NEW COUPLED-CLUSTER METHODS FOR MOLECULAR POTENTIAL ENERGY SURFACES: I. GROUND-STATE APPROACHES

Piotr Piecuch

Department of , Michigan State University, East Lansing, Michigan 48824

P. Piecuch and K. Kowalski, in: : Reviews of Current Trends, edited by J. Leszczynski´ (World Scientific, Singapore, 2000), Vol. 5, pp. 1-104; K. Kowalski and P. Piecuch, J. Chem. Phys. 113, 18-35 (2000); 113, 5644-5652 (2000); J. Molec. Struct.: THEOCHEM 547, 191-208 (2001); Chem. Phys. Lett. 344, 165-175 (2001); P. Piecuch, S.A. Kucharski, and K. Kowalski, Chem. Phys. Lett. 344, 176-184 (2001); P. Piecuch, S.A. Kucharski, V. Spirkˇ o, and K. Kowalski, J. Chem. Phys. 115, 5796-5804 (2001); P. Piecuch, K. Kowalski, and I.S.O. Pimienta, Int. J. Mol. Sci., submitted (2001); P. Piecuch and K. Kowalski, Int. J. Mol. Sci., submitted (2001); K. Kowalski and P. Piecuch, J. Chem. Phys. 115, 2966-2978 (2001); P. Piecuch, K. Kowalski, I.S.O. Pimienta, and S.A. Kucharski, in: Accurate Description of Low-Lying Electronic States and Potential Energy Surfaces, ACS Symposium Series, Vol. XXX, edited by M.R. Hoffmann and K.G. Dyall (ACS, Washington, D.C., 2002), pp. XXX-XXXX; K. Kowalski and P. Piecuch, J. Chem. Phys., submitted (2001); P. Piecuch, S.A. Kucharski, and V. Spirkˇ o, J. Chem. Phys. 111, 6679-6692 (1999); K. Kowalski and P. Piecuch, J. Chem. Phys. 113, 8490-8502 (2000); 115, 643-651 (2001); K. Kowalski and P. Piecuch, Chem. Phys. Lett. 347, 237-246 (2001).

1 The “holy grail” of the ab initio theory:

The development of simple, “black-box,” and affordable methods that can pro- vide highly accurate ( spectroscopic) description of ENTIRE GROUND- AND ∼ EXCITED-STATE POTENTIAL ENERGY SURFACES

14000 12000 10 NaF+H 10000 8 8000 V/cm-1 6000 6 Na *+ FH 4000 Energy/eV 4 2000 Na .. FH 0 Na+HF 2 1.5 Na...FH Na + FH + - 2.5 0.6 Na F + H 2 2.5 0.8 0 3.5 3 3.5 1 o R(F-H)/bohr o 4 1.4 1.2 4 6 8 4.5 R(Na-F)/A 4.5 R(F-H)/A 10 12 14 R(Na-F)/bohr

Examples of applications: dynamics of reactive collisions • highly excited and metastable ro-vibrational states of • rate constant calculations • collisional quenching of electronically excited molecular species • Motivation: elementary processes that occur in combustion (e.g., reactions involving • OH and NxOy) collisional quenching of the OH and other radical species • IN THIS PRESENTATION, WE FOCUS ON NEW “BLACK-BOX” COUPLED-CLUSTER METHODS FOR GROUND-STATE POTENTIAL ENERGY SURFACES

2 SINGLE-REFERENCE COUPLED-CLUSTER (CC) THEORY (J. Cˇ´ıˇzek, 1966, 1969; J. Cˇ´ıˇzek and J. Paldus, 1971)

mA (A) Ψ = eT Φ , T (A) = T | i | i k Xk=1 i a ij ab i1i2...ik a1a2...ak T1 Φ = t Φ , T2Φ = t Φ , Tk Φ = t Φ | i a| i i ab| ij i | i a1a2...ak | i1i2...ik i i i > j i1 > i2 > > i · · · k Xa Xa > b a1 > a2X> > a · · · k

mA = N – exact theory mA < N – approximate methods

2 4 2 2 mA = 2 T = T1 + T2 CCSD nonu (nonu) 3 5 3 3 mA = 3 T = T1 + T2 + T3 CCSDT nonu (nonu) 4 6 4 4 mA = 4 T = T1 + T2 + T3 + T4 CCSDTQ nonu (nonu)

PROBLEMS WITH THE STANDARD CC APPROXIMATIONS (A) mA (T = k=1 Tk, mA < N) P Example: N2 [K. Kowalski and P. Piecuch, J. Chem. Phys. 113, 5644 (2000); K. Kowalski and P. Piecuch, Chem. Phys. Lett. 344, 165 (2001); P. Piecuch, S.A. Kucharski, and K. Kowalski, ibid. 344, 176 (2001)]

−199.00 CCSD CCSD CCSD(T) −108.6 CCSD(T)

CCSD(TQf) CCSD(TQf) −199.02 CCSDT (practically exact) −108.7 CCSDT(Qf) Full CI CCSDT −199.04 −108.8

−108.9 −199.06

−109.0

Energy (hartree) −199.08 Energy (hartree) −109.1

−199.10 −109.2

−199.12 −109.3 2.0 3.0 4.0 5.0 6.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

R F−F (bohr) R N−N (bohr)

3 Existing solutions

Multi-Reference CC Methods (Jeziorski, Monkhorst, Paldus, Piecuch, • Bartlett, Mukherjee, Lindgren, Kaldor et al.) [also, Multi-Reference CI and MBPT Approaches; cf. the presentation by Professor Mark S. Gordon] State-Selective, Active-Space CC Methods (e.g., the CCSDt and CCSDtq • approaches of Piecuch et al.) Externally-Corrected CC Methods (e.g., the RMRCCSD approach of Pal- • dus and Li)

THE PROPOSED RESEARCH FOCUSES ON METHODS THAT COMBINE THE SIMPLICITY OF THE STANDARD SINGLE-REFERENCE CC APPROACHES, SUCH AS CCSD(T), WITH THE EFFICIENCY WITH WHICH THE MULTI-REFERENCE METHODS DESCRIBE GROUND- STATE POTENTIAL ENERGY SURFACES

SPECIFIC GOALS

New CC methods for ground-state potential energy surfaces: • – method of moments of CC equations – renormalized CC approaches

4 METHOD OF MOMENTS OF COUPLED-CLUSTER EQUATIONS: A NEW APPROACH TO THE MANY-ELECTRON CORRELATION PROBLEM A new relationship in quantum-mechanical theory of many-fermion (many-electron) systems

δ = E E(A) = Λ[Ψ; (j)(m ), j > m ] − MJ A A

E(A) – the electronic energy obtained using the approximate coupled- cluster calculations (e.g., CCSD) E – the exact energy (the exact eigenvalue of the electronic Hamil- tonian) Ψ – the exact wave function (j)(m ) - the generalized moments of coupled-cluster equations MJ A

EMMCC = E(A) + δMMCC

MMCC - the method of moments of coupled-cluster equations - provides us with fundamentally new ways of performing electronic structure calculations and renormalizing the failing standard tools of .

5 The MMCC Energy Formula (the Ground-State Problem)

N n (A) T (A) δ = E E = Ψ Qn Cn j(mA) Mj(mA) Φ / Ψ e Φ − h | − | i h | | i n=m +1 j=m +1 XA XA

T (A) T (A) Mj(mA) = HN e , Cn j(mA) = e C,j − n j     − T (A) (j) (j) Mj(mA) Φ = Qj HN e Φ = J (mA) ΦJ | i C | i M | i   XJ

(j) (j) T (A) J (mA) = ΦJ HN e Φ generalized moments of the CC equations M h | C | i −  

Approximate MMCC Methods: The MMCC(mA,mB) Approaches

mB n (A) T (A) E(mA, mB) = E + Ψ Qn Cn j(mA) Mj(mA) Φ / Ψ e Φ h | − | i h | | i n=m +1 j=m +1 XA XA

Various approximate forms of Ψ lead to different classes of MMCC(m , m ) schemes. | i A B

6 The MMCC(2,3), MMCC(2,4), and MMCC(3,4) Methods

E(2, 3) = ECCSD + Ψ Q M (2) Φ / Ψ eT1+T2 Φ h | 3 3 | i h | | i E(2, 4) = ECCSD + Ψ Q M (2) + Q [M (2) + T M (2)] Φ / Ψ eT1+T2 Φ h | 3 3 4 4 1 3 | i h | | i E(3, 4) = ECCSDT + Ψ Q M (3) Φ / Ψ eT1+T2+T3 Φ h | 4 4 | i h | | i

M (2) Φ = Q H eT1+T2 Φ = abc(2) Φabc 3 | i 3 N C | i Mijk | ijki  i

M (2) Φ = Q H eT1+T2 Φ = abcd(2) Φabcd 4 | i 4 N C | i Mijkl | ijkl i  i

M (3) Φ = Q H eT1+T2+T3 Φ = abcd(3) Φabcd 4 | i 4 N C | i Mijkl | ijkl i  i

abc(2) = Φabc H eT1+T2 Φ Mijk h ijk| N C | i  abcd(2) = Φabcd H eT1+T2 Φ Mijkl h ijkl | N C | i  abcd(3) = Φabcd H eT1+T2+T3 Φ Mijkl h ijkl | N C | i 

7 The MMCC(2,3)/CISDT, MMCC(2,3)/CISDt, MMCC(2,4)/CISDTQ, and MMCC(2,4)/CISDtq Methods

MMCC(2,3)/CISDT

ΨCISDT = (1 + C + C + C ) Φ | i 1 2 3 | i

MMCC(2,3)/CISDt (CISDt = active-space CISDT)

abC ΨCISDt = 1 + C + C + C Φ | i 1 2 3 Ijk | i   

MMCC(2,4)/CISDTQ

ΨCISDTQ = (1 + C + C + C + C ) Φ | i 1 2 3 4 | i

MMCC(2,4)/CISDtq (CISDtq = active-space CISDTQ)

abC abCD ΨCISDtq = 1 + C + C + C + C Φ | i 1 2 3 Ijk 4 IJkl | i     

8 The Renormalized and Completely Renormalized CCSD[T], CCSD(T), CCSD(TQ), and CCSDT(Q) Methods

MBPT(2)-like choices of Ψ lead to the renormalized (R) and completely renormalized (CR) CCSD[T], CCSD(T), CCSD(TQ), CCSDT(Q), etc. approaches. Here are some examples of these methods:

CR-CCSD(T) completely renormalized CCSD(T) ←

ΨCCSD(T) = 1 + T + T + R(3)(V T ) + R(3)V T Φ | i 1 2 0 N 2 C 0 N 1 | i CR CCSD(T) CCSD CCSD(T) CCSD(T) T +T E − = E + Ψ Q M (2) Φ / Ψ e 1 2 Φ h | 3 3 | i h | | i

R-CCSD(T) renormalized CCSD(T) ←

M (2) (V T ) 3 ≈ N 2 C,3 R CCSD(T) CCSD CCSD(T) CCSD(T) T +T E − = E + Ψ Q (V T ) Φ / Ψ e 1 2 Φ h | 3 N 2 C| i h | | i ↓ 1.0 CCSD(T) →

CR-CCSD(TQ)

ΨCCSD(TQ) = ΨCCSD(T) + 1T 2 Φ | i | i 2 2 | i

CR CCSD(TQ) CCSD CCSD(TQ) E − = E + Ψ Q M (2) h |{ 3 3 + Q [M (2) + T M (2)] Φ / ΨCCSD(TQ) eT1+T2 Φ 4 4 1 3 }| i h | | i

9 CR-CCSDT(Q)

ΨCCSDT(Q) = 1 + T + T + T + T T + 1T 2 Φ | i 1 2 3 1 2 2 2 | i CR CCSDT(Q) CCSDT CCSDT(Q) CCSDT(Q) T +T +T E − = E + Ψ Q M (3) Φ / Ψ e 1 2 3 Φ h | 4 4 | i h | | i

The (C)R-CCSD[T], (C)R-CCSD(T), (C)R-CCSD(TQ), and (C)R-CCSDT(Q) methods can be viewed as the extensions of the standard CCSD[T], CCSD(T),

CCSD(TQf), and CCSDT(Qf) methods, respectively. The computer costs of the (C)R-CCSD[T], (C)R-CCSD(T), (C)R-CCSD(TQ), and (C)R-CCSDT(Q) calculations are the same as the costs of the corresponding stan- dard CCSD[T], CCSD(T), (C)R-CCSD(TQ), and (C)R-CCSDT(Q) calculations. For example, the cost of calculating the noniterative (T) correction of the standard 3 4 CCSD(T) approximation is knonu. The costs of calculating the noniterative (T) 3 4 3 4 corrections of the R-CCSD(T) and CR-CCSD(T) methods are knonu and 2knonu, respectively.

10 Representative Results

−99.95

−199.00 CCSD CCSD(T) −108.6 CCSD(TQ ) CCSD −100.00 f CCSD(T) −199.02 CR−CCSD(T) −108.7 CCSD(TQ ) CR−CCSD(TQ) f CCSDT (practically exact) CR−CCSD(TQ) −199.04 −108.8 Full CI −100.05 CCSDT −108.9 −199.06 CR−CCSD[T] CR−CCSD(T) −109.0 −100.10 CCSD

Energy (hartree) −199.08 CCSD[T] −109.1 CCSD(T) Full CI −199.10 −100.15 HF F2 −109.2 N2

−199.12 −109.3 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 2.0 3.0 4.0 5.0 6.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 R (bohr) R (bohr) H−F R F−F (bohr) N−N

Selected vibrational energies G(v) (v is the vibrational quantum number) and dissociation 1 energies De (in cm− ) of the HF as described by the aug-cc-pVTZ basis set. The RKR represent total energies and all theoretically computed energies represent errors relative to RKR.

v RKR CCSD CCSDT CCSD(T) CCSD(TQf) R-CCSD(T) CR-CCSD(T) CR-CCSD(TQ)

0 2051 15 -7 -7 -7 -4 -3 -6 1 6012 52 -19 -18 -17 -9 -4 -16 2 9802 96 -28 -25 -23 -9 -2 -22 3 13424 144 -36 -32 -29 -9 2 -27 5 20182 252 -54 -47 -43 -6 12 -37 10 34363 623 -116 -136 -124 1 49 -70 11 36738 728 -131 -175 -159 1 60 -77 12 38955 850 -148 -232 -211 -2 72 -84 13 41007 993 -166 -9 87 -91 15 44576 1370 -207 -55 123 -109 19 49027 2881 -325 227 -159

De 49362 5847 -453 207 -156

11 The PES for the Be + FH BeF + H Reaction →

Full CI Results CCSD(T) Results

8 8 −0.5 −0.5

7 −0.8 7 −0.8

−0.89 −0.89 6 6 −0.905 −0.905

5 −0.92 5 −0.92

−0.931 −0.931 F−H 4 4 R (bohr) −0.96 −0.96

3 3 −0.99 −0.99

−1.02 −1.02 2 2

−1.05 −1.05 1.2 1.2 2 3 4 5 6 7 8 2 3 4 5 6 7 8

RBe−F (bohr) RBe−F (bohr)

Differences with Full CI for CCSD(T) CR−CCSD(T) Results 0.003 0.01 8 0 −0.5 −0.003 0 −0.006 7 −0.8 −0.009 −0.01 −0.89 −0.012 6 −0.015

Energy (hartree) −0.02 −0.905 −0.018 −0.021 5 −0.03 −0.92 2 −0.024 3 R (bohr)4 2 F−H 5 3 −0.027 6 5 4 7 6 −0.931 8 8 7

F−H R (bohr) 4 Be−F R (bohr) −0.96

3 Differences with Full CI for CR−CCSD(T) −0.99

0.003 −1.02 0.01 2 0

−0.003 −1.05 0 1.2 −0.006 2 3 4 5 6 7 8 −0.009 RBe−F (bohr) −0.01 −0.012

−0.015

Energy (hartree) −0.02 −0.018

−0.021 −0.03 2 −0.024 3 R (bohr)4 2 F−H 5 3 −0.027 6 5 4 7 6 8 8 7 R Be−F (bohr)

12 Future Work (Methods and Algorithms, Ground-State Problem)

Incorporation of the standard and renormalized CCSD(T), • CCSD(TQ), and CCSDT(Q) methods in GAMESS (years 1 and 2) Development of the ground-state MMCC schemes with the • non-perturbative choices of Ψ (years 1–3) Extensions of the MMCC and renormalized CC methods to • open-shell states and reference configurations of the ROHF type (years 2 and 3) Work with Professor Mark S. Gordon and coworkers on par- • allelizing the MMCC and renormalized CC methods within GAMESS (years 2 and 3)

Personnel: 3 (PI, 1 postdoc, 1 student) • Present computer resources: 2- and 32-CPU Origin systems • at MSU Collaborations: Professor Mark S. Gordon and coworkers at • Iowa State University and Ames Laboratory; also, Professor Stanisla w A. Kucharski (Silesian University) Expected computer needs: 55,000 MPP hours at NERSC •

13