ECE 471 – Embedded Systems Lecture 3
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Shorten Device Boot Time for Automotive IVI and Navigation Systems
Shorten Device Boot Time for Automotive IVI and Navigation Systems Jim Huang ( 黃敬群 ) <[email protected]> Dr. Shi-wu Lo <[email protected]> May 28, 2013 / Automotive Linux Summit (Spring) Rights to copy © Copyright 2013 0xlab http://0xlab.org/ [email protected] Attribution – ShareAlike 3.0 Corrections, suggestions, contributions and translations You are free are welcome! to copy, distribute, display, and perform the work to make derivative works Latest update: May 28, 2013 to make commercial use of the work Under the following conditions Attribution. You must give the original author credit. Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under a license identical to this one. For any reuse or distribution, you must make clear to others the license terms of this work. Any of these conditions can be waived if you get permission from the copyright holder. Your fair use and other rights are in no way affected by the above. License text: http://creativecommons.org/licenses/by-sa/3.0/legalcode Goal of This Presentation • Propose a practical approach of the mixture of ARM hibernation (suspend to disk) and Linux user-space checkpointing – to shorten device boot time • An intrusive technique for Android/Linux – minimal init script and root file system changes are required • Boot time is one of the key factors for Automotive IVI – mentioned by “Linux Powered Clusters” and “Silver Bullet of Virtualization (Pitfalls, Challenges and Concerns) Continued” at ALS 2013 – highlighted by “Boot Time Optimizations” at ALS 2012 About this presentation • joint development efforts of the following entities – 0xlab team - http://0xlab.org/ – OSLab, National Chung Cheng University of Taiwan, led by Dr. -
Connecting Peripheral Devices to a Pandaboard Using
11/16/2012 MARK CONNECTING PERIPHERAL DEVICES TO A BIRDSALL PANDABOARD USING PSI This is an application note that will help somebody use the Serial Programming Interface that is available on the OMAP-based PandaBoard’s expansion connector and also explains how use the SPI to connect with a real-time clock (RTC) chip. Ever since the PandaBoard came out, there has been a community of eager programmers constructing creative projects and asking questions about where else and what more they could do to extend the PandaBoard’s abilities. This application note will document a way to connect devices to a OMAP-based devise like a PandaBoard What is the Serial Programming Interface “Serial Programming Interface” (SPI) is a simple standard that was developed my Motorola. SPI can also be called “4-wire” interface (as opposed to 1, 2 or 3-wire serial buses) and it is sometimes referred to like that because the interface has four wires defined. The first is Master- Out-Slave-In (MOSI) and the second is the Master-In-Slave-Out (MISO). There is also a Serial Clock from the Master (SCLK) and a Chipselect Signal (CS#) which can allow for more than one slave devise to be able to connect with one master. Why do we want to use the SPI? There are various ways to connect a peripheral device to the PandaBoard like USB, SPI, etc... and SPI has some advantages. Using the Serial Programming Interface costs less in terms of power usage and it is easy to connect different devises to the PandaBoard and also to debug any problems that occur all while maintaining an acceptable performance rate. -
Deliverable D4.1
Deliverable D4.1 – State of the art on performance and power estimation of embedded and high-performance cores Anastasiia Butko, Abdoulaye Gamatié, Gilles Sassatelli, Stefano Bernabovi, Michael Chapman, Philippe Naudin To cite this version: Anastasiia Butko, Abdoulaye Gamatié, Gilles Sassatelli, Stefano Bernabovi, Michael Chapman, et al.. Deliverable D4.1 – State of the art on performance and power estimation of embedded and high- performance cores. [Research Report] LIRMM (UM, CNRS); Cortus S.A.S. 2016. lirmm-03168326 HAL Id: lirmm-03168326 https://hal-lirmm.ccsd.cnrs.fr/lirmm-03168326 Submitted on 12 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Project Ref. Number ANR-15-CE25-0007 D4.1 – State of the art on performance and power estimation of embedded and high-performance cores Version 2.0 (2016) Final Public Distribution Main contributors: A. Butko, A. Gamatié, G. Sassatelli (LIRMM); S. Bernabovi, M. Chapman and P. Naudin (Cortus) Project Partners: Cortus S.A.S, Inria, LIRMM Every effort has been made to ensure that all statements and information contained herein are accurate, however the Continuum Project Partners accept no liability for any error or omission in the same. -
New Book on Commodore’S First Computer, the Bil Herd — AKA “The Animal,” He PET
Fort Worth Dallas Atari, and Nintendo. Designer of New Book on Commodore’s first computer, the Bil Herd — AKA “The Animal,” he PET. His relationship with Jack designed the ill-fated Plus/4 Commodore Tramiel eventually soured with computer and later went on to disastrous consequences. design the Commodore 128. Known About the Book to wrestle executives in the hallways September 2005 Robert Yannes — Frustrated of Commodore. Responsible for The Spectacular Rise and Fall of musician and synthesizer aficionado. many holes in the walls of Commodore tells the story of Designed the Commodore 64 and Commodore headquarters. Commodore through first-hand its famous sound chip, the SID. accounts by the actual Commodore Jay Miner — Brilliant ex-Atari engineers and managers who made Al Charpentier — Chain smoking engineer responsible for the Atari the company. From their entry into computer graphics pioneer and 800 computer. Co-designer of the computers in 1976 until their demise architect of the VIC and VIC-II Atari 2600. Inventor of the ground in 1994, the Commodore years were chips. breaking Amiga computer for always turbulent and exciting. Commodore. All his projects were Commodore had astounding success Thomas Rattigan — One time co-designed by his faithful dog and with their computers, including the President and CEO of Commodore official Commodore employee, Pet, the Vic-20, the Commodore 64 computers who saved the company Mitchy. and the incredible Amiga computers. from bankruptcy, only to collide Although other companies received with financier Irving Gould. On his George Robbins — Designer of the more press, Commodore sold more last day with Commodore he was low cost Amiga 500 computer. -
Universidad De Guayaquil Facultad De Ciencias Matematicas Y Fisicas Carrera De Ingeniería En Networking Y Telecomunicaciones D
UNIVERSIDAD DE GUAYAQUIL FACULTAD DE CIENCIAS MATEMATICAS Y FISICAS CARRERA DE INGENIERÍA EN NETWORKING Y TELECOMUNICACIONES DISEÑO DE UN SISTEMA INTELIGENTE DE MONITOREO Y CONTROL EN TIEMPO REAL PARA TANQUES DE ALMACENAMIENTO DE GASOLINA UTILIZANDO TECNOLOGÍA DE HARDWARE Y SOFTWARE LIBRE PARA PEQUEÑAS Y MEDIANAS EMPRESAS PROYECTO DE TITULACIÓN Previa a la obtención del Título de: INGENIERO EN NETWORKING Y TELECOMUNICACIONES AUTORES: Chamorro Salazar Hamilton Gabriel TUTOR: Ing. Jacobo Antonio Ramírez Urbina GUAYAQUIL – ECUADOR 2019 I REPOSITORIO NACIONAL EN CIENCIAS Y TECNOLOGIA FICHA DE REGISTRO DE TESIS TITULO: Diseño de un sistema inteligente de monitoreo y control en tiempo real para tanques de almacenamiento de gasolina utilizando tecnología de hardware y software libre para pequeñas y medianas empresas. REVISORES: Ing. Luis Espin Pazmiño, M.Sc Ing. Harry Luna Aveiga, M.Sc INSTITUCIÓN: Universidad de FACULTAD: Ciencias Matemáticas y Guayaquil Físicas. CARRERA: Ingeniería en Networking y Telecomunicaciones FECHA DE PUBLICACIÓN: N° DE PAGS: 143 AREA TEMÁTICA: Tecnología de la Información y Telecomunicaciones PALABRA CLAVES: Telemetría, microcomputadores, sensores, actuadores, sistema digital, tanques de almacenamiento, control en tiempo real RESUMEN: Este proyecto tiene como finalidad investigar y diseñar un sistema de monitoreo y control en tiempo real para tanques de almacenamiento de gasolina utilizando tecnología de hardware y software libre para las pequeñas y medianas empresas. El diseño permite una gestión eficiente de los -
Development Boards This Product Is Rohs Compliant
Development Boards This product is RoHS compliant. PANDABOARD DEVELOPMENT PLATFORM Features: • Core Logic: OMAP4460 applications Processor • Interface: (1) General Purpose Expansion Header • Wireless Connectivity: 802.11 b/g/n (WiLink™ 6.0) • Memory: 1GB DDR2 RAM (I2C, GPMC, USB, MMC, DSS, ETM) • Debug options: JTAG, UART/RS-232, 1 GPIO button NTL • Full Size SD/MMC card port • Camera Expansion Header • Graphics APIs: OpenGL ES v2.0, OpenGL ES v1.1, • 10/100 Ethernet • Display Connectors: HDMI v1.3, DVI-D. LCD Expansion OpenVGv1.1, and EGL v1.3 • USB: (1) USB 2.0 OTG port, (2) USB 2.0 High-speed port • Audio Connectors: 3.5" In/Out, HDMI audio out For quantities greater than listed, call for quote. MOUSER Pandaboard Price Description STOCK NO. Part No. Each 595-PANDABOARD UEVM4430G-01-00-00 Pandaboard ARM Cortex-A9 MPCore 1GHz OMAP4430 SoC Platform 179.00 595-PANDABOARD-ES UEVM4460G-02-01-00 Pandaboard ARM Cortex-A9 MPCore 1GHz OMAP4460 SoC Platform 185.00 Embedded Modules Embedded BEAGLEBOARD SOC PLATFORMS BeagleBoard.org develops low-cost, fan-less single-board computers based on low-power Texas Instruments processors featuring the ARM Cortex-A8 core with all of the expandability of today's desktop machines, but without the bulk, expense, or noise. BeagleBoard.org provides an open source development platform for A B the creation of high-performance embedded designs. Beagleboard C4 Features: Beagleboard xM Features: Beaglebone Features: • Over 1,200 Dhrystone MIPS using the superscalar • Over 2,000 Dhrystone MIPS using the Super-scalar -
Improving the Beaglebone Board with Embedded Ubuntu, Enhanced GPMC Driver and Python for Communication and Graphical Prototypes
Final Master Thesis Improving the BeagleBone board with embedded Ubuntu, enhanced GPMC driver and Python for communication and graphical prototypes By RUBÉN GONZÁLEZ MUÑOZ Directed by MANUEL M. DOMINGUEZ PUMAR FINAL MASTER THESIS 30 ECTS, JULY 2015, ELECTRICAL AND ELECTRONICS ENGINEERING Abstract Abstract BeagleBone is a low price, small size Linux embedded microcomputer with a full set of I/O pins and processing power for real-time applications, also expandable with cape pluggable boards. The current work has been focused on improving the performance of this board. In this case, the BeagleBone comes with a pre-installed Angstrom OS and with a cape board using a particular software “overlay” and applications. Due to a lack of support, this pre-installed OS has been replaced by Ubuntu. As a consequence, the cape software and applications need to be adapted. Another necessity that emerges from the stated changes is to improve the communications through a GPMC interface. The depicted driver has been built for the new system as well as synchronous variants, also developed and tested. Finally, a set of applications in Python using the cape functionalities has been developed. Some extra graphical features have been included as example. Contents Contents Abstract ..................................................................................................................................................................................... 5 List of figures ......................................................................................................................................................................... -
Low-Power High Performance Computing
Low-Power High Performance Computing Michael Holliday August 22, 2012 MSc in High Performance Computing The University of Edinburgh Year of Presentation: 2012 Abstract There are immense challenges in building an exascale machine with the biggest issue that of power. The designs of new HPC systems are likely to be radically different from those in use today. Making use of new architectures aimed at reducing power consumption while still delivering high performance up to and beyond a speed of one exaflop might bring about greener computing. This project will make use of systems already using low power processors including the Intel Atom and ARM A9 and compare them against the Intel Westmere Xeon Processor when scaled up to higher numbers of cores. Contents 1 Introduction1 1.1 Report Organisation............................2 2 Background3 2.1 Why Power is an Issue in HPC......................3 2.2 The Exascale Problem..........................4 2.3 Average use................................4 2.4 Defence Advanced Research Projects Agency Report..........5 2.5 ARM...................................6 2.6 Measures of Energy Efficiency......................6 3 Literature Review8 3.1 Top 500, Green 500 & Graph 500....................8 3.2 Low-Power High Performance Computing................9 3.2.1 The Cluster............................ 10 3.2.2 Results and Conclusions..................... 10 3.3 SuperMUC................................ 11 3.4 ARM Servers............................... 12 3.4.1 Calexeda EnergyCoreTM & EnergyCardTM ........... 12 3.4.2 The Boston Viridis Project.................... 12 3.4.3 HP Project Moonshot....................... 13 3.5 The European Exascale Projects..................... 13 3.5.1 Mont Blanc - Barcelona Computing Centre........... 13 3.5.2 CRESTA - EPCC......................... 14 4 Technology Review 15 4.1 Intel Xeon................................ -
IEEE Spectrum: 25 Microchip
IEEE Spectrum: 25 Microchips That Shook the World http://www.spectrum.ieee.org/print/8747 Sponsored By Select Font Size: A A A 25 Microchips That Shook the World By Brian R. Santo This is part of IEEE Spectrum 's Special Report: 25 Microchips That Shook the World . In microchip design, as in life, small things sometimes add up to big things. Dream up a clever microcircuit, get it sculpted in a sliver of silicon, and your little creation may unleash a technological revolution. It happened with the Intel 8088 microprocessor. And the Mostek MK4096 4-kilobit DRAM. And the Texas Instruments TMS32010 digital signal processor. Among the many great chips that have emerged from fabs during the half-century reign of the integrated circuit, a small group stands out. Their designs proved so cutting-edge, so out of the box, so ahead of their time, that we are left groping for more technology clichés to describe them. Suffice it to say that they gave us the technology that made our brief, otherwise tedious existence in this universe worth living. We’ve compiled here a list of 25 ICs that we think deserve the best spot on the mantelpiece of the house that Jack Kilby and Robert Noyce built. Some have become enduring objects of worship among the chiperati: the Signetics 555 timer, for example. Others, such as the Fairchild 741 operational amplifier, became textbook design examples. Some, like Microchip Technology’s PIC microcontrollers, have sold billions, and are still doing so. A precious few, like Toshiba’s flash memory, created whole new markets. -
Openbricks Embedded Linux Framework - User Manual I
OpenBricks Embedded Linux Framework - User Manual i OpenBricks Embedded Linux Framework - User Manual OpenBricks Embedded Linux Framework - User Manual ii Contents 1 OpenBricks Introduction 1 1.1 What is it ?......................................................1 1.2 Who is it for ?.....................................................1 1.3 Which hardware is supported ?............................................1 1.4 What does the software offer ?............................................1 1.5 Who’s using it ?....................................................1 2 List of supported features 2 2.1 Key Features.....................................................2 2.2 Applicative Toolkits..................................................2 2.3 Graphic Extensions..................................................2 2.4 Video Extensions...................................................3 2.5 Audio Extensions...................................................3 2.6 Media Players.....................................................3 2.7 Key Audio/Video Profiles...............................................3 2.8 Networking Features.................................................3 2.9 Supported Filesystems................................................4 2.10 Toolchain Features..................................................4 3 OpenBricks Supported Platforms 5 3.1 Supported Hardware Architectures..........................................5 3.2 Available Platforms..................................................5 3.3 Certified Platforms..................................................7 -
Nov. 25Th MOS Technology [Sept 9], Where Nov
supportive, so he, Bill Mensch [Feb 9], and five others, left for EPICAC Nov. 25th MOS Technology [Sept 9], where Nov. 25, 1950 Peddle headed a team working on the 650x family of “EPICAC” is a short story by Kurt Philipp Matthäus processors. The most famous Vonnegut which was published member of that family was the on this day in Collier’s Weekly. Hahn 6502, released in 1976, which could be purchased for roughly EPICAC is the largest, smartest Born: Nov. 25, 1739; 15% of the price of an Intel 8080 computer on Earth, and is given Scharnhausen, Germany [April 18]. Not surprisingly, it the part-time job of writing poetry for the story's narrator Died: May 2, 1790 soon found use in a multitude of products, including the Apple II (and EPICAC operator) to give to Hahn was a priest and also a [June 5], VIC-20 [May 00], NES Pat, his girlfriend. An renowned clockmaker and [Oct 18], Atari 8-bit computers unintended side-effect is that inventor. He designed the first [Nov 00], many arcade games, EPICAC learns to love Pat, but popular mechanical calculator and the BBC Micro [Dec 1]. also realizes that she cannot based on Leibniz’s Stepped reciprocate that love for a mere Reckoner [July 1], which he first machine. EPICAC short- got working in 1773, although circuiting himself to end the he spent a few more years misery. making the tens-carry mechanism reliable, partly by The story was published four reshaping the rectangular years after ENIAC was unveiled machine to be circular. -
Microprocessors in the 1970'S
Part II 1970's -- The Altair/Apple Era. 3/1 3/2 Part II 1970’s -- The Altair/Apple era Figure 3.1: A graphical history of personal computers in the 1970’s, the MITS Altair and Apple Computer era. Microprocessors in the 1970’s 3/3 Figure 3.2: Andrew S. Grove, Robert N. Noyce and Gordon E. Moore. Figure 3.3: Marcian E. “Ted” Hoff. Photographs are courtesy of Intel Corporation. 3/4 Part II 1970’s -- The Altair/Apple era Figure 3.4: The Intel MCS-4 (Micro Computer System 4) basic system. Figure 3.5: A photomicrograph of the Intel 4004 microprocessor. Photographs are courtesy of Intel Corporation. Chapter 3 Microprocessors in the 1970's The creation of the transistor in 1947 and the development of the integrated circuit in 1958/59, is the technology that formed the basis for the microprocessor. Initially the technology only enabled a restricted number of components on a single chip. However this changed significantly in the following years. The technology evolved from Small Scale Integration (SSI) in the early 1960's to Medium Scale Integration (MSI) with a few hundred components in the mid 1960's. By the late 1960's LSI (Large Scale Integration) chips with thousands of components had occurred. This rapid increase in the number of components in an integrated circuit led to what became known as Moore’s Law. The concept of this law was described by Gordon Moore in an article entitled “Cramming More Components Onto Integrated Circuits” in the April 1965 issue of Electronics magazine [338].