation
    IMMUNO-ENDOCRINE INTERACTIONS IN INTESTINAL INFLAMMATION PhD Thesis- Shajib, MS; McMaster University-Medical Sciences Immuno-endocrine interactions in intestinal inflammation By Md. Sharif Shajib, BSc. (Hons) A Thesis Submitted to the School of Graduate Studies in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy McMaster University © Copyright by Md. Sharif Shajib, 2017. PhD Thesis- Shajib, MS; McMaster University-Medical Sciences Descriptive notes Doctor of Philosophy (2017) McMaster University, Hamilton, Ontario (Medical Sciences) TITLE Immuno-endocrine interactions in intestinal inflammation AUTHOR Md. Sharif Shajib, BSc. (Hons) SUPERVISOR Dr. Waliul I. Khan NUMBER OF PAGES: XX, 292. II PhD Thesis- Shajib, MS; McMaster University-Medical Sciences Lay abstract The gut produces most of the serotonin found in our body, where it regulates many normal functions. A group of special cells, named enterochromaffin cells, produces nearly all of the serotonin in the gut. In diseases of the gut, especially ones that involve inflammation resulting in symptoms like abdominal pain, diarrhea and bleeding, the number of these cells and serotonin concentration are different from that in the normal gut. I found that these changes are controlled by a particular protein produced by immune cells, called interleukin-13, and alteration in serotonin levels, in turn, contributes to the inflammatory process. Our laboratory experiments with cells and animals establish this connection between interleukin-13 and serotonin in gut inflammation. We further confirm this association between interleukin-13 and serotonin in human inflammatory bowel disease. Moreover, we identify a potential genetic cause of these changes in serotonin concentrations which may ultimately result in inflammatory bowel disease.
    [Show full text]
  • GM-CSF Receptor-Beta, Human, Recombinant Recombinant Human Granulocyte/Macrophage Colony Stimulating Factor Receptor Beta
    GM-CSF Receptor-beta, human, recombinant Recombinant Human Granulocyte/Macrophage Colony Stimulating Factor Receptor beta Instruction Manual Catalog Number C-60430 Synonyms CSF2RB,Colony Stimulating Factor 2 Receptor, Beta, Low-Affinity (Granulocyte-Macrophage), GM-CSF/IL-3/IL-5 Receptor Common Beta Subunit, CDw131, IL3RB, SMDP5, IL5RB, Interleukin 3 Receptor/Granulocyte-Macrophage Colony Stimulating Factor 3 Receptor, Beta (High Affinity), Colony-Stimulating Factor-2 Receptor, Beta, Low-Affinity, GM-CSF/IL-3/IL-5 Receptor Common Beta-Chain, Cytokine Receptor Common Subunit Beta, CD131 Antigen, CD131 Description GM-CSF Receptor-beta, also known as CSF2RB is a member of the type I cytokine receptor family. CSF2RB is a high affinity receptor for interleukin-3, interleukin-5 as well as granulocyte- macrophage colony-stimulating factor. The CSF2RB unique form of receptor assembly applies also to IL-3 and IL-5 receptors, providing a structural basis for understanding their activation mechanism which is essential for the development of therapeutics. Human recombinant GM-CSF Receptor-beta produced in Sf9 cells is a single, glycosylated polypeptide chain of 435 amino acids (17-443 a.a), having a molecular mass of 49.7 kDa (migrates at 40-57 kDa on SDS-PAGE under reducing conditions). CSF2RB is fused to an 8 amino acid His-tag at the C-terminus and purified using proprietary chromatographic techniques. Quantity 10 µg Molecular Mass 49.7 kDa Source Sf9 insect cells Biological-Activity NA Specific Activity NA Formulation Sterile-filtered, clear protein solution (0.5 mg/ml) containing phosphate-buffered saline (pH 7.4) and 10% glycerol. Reconstitution Please Note: Always centrifuge product briefly before opening vial.
    [Show full text]
  • Oncostatin M Regulation of Inflammatory Responses By
    Regulation of Inflammatory Responses by Oncostatin M Philip M. Wallace,1,2* John F. MacMaster,† Katherine A. Rouleau,† T. Joseph Brown,* James K. Loy,† Karen L. Donaldson,3* and Alan F. Wahl3* Oncostatin M (OM) is a pleiotropic cytokine produced late in the activation cycle of T cells and macrophages. In vitro it shares properties with related proteins of the IL-6 family of cytokines; however, its in vivo properties and physiological function are as yet ill defined. We show that administration of OM inhibited bacterial LPS-induced production of TNF-a and lethality in a dose-dependent manner. Consistent with these findings, OM potently suppressed inflammation and tissue destruction in murine models of rheumatoid arthritis and multiple sclerosis. T cell function and Ab production were not impaired by OM treatment. Taken together these data indicate the activities of this cytokine in vivo are antiinflammatory without concordant immunosuppression. The Journal of Immunology, 1999, 162: 5547–5555. he normal development of an inflammatory response must from the inflammatory effector phase back to homeostasis also are be rapidly followed by the engagement of a feedback sys- being evaluated for their clinical potential as drugs. The cytokines T tem to minimize adventitious tissue damage and regulate IL-10 and IL-11 both appear to accelerate this process and their the eventual return to homeostasis. This system involves a multi- administration have proven effective in resolving several animal tude of regulators including cytokines, adhesion molecules, pro- models of chronic inflammatory disease (10). teases, corticosteroids, and subsequent regulators of each of these Oncostatin M (OM)4 is a pleiotropic cytokine that is produced agents.
    [Show full text]
  • Facteurs Génétiques De Prédisposition a La Maladie Coeliaque Et L’Oesophagite Éosinophilique
    Université de Montréal FACTEURS GÉNÉTIQUES DE PRÉDISPOSITION A LA MALADIE COELIAQUE ET L’OESOPHAGITE ÉOSINOPHILIQUE Par Freha Nour el Hayet CHERIEF Département de Microbiologie et Immunologie Faculté de Médecine Mémoire présenté à la Faculté des études supérieures en vue de l’obtention du grade de Maîtrise en Microbiologie et Immunologie Novembre 2012 © Freha Nour el Hayet CHERIEF, 2012 i Université de Montréal Faculté des études supérieures Ce mémoire intitulé : FACTEURS GÉNÉTIQUES DE PRÉDISPOSITION A LA MALADIE COELIAQUE ET L’OESOPHAGITE ÉOSINOPHILIQUE Présenté par : Freha nour el hayet CHERIEF a été évalué par un jury composé des personnes suivantes : Ali Ahmad Président-rapporteur Idriss Djilali-Saïah Directeur de recherche Cristophe Faure Membre du jury ii Résumé Les maladies immunitaires chroniques incluant les maladies auto-immunes et inflammatoires touchent 20 à 25% de la population des pays occidentaux. La comparaison des taux de concordance chez les jumeaux ou l’histoire familiale de sujets atteints de la maladie cœliaque (maladie auto-immune de l’intestin) ou de l’œsophagite éosinophilique (maladie inflammatoire de l’œsophage) indiquent que des facteurs génétiques et environnementaux interviennent dans la susceptibilité à ces maladies. Cependant, ces études ne distinguent pas de manière claire la prédisposition génétique selon l’hétérogénéité clinique (enfants versus adultes) ou ethnique (stratification des populations). Méthodes. Les haplotypes HLA de prédisposition à la maladie cœliaque et les polymorphismes des gènes candidats
    [Show full text]
  • WO 2018/067991 Al 12 April 2018 (12.04.2018) W !P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/067991 Al 12 April 2018 (12.04.2018) W !P O PCT (51) International Patent Classification: achusetts 021 15 (US). THE BROAD INSTITUTE, A61K 51/10 (2006.01) G01N 33/574 (2006.01) INC. [US/US]; 415 Main Street, Cambridge, Massachu C07K 14/705 (2006.01) A61K 47/68 (2017.01) setts 02142 (US). MASSACHUSETTS INSTITUTE OF G01N 33/53 (2006.01) TECHNOLOGY [US/US]; 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (US). (21) International Application Number: PCT/US2017/055625 (72) Inventors; and (71) Applicants: KUCHROO, Vijay K. [IN/US]; 30 Fairhaven (22) International Filing Date: Road, Newton, Massachusetts 02149 (US). ANDERSON, 06 October 2017 (06.10.2017) Ana Carrizosa [US/US]; 110 Cypress Street, Brookline, (25) Filing Language: English Massachusetts 02445 (US). MADI, Asaf [US/US]; c/o The Brigham and Women's Hospital, Inc., 75 Francis (26) Publication Language: English Street, Boston, Massachusetts 021 15 (US). CHIHARA, (30) Priority Data: Norio [US/US]; c/o The Brigham and Women's Hospital, 62/405,835 07 October 2016 (07.10.2016) US Inc., 75 Francis Street, Boston, Massachusetts 021 15 (US). REGEV, Aviv [US/US]; 15a Ellsworth Ave, Cambridge, (71) Applicants: THE BRIGHAM AND WOMEN'S HOSPI¬ Massachusetts 02139 (US). SINGER, Meromit [US/US]; TAL, INC. [US/US]; 75 Francis Street, Boston, Mass c/o The Broad Institute, Inc., 415 Main Street, Cambridge, (54) Title: MODULATION OF NOVEL IMMUNE CHECKPOINT TARGETS CD4 FIG.
    [Show full text]
  • A Closer Look at JAK/STAT Signaling Pathway Emira Bousoik Chapman University
    Chapman University Chapman University Digital Commons Pharmacy Faculty Articles and Research School of Pharmacy 7-31-2018 “Do We Know Jack” About JAK? A Closer Look at JAK/STAT Signaling Pathway Emira Bousoik Chapman University Hamidreza Montazeri Aliabadi Chapman University, [email protected] Follow this and additional works at: https://digitalcommons.chapman.edu/pharmacy_articles Part of the Amino Acids, Peptides, and Proteins Commons, Cancer Biology Commons, Cell Anatomy Commons, Cell Biology Commons, Enzymes and Coenzymes Commons, Oncology Commons, and the Other Pharmacy and Pharmaceutical Sciences Commons Recommended Citation Bousoik E, Montazeri Aliabadi H. “Do we know jack” about JAK? A closer look at JAK/STAT signaling pathway. Front. Oncol. 2018;8:287. doi: 10.3389/fonc.2018.00287 This Article is brought to you for free and open access by the School of Pharmacy at Chapman University Digital Commons. It has been accepted for inclusion in Pharmacy Faculty Articles and Research by an authorized administrator of Chapman University Digital Commons. For more information, please contact [email protected]. “Do We Know Jack” About JAK? A Closer Look at JAK/STAT Signaling Pathway Comments This article was originally published in Frontiers in Oncology, volume 8, in 2018. DOI: 10.3389/ fonc.2018.00287 Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License. Copyright The uthora s This article is available at Chapman University Digital Commons: https://digitalcommons.chapman.edu/pharmacy_articles/590
    [Show full text]
  • Crystal Structure and Functional Dissection of the Cytostatic Cytokine
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Research Article 863 Crystal structure and functional dissection of the cytostatic cytokine oncostatin M Marc C Deller1,2†#, Keith R Hudson2‡#, Shinji Ikemizu1, Jerónimo Bravo1§, E Yvonne Jones1* and John K Heath2 Background: The cytokine oncostatin M (OSM) inhibits growth of Addresses: 1Cancer Research Campaign Receptor certain tumour-derived cells, induces proliferation in other cell types Structure Group, Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, (e.g. haemangioblasts) and is a mediator of inflammatory responses. Its University of Oxford, Roosevelt Drive, Oxford OX3 mechanism of action is via specific binding to gp130 and either the leukaemia 7BN, UK and 2Cancer Research Campaign Growth inhibitory factor receptor (LIFR) or oncostatin M receptor (OSMR) systems Factors Group, School of Biochemistry, University of at the cell surface to form an active signalling complex. Birmingham, Edgbaston, Birmingham B15 2TT, UK. Present addresses: †Yale University School of Results: We report here the crystal structure of human oncostatin M (hOSM) Medicine, Department of Pharmacology, Sterling along with mutagenesis data which map the receptor-binding epitopes of the Hall of Medicine, PO Box 208066, New Haven, molecule. The structure was determined to a resolution of 2.2 Å and conforms CT 06520-8066, USA, ‡Genesis Research and to the haematopoietin cytokine up-up-down-down four-helix bundle topology. Development, 1 Fox Street, Parnell, Auckland, New Zealand and §Laboratory of Molecular Biology, The site 2 epitope, responsible for gp130 binding, is centred around Gly120 Medical Research Council Centre, Hills Road, which forms a ‘dimple’ on the surface of the molecule located on helices A and Cambridge CB2 2QH, UK.
    [Show full text]