Poster from Natural Sciences Collections Association Conference 2017
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cryptoclidid Plesiosaurs (Sauropterygia, Plesiosauria) from the Upper Jurassic of the Atacama Desert
Journal of Vertebrate Paleontology ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ujvp20 Cryptoclidid plesiosaurs (Sauropterygia, Plesiosauria) from the Upper Jurassic of the Atacama Desert Rodrigo A. Otero , Jhonatan Alarcón-Muñoz , Sergio Soto-Acuña , Jennyfer Rojas , Osvaldo Rojas & Héctor Ortíz To cite this article: Rodrigo A. Otero , Jhonatan Alarcón-Muñoz , Sergio Soto-Acuña , Jennyfer Rojas , Osvaldo Rojas & Héctor Ortíz (2020): Cryptoclidid plesiosaurs (Sauropterygia, Plesiosauria) from the Upper Jurassic of the Atacama Desert, Journal of Vertebrate Paleontology, DOI: 10.1080/02724634.2020.1764573 To link to this article: https://doi.org/10.1080/02724634.2020.1764573 View supplementary material Published online: 17 Jul 2020. Submit your article to this journal Article views: 153 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=ujvp20 Journal of Vertebrate Paleontology e1764573 (14 pages) © by the Society of Vertebrate Paleontology DOI: 10.1080/02724634.2020.1764573 ARTICLE CRYPTOCLIDID PLESIOSAURS (SAUROPTERYGIA, PLESIOSAURIA) FROM THE UPPER JURASSIC OF THE ATACAMA DESERT RODRIGO A. OTERO,*,1,2,3 JHONATAN ALARCÓN-MUÑOZ,1 SERGIO SOTO-ACUÑA,1 JENNYFER ROJAS,3 OSVALDO ROJAS,3 and HÉCTOR ORTÍZ4 1Red Paleontológica Universidad de Chile, Laboratorio de Ontogenia y Filogenia, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile, [email protected]; 2Consultora Paleosuchus Ltda., Huelén 165, Oficina C, Providencia, Santiago, Chile; 3Museo de Historia Natural y Cultural del Desierto de Atacama. Interior Parque El Loa s/n, Calama, Región de Antofagasta, Chile; 4Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Barrio Universitario, Concepción, Región del Bío Bío, Chile ABSTRACT—This study presents the first plesiosaurs recovered from the Jurassic of the Atacama Desert that are informative at the genus level. -
Large-Bodied Suspension Feeders, Which Include the Most
Friedman, M., Shimada, K., Martin, L.D., Everhart, M.J., Liston, J.J., Maltese, A. and Triebold, M. (2010) 100-million-year dynasty of giant planktivorous bony fishes in the Mesozoic seas. Science, 327 (5968). pp. 990-993. ISSN 0036-8075 http://eprints.gla.ac.uk/55074/ Deposited on: 7 December 2011 Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk 100-million-year dynasty of giant suspension-feeding bony fishes in the Mesozoic seas Matt Friedman1, Kenshu Shimada2,3, Larry D. Martin4, Michael J. Everhart3, Jeff Liston5, Anthony Maltese6, Michael Triebold6 1Department of Earth Sciences, University of Oxford, Parks Road, Oxford OX1 3PR, UK. 2Environmental Science Program and Department of Biological Sciences, DePaul University, 2325 North Clifton Avenue, Chicago, Illinois 60614, USA. 3Sternberg Museum of Natural History, Fort Hays State University, 3000 Sternberg Drive, Hays, Kansas 67601, USA. 4Natural History Museum and Biodiversity Research Center, University of Kansas, 1345 Jayhawk Boulevard, Lawrence, Kansas 66045, USA. 5Division of Ecology and Evolutionary Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK. 6Triebold Paleontology, Inc., and Rocky Mountain Dinosaur Resource Center, 201 South Fairview Street, Woodland Park, Colorado 80863, USA. Large-bodied suspension feeders (planktivores), which include the most massive animals to have ever lived, are conspicuously absent from Mesozoic marine environments. The only clear representatives of this trophic guild in the Mesozoic are an enigmatic and apparently short-lived (ca. 20 Ma) radiation of bony fishes assigned to †Pachycormidae, a stem teleost clade. Here we report several new discoveries of these giant fishes from Asia, Europe and North America, which not only deliver the first detailed anatomical information on this poorly understood group, but also extend its range deeper into the Jurassic and to the very end of the Cretaceous. -
Re-Evaluation of Pachycormid Fishes from the Late Jurassic of Southwestern Germany
Editors' choice Re-evaluation of pachycormid fishes from the Late Jurassic of Southwestern Germany ERIN E. MAXWELL, PAUL H. LAMBERS, ADRIANA LÓPEZ-ARBARELLO, and GÜNTER SCHWEIGERT Maxwell, E.E., Lambers, P.H., López-Arbarello, A., and Schweigert G. 2020. Re-evaluation of pachycormid fishes from the Late Jurassic of Southwestern Germany. Acta Palaeontologica Polonica 65 (3): 429–453. Pachycormidae is an extinct group of Mesozoic fishes that exhibits extensive body size and shape disparity. The Late Jurassic record of the group is dominated by fossils from the lithographic limestone of Bavaria, Germany that, although complete and articulated, are not well characterized anatomically. In addition, stratigraphic and geographical provenance are often only approximately known, making these taxa difficult to place in a global biogeographical context. In contrast, the late Kimmeridgian Nusplingen Plattenkalk of Baden-Württemberg is a well-constrained locality yielding hundreds of exceptionally preserved and prepared vertebrate fossils. Pachycormid fishes are rare, but these finds have the potential to broaden our understanding of anatomical variation within this group, as well as provide new information regarding the trophic complexity of the Nusplingen lagoonal ecosystem. Here, we review the fossil record of Pachycormidae from Nusplingen, including one fragmentary and two relatively complete skulls, a largely complete fish, and a fragment of a caudal fin. These finds can be referred to three taxa: Orthocormus sp., Hypsocormus posterodorsalis sp. nov., and Simocormus macrolepidotus gen. et sp. nov. The latter taxon was erected to replace “Hypsocormus” macrodon, here considered to be a nomen dubium. Hypsocormus posterodorsalis is known only from Nusplingen, and is characterized by teeth lacking apicobasal ridging at the bases, a dorsal fin positioned opposite the anterior edge of the anal fin, and a hypural plate consisting of a fused parhypural and hypurals. -
LOCOMOTION ENERGETICS of LEEDSICHTHYS PROBLEMATICUS (ACTINOPTERYGII, PACHYCORMIFORMES) by HUMBERTO G
[Palaeontology, Vol. 61, Part 5, 2018, pp. 775–783] ASSESSING METABOLIC CONSTRAINTS ON THE MAXIMUM BODY SIZE OF ACTINOPTERYGIANS: LOCOMOTION ENERGETICS OF LEEDSICHTHYS PROBLEMATICUS (ACTINOPTERYGII, PACHYCORMIFORMES) by HUMBERTO G. FERRON 1,* ,BORJAHOLGADO2,* , JEFFREY J. LISTON3,4,5,6,CARLOSMARTINEZ-PEREZ 1,6 and HECTOR BOTELLA1 1Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de Valencia, C/Catedratic Jose Beltran Martınez 2, 46980, Paterna, Valencia Spain; [email protected], [email protected], [email protected] 2Laboratory of Systematics & Taphonomy of Fossil Vertebrates, Departamento de Geologia e Paleontologia, Museu Nacional/Universidade Federal do Riode Janeiro (UFRJ), Quinta da Boa Vista, s/n, S~ao Cristov ~ao, 20940-040, Rio de Janeiro, RJ Brazil; [email protected] 3Bayerische Staatssammlung fur€ Pal€aontologie und Geologie, Richard-Wagner-Straße 10, 80333, Munchen,€ Germany; [email protected], [email protected] 4National Museums Scotland, Chambers Street, Edinburgh, EH1 1JF, UK; [email protected] 5Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK; [email protected] 6School of Earth Sciences, University of Bristol, Bristol, BS8 1TQ, UK; [email protected], [email protected] *Corresponding authors Typescript received 21 October 2017; accepted in revised form 5 April 2018 Abstract: Maximum sizes attained by living actinoptery- weighing up to 44.9 tonnes would have been energetically gians are much smaller than those reached by chon- viable and suggests that similar body sizes could also be possi- drichthyans. Several factors, including the high metabolic ble among living taxa, discarding metabolic factors as likely requirements of bony fishes, have been proposed as possible body size constraints in actinopterygians. -
Body-Shape Diversity in Triassic–Early Cretaceous Neopterygian fishes: Sustained Holostean Disparity and Predominantly Gradual Increases in Teleost Phenotypic Variety
Body-shape diversity in Triassic–Early Cretaceous neopterygian fishes: sustained holostean disparity and predominantly gradual increases in teleost phenotypic variety John T. Clarke and Matt Friedman Comprising Holostei and Teleostei, the ~32,000 species of neopterygian fishes are anatomically disparate and represent the dominant group of aquatic vertebrates today. However, the pattern by which teleosts rose to represent almost all of this diversity, while their holostean sister-group dwindled to eight extant species and two broad morphologies, is poorly constrained. A geometric morphometric approach was taken to generate a morphospace from more than 400 fossil taxa, representing almost all articulated neopterygian taxa known from the first 150 million years— roughly 60%—of their history (Triassic‒Early Cretaceous). Patterns of morphospace occupancy and disparity are examined to: (1) assess evidence for a phenotypically “dominant” holostean phase; (2) evaluate whether expansions in teleost phenotypic variety are predominantly abrupt or gradual, including assessment of whether early apomorphy-defined teleosts are as morphologically conservative as typically assumed; and (3) compare diversification in crown and stem teleosts. The systematic affinities of dapediiforms and pycnodontiforms, two extinct neopterygian clades of uncertain phylogenetic placement, significantly impact patterns of morphological diversification. For instance, alternative placements dictate whether or not holosteans possessed statistically higher disparity than teleosts in the Late Triassic and Jurassic. Despite this ambiguity, all scenarios agree that holosteans do not exhibit a decline in disparity during the Early Triassic‒Early Cretaceous interval, but instead maintain their Toarcian‒Callovian variety until the end of the Early Cretaceous without substantial further expansions. After a conservative Induan‒Carnian phase, teleosts colonize (and persistently occupy) novel regions of morphospace in a predominantly gradual manner until the Hauterivian, after which expansions are rare. -
Introduction and Bibliography
Downloaded from http://sp.lyellcollection.org/ by guest on October 3, 2021 Introduction and bibliography MIKE SMITH*, ZERINA JOHANSON, PAUL M. BARRETT & M. RICHTER Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK *Corresponding author (e-mail: [email protected]) Arthur Smith Woodward (1864–1944) was ac- Wegener was proposing his theory of continental knowledged as the world’s foremost authority on drift. It would be almost half a century before fossil fishes during his lifetime and made impor- his theory gained widespread acceptance. Hallam tant contributions to the entire field of vertebrate (1983, p. 135) wrote in Great Geological Contro- palaeontology. He was a dedicated public servant, versies that ‘The American palaeontologist G. G. spending his whole career at the British Museum Simpson noted in 1943 the near unanimity of (Natural History) (now the Natural History Museum, palaeontologists against Wegener’s ideas’. Smith NHM) in London. He served on the council and as Woodward certainly fell into this camp but was president of many of the important scientific socie- more inclined to note that no certainty could yet be ties and was elected a Fellow of the Royal Society attached to the palaeontological evidence (Wood- in 1901. He was knighted on retirement from the ward 1935). Scientific theories that we accept today Museum in 1924. were still controversial and intensely debated while Smith Woodward was born on 23 May 1864 in Smith Woodward was alive. Macclesfield, an industrial town in the north Mid- A book that celebrates the life and scientific lands of England. -
Giant Mesozoic Coelacanths (Osteichthyes, Actinistia) Reveal High Body Size Disparity Decoupled from Taxic Diversity
Giant Mesozoic Coelacanths (Osteichthyes, Actinistia) Reveal High Body Size Disparity Decoupled From Taxic Diversity Lionel Cavin ( [email protected] ) Natural History Museum of Geneva André Piuz Natural History Museum of Geneva Christophe Ferrante Natural History Museum of Geneva Guillaume Guinot Institut des Sciences de l'Evolution de Montpellier Research Article Keywords: morphological evolution, taxic diversication, Genomic and physiological characteristics Posted Date: March 2nd, 2021 DOI: https://doi.org/10.21203/rs.3.rs-245480/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License 1 2 Giant Mesozoic coelacanths (Osteichthyes, Actinistia) reveal high 3 body size disparity decoupled from taxic diversity 4 5 Lionel Cavin1*, André Piuz1, Christophe Ferrante1,2 & Guillaume Guinot3 6 7 8 1 Department of Geology and Palaeontology, Natural History Museum of Geneva, Geneva, 9 Switzerland 10 2 Department of Earth Sciences, University of Geneva, Rue des Maraîchais 13, 1205 Genève, 11 Switzerland 12 3 Institut des Sciences de l’Evolution de Montpellier (Université de Montpellier, CNRS, IRD, 13 EPHE), Montpellier, France 14 15 * Corresponding author 16 Email: [email protected] 17 1 18 Abstract 19 20 The positive correlation between speciation rates and morphological evolution expressed by 21 body size is a macroevolutionary trait of vertebrates. Although taxic diversification and 22 morphological evolution are slow in coelacanths, their fossil record indicates that large and 23 small species coexisted, which calls into question the link between morphological and body 24 size disparities. Here, we describe and reassess fossils of giant coelacanths. Two genera 25 reached up to 5 meters long, placing them among the ten largest bony fish that ever lived. -
A Review of the Characters of the Edentulous Pachycormiforms Leedsichthys, Asthenocormus and Martillichthys Nov
Mesozoic Fishes 4 – Homology and Phylogeny, G. Arratia, H.-P. Schultze & M. V. H. Wilson (eds.): pp. 181-198, 10 figs., 1 tab., 1 app. © 2008 by Verlag Dr. Friedrich Pfeil, München, Germany – ISBN 978-3-89937-080-5 A review of the characters of the edentulous pachycormiforms Leedsichthys, Asthenocormus and Martillichthys nov. gen. Jeff LISTON Abstract With their phyletic trend of non-ossification of their skeleton, the members of the Mesozoic neopterygian family Pachycormidae have long presented problems to systematists. Recent works on this family are revisited with ad- ditional data for Leedsichthys, Asthenocormus and Martillichthys (nov. gen.) from the Callovian Oxford Clay around Peterborough (UK). A revised diagnosis of the Family Pachycormidae is presented, along with an updated strict consensus tree for the Pachycormiformes, showing the edentulous pachycormiforms as a discrete clade. Introduction The Pachycormidae were an extensive family of Mesozoic neopterygians, ranging in adult size from 300 mm (DELSATE 1999) to 8900 mm (LISTON pers. obs.), and extending from the Toarcian to the Campanian (LAMBERS 1992). PATTERSON (1982) has noted that WOODWARD (1891) first used the term Actinopterygii to describe the chondrosteans, holosteans and teleosts as a natural group of fishes, based on COPE’s 1871 grouping of Actinopteri, and has speculated that this was prompted by his 1889 work on fossil sturgeons. It seems likely that the more specific catalyst for WOODWARD’s assessment that this was a natural group of fishes, was alluded to in the reference within his fossil sturgeons survey to there being traces of a new very large fish from the Oxford Clay, with stiff branched rays and irregular dermal bones that made it very ‘Acipenseroid’- like (WOODWARD 1889a). -
Highly Specialized Suspension-Feeding Bony Fish
Cretaceous Research 61 (2016) 71e85 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes Highly specialized suspension-feeding bony fish Rhinconichthys (Actinopterygii: Pachycormiformes) from the mid-Cretaceous of the United States, England, and Japan * Bruce A. Schumacher a, b, , Kenshu Shimada c, d, Jeff Liston e, f, g, h, Anthony Maltese i a USDA Forest Service, La Junta, CO 81050, USA b Denver Museum of Nature and Science, Denver, CO 80205, USA c Department of Environmental Science and Studies and Department of Biological Sciences, DePaul University, 2325 North Clifton Avenue, Chicago, IL 60614, USA d Sternberg Museum of Natural History, Fort Hays State University, Hays, KS 67601, USA e Yunnan Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, Yunnan Province, People's Republic of China f Department of Natural Sciences, National Museum of Scotland, Old Town, Edinburgh, Chambers Street, Edinburgh, EH1 1JF, Scotland, UK g School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol, BS8 1RJ, England, UK h Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, Scotland, UK i Rocky Mountain Dinosaur Resource Center, Woodland Park, CO 80863, USA article info abstract Article history: We re-define the Cretaceous bony fish genus Rhinconichthys by re-describing the type species, R. taylori, Received 22 September 2015 and defining two new species, R. purgatorensis sp. nov. from the lowermost Carlile Shale (middle Received in revised form Turonian), southeastern Colorado, United States; and R. uyenoi sp. nov. -
Re-Evaluation of Pachycormid Fishes from the Late Jurassic of Southwestern Germany
Editors' choice Re-evaluation of pachycormid fishes from the Late Jurassic of Southwestern Germany ERIN E. MAXWELL, PAUL H. LAMBERS, ADRIANA LÓPEZ-ARBARELLO, and GÜNTER SCHWEIGERT Maxwell, E.E., Lambers, P.H., López-Arbarello, A., and Schweigert G. 2020. Re-evaluation of pachycormid fishes from the Late Jurassic of Southwestern Germany. Acta Palaeontologica Polonica 65 (3): 429–453. Pachycormidae is an extinct group of Mesozoic fishes that exhibits extensive body size and shape disparity. The Late Jurassic record of the group is dominated by fossils from the lithographic limestone of Bavaria, Germany that, although complete and articulated, are not well characterized anatomically. In addition, stratigraphic and geographical provenance are often only approximately known, making these taxa difficult to place in a global biogeographical context. In contrast, the late Kimmeridgian Nusplingen Plattenkalk of Baden-Württemberg is a well-constrained locality yielding hundreds of exceptionally preserved and prepared vertebrate fossils. Pachycormid fishes are rare, but these finds have the potential to broaden our understanding of anatomical variation within this group, as well as provide new information regarding the trophic complexity of the Nusplingen lagoonal ecosystem. Here, we review the fossil record of Pachycormidae from Nusplingen, including one fragmentary and two relatively complete skulls, a largely complete fish, and a fragment of a caudal fin. These finds can be referred to three taxa: Orthocormus sp., Hypsocormus posterodorsalis sp. nov., and Simocormus macrolepidotus gen. et sp. nov. The latter taxon was erected to replace “Hypsocormus” macrodon, here considered to be a nomen dubium. Hypsocormus posterodorsalis is known only from Nusplingen, and is characterized by teeth lacking apicobasal ridging at the bases, a dorsal fin positioned opposite the anterior edge of the anal fin, and a hypural plate consisting of a fused parhypural and hypurals. -
Phylogenetic Relationships of †Luisiella Feruglioi
Sferco et al. BMC Evolutionary Biology (2015) 15:268 DOI 10.1186/s12862-015-0551-6 RESEARCH ARTICLE Open Access Phylogenetic relationships of †Luisiella feruglioi (Bordas) and the recognition of a new clade of freshwater teleosts from the Jurassic of Gondwana Emilia Sferco1,2, Adriana López-Arbarello3* and Ana María Báez1 Abstract Background: Teleosts constitute more than 99 % of living actinopterygian fishes and fossil teleosts have been studied for about two centuries. However, a general consensus on the definition of Teleostei and the relationships among the major teleostean clades has not been achieved. Our current ideas on the origin and early diversification of teleosts are mainly based on well-known Mesozoic marine taxa, whereas the taxonomy and phylogenetic relationships of many Jurassic continental teleosts are still poorly understood despite their importance to shed light on the early evolutionary history of this group. Here, we explore the phylogenetic relationships of the Late Jurassic (Oxfordian – Tithonian) freshwater †Luisiella feruglioi from Patagonia, in a comprehensive parsimony analysis after a thorough revision of characters from previous phylogenetic studies on Mesozoic teleosts. Results: We retrieved †Luisiella feruglioi as the sister taxon of the Late Jurassic †Cavenderichthys talbragarensis, both taxa in turn forming a monophyletic group with the Early Cretaceous †Leptolepis koonwarri. This new so far exclusively Gondwanan freshwater teleost clade, named †Luisiellidae fam. nov. herein, is placed outside crown Teleostei, as a member of the stem-group immediately above the level of †Leptolepis coryphaenoides. In addition, we did not retrieve the Late Jurassic †Varasichthyidae as a member of †Crossognathiformes. The position of †Crossognathiformes within Teleocephala is confirmed whereas †Varasichthyidae is placed on the stem. -
100-Million-Year Dynasty of Giant Planktivorous Bony Fishes in the Mesozoic Seas Matt Friedman, Et Al
100-Million-Year Dynasty of Giant Planktivorous Bony Fishes in the Mesozoic Seas Matt Friedman, et al. Science 327, 990 (2010); DOI: 10.1126/science.1184743 This copy is for your personal, non-commercial use only. If you wish to distribute this article to others, you can order high-quality copies for your colleagues, clients, or customers by clicking here. Permission to republish or repurpose articles or portions of articles can be obtained by following the guidelines here. The following resources related to this article are available online at www.sciencemag.org (this information is current as of February 22, 2010 ): Updated information and services, including high-resolution figures, can be found in the online version of this article at: http://www.sciencemag.org/cgi/content/full/327/5968/990 Supporting Online Material can be found at: http://www.sciencemag.org/cgi/content/full/327/5968/990/DC1 A list of selected additional articles on the Science Web sites related to this article can be found at: http://www.sciencemag.org/cgi/content/full/327/5968/990#related-content This article cites 13 articles, 2 of which can be accessed for free: on February 22, 2010 http://www.sciencemag.org/cgi/content/full/327/5968/990#otherarticles This article has been cited by 1 articles hosted by HighWire Press; see: http://www.sciencemag.org/cgi/content/full/327/5968/990#otherarticles This article appears in the following subject collections: Paleontology http://www.sciencemag.org/cgi/collection/paleo www.sciencemag.org Downloaded from Science (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005.