A Review of Leptospermum Scoparium (Myrtaceae) in New Zealand

Total Page:16

File Type:pdf, Size:1020Kb

A Review of Leptospermum Scoparium (Myrtaceae) in New Zealand New Zealand Journal of Botany ISSN: 0028-825X (Print) 1175-8643 (Online) Journal homepage: http://www.tandfonline.com/loi/tnzb20 A review of Leptospermum scoparium (Myrtaceae) in New Zealand J. M. C. Stephens , P. C. Molan & B. D. Clarkson To cite this article: J. M. C. Stephens , P. C. Molan & B. D. Clarkson (2005) A review of Leptospermum scoparium (Myrtaceae) in New Zealand, New Zealand Journal of Botany, 43:2, 431-449, DOI: 10.1080/0028825X.2005.9512966 To link to this article: http://dx.doi.org/10.1080/0028825X.2005.9512966 Published online: 17 Mar 2010. Submit your article to this journal Article views: 1624 View related articles Citing articles: 22 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tnzb20 Download by: [119.224.93.141] Date: 13 December 2016, At: 11:44 New Zealand Journal of Botany, 2005, Vol. 43: 431–449 431 0028-825X/05/4302-0431 © The Royal Society of New Zealand 2005 A review of Leptospermum scoparium (Myrtaceae) in New Zealand J. M. C. STEPHENS Keywords Myrtaceae; Leptospermum scoparium; P. C. MOLAN manuka; tea tree; New Zealand; taxonomy; chemo- taxonomy; ecology; history; ornamental; essential B. D. CLARKSON oils; honey; pharmacology Department of Biological Sciences University of Waikato Private Bag 3105 Hamilton, New Zealand INTRODUCTION [email protected] Information about Leptospermum scoparium is spread throughout much literature. L. scoparium is the most widespread and important indigenous shrub Abstract Information about Leptospermum sco- species in New Zealand, and has probably undergone parium (Myrtaceae), the most widespread and im- the most varied development as an economic plant in portant New Zealand indigenous shrub species, is the indigenous flora. Bibliographies compiled by Or- reviewed. L. scoparium is a variable species, requir- win ( 1974) and Williams (1981) provide background ing more study of the genetically based differences material to this review. Whilst all material that refers between New Zealand populations and the affinity to L. scoparium in passing has not been included, of these populations to Australian populations and each section draws upon the principal publications. other closely allied Australian species. Improved Chemical control aspects are not included. understanding of the species' variation will assist The taxonomy, morphology, distribution, habi- both its conservation roles and economic uses, and tats and plant communities, and other biological the need to sustain genetically distinct varieties is associations in which it occurs are considered here, emphasised. Ecologically, the species has a dominant along with its historic and current uses as a source role in infertile and poorly drained environments, of essential oils and honey, and for ornamental shrub and a wider occurrence as a seral shrub species in development. The majority of early research consid- successions to forest where it may be regarded as a ered the ecological position of L. scoparium, either woody weed of pasture or a useful species for ero- as a dominant species where environmental stress is sion control, carbon sesquestration, and vegetation extreme, or as a seral species in disturbed habitats restoration. The main economic products derived where the species was recognised as a significant from the species are ornamental shrubs, essential weed of recently cleared forest for pasture develop- oils, and honey. The species' development as an ment. Recognition of the genetic and phenotypic ornamental plant and further definition of the phar- variation exhibited by the species led to studies macologically active components are recommended isolating various components of this diversity, rang- as priority areas for research. ing from morphological to chemotaxonomic treat- ments. Commercial development as an ornamental shrub and the identification of medicinal essential oil and honey components have motivated most of the recent research, and a collation of this material is warranted. We consider it timely to review the biology of L. scoparium as a basis for further economic develop- B04037; Online publication date 5 May 2005 ment of the species and conservation of genetic Received 16 September 2004; accepted 29 March 2005 variation. 432 New Zealand Journal of Botany, 2005, Vol. 43 BIOLOGY AND ECOLOGY of L. scoparium also support the species genus clas- sification. Taxonomy, morphology, anatomy, cytology A comprehensive taxonomic revision of the genus Leptospermum scoparium J.R. et G.Forst. (manuka, Leptospermum listed 79 species (Thompson 1989), kahikatoa, tea tree, red tea tree) is a member of the which has been increased to 83 with later additions Myrtaceae. This family contains at least 133 genera (Dawson 1997a). L. scoparium is one of 13 species and more than 3800 species, and has evolutionary included in the Leptospermum myrtifolium subgroup, centres in Australia, Southeast Asia, and Central the defining characteristics of which are deciduous and temperate South America. Myrtaceae are char- sepals and persistent strongly wooded fruit-valves acterised by a half-inferior to inferior ovary, usu- (Thompson 1989). The Australian species within ally numerous stamens, entire leaves containing oil this sub-group are extremely difficult to define; L. glands, internal phloem, and vestured pits on the continentale and L. rotundifolium were recently xylem vessels (Wilson et al. 2001). elevated by Thompson (1989) from L. scoparium Until recently Myrtaceae was divided into two varieties to species rank. The species L. juniperi- subfamilies, the capsular Leptospermoideae and the num and L. squarrosum have both been recorded as fleshy-fruited Myrtoideae. An extensive review of varieties ofL. scoparium (Thompson 1989), and the the Myrtaceae inflorescence structure confirmed this endemic TasmanianL. scoparium var. eximium could division; the Leptospermoideae contained seven al- be considered to warrant species status, displaying liances including the Leptospermum alliance, which lignotuber development which is not found in New was further subdivided into the Leptospermum and Zealand's L. scoparium (Bond et al. 2004). Calothamnus suballiances (Briggs & Johnson 1979). Initially three species of Leptospermum were re- However, cladistic analysis of morphological and corded as endemic to New Zealand; the widespread anatomical characters concluded that the subfamilies Leptospermum scoparium and L. ericoides, and L. should be discarded, as the fleshy-fruited Acmena sinclairii restricted to Great Barrier Island (Allan alliance did not group within the Myrtoideae sub- 1961). Revision of Leptospermum led to the transfer family (Johnson & Briggs 1984). A cladistic re- of L. ericoides to Kunzea as K. ericoides (A.Rich.) evaluation of non-molecular characters confirmed J.Thompson (Thompson 1983). L. sinclairii was a high level of homoplasy within Myrtaceae and included in synonomy to this species, and a new limited support for any clade (Wilson et al. 1994). name combination of K. sinclairii (Kirk) W.Harris Molecular analysis placed further doubt on the was later published without supporting material traditional taxonomic groupings. Sequences of the (Connor & Edgar 1987). Accordingly, L. scoparium chloroplast matK gene analysed in association with is now considered to be the only indigenous member nonmolecular data revealed that the Leptospermum of Leptospermum in New Zealand. The species is alliance was polyphyletic and, thus, an invalid taxo- not endemic to New Zealand as indicated by Allan nomic concept (Wilson et al. 2001). The sequencing (1961), as it also occurs naturally in mainland Aus- of two chloroplast regions for 31 species within the tralia from the southern coast of New South Wales Leptospermum suballiance revealed a monophyletic to western Victoria and is widespread in Tasmania grouping of eight genera and the suballiance was (Thompson 1989). considered a valid taxonomic unit (O'Brien et al. The time of arrival of L. scoparium in New Zea- 2000). However, the same study concluded that land is uncertain. Leptospermum pollen has been Leptospermum is polyphyletic and should be divided dated to the Paleocene (Fleming 1975), though the into at least four genera: the persistent-fruit group, representatives in the upper Cretaceous and older the East Australian non-persistent-fruit and West Tertiary beds should be interpreted to represent type Australian non-persistent-fruit groups, and Lept- pollen and not individual species (Couper 1953, ospermum spinescens separated as a fourth genus. 1960). Thompson (1989) suggested that Leptosper- L. scoparium was not included in this analysis but mum may have originated in the dry Miocene con- its fruit morphology allies it to the persistent-fruit ditions in Australia and that L. scoparium dispersal group. to New Zealand occurred relatively recently, as the Analysis of leaf anatomy of 40 species of Lept- species is not a primitive Leptospermum and cannot ospermum showed that L. scoparium has the typi- have been present earlier in New Zealand. War- cal xeromorphic structure of the genus (Johnson dle (1991) recorded L. scoparium as the only New 1980). The wood anatomy (Johnson 1984; Patel Zealand species to release seed overwhelmingly in 1994) and the pollen morphology (McIntyre 1963) concert after fire, a serotinous feature common in the Stephens et al.—Review of Leptospermum scoparium in NZ 433 Australian flora. Further evidence for the recent evo- but two triploid and one
Recommended publications
  • Indigenous Plants of Bendigo
    Produced by Indigenous Plants of Bendigo Indigenous Plants of Bendigo PMS 1807 RED PMS 432 GREY PMS 142 GOLD A Gardener’s Guide to Growing and Protecting Local Plants 3rd Edition 9 © Copyright City of Greater Bendigo and Bendigo Native Plant Group Inc. This work is Copyright. Apart from any use permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the City of Greater Bendigo. First Published 2004 Second Edition 2007 Third Edition 2013 Printed by Bendigo Modern Press: www.bmp.com.au This book is also available on the City of Greater Bendigo website: www.bendigo.vic.gov.au Printed on 100% recycled paper. Disclaimer “The information contained in this publication is of a general nature only. This publication is not intended to provide a definitive analysis, or discussion, on each issue canvassed. While the Committee/Council believes the information contained herein is correct, it does not accept any liability whatsoever/howsoever arising from reliance on this publication. Therefore, readers should make their own enquiries, and conduct their own investigations, concerning every issue canvassed herein.” Front cover - Clockwise from centre top: Bendigo Wax-flower (Pam Sheean), Hoary Sunray (Marilyn Sprague), Red Ironbark (Pam Sheean), Green Mallee (Anthony Sheean), Whirrakee Wattle (Anthony Sheean). Table of contents Acknowledgements ...............................................2 Foreword..........................................................3 Introduction.......................................................4
    [Show full text]
  • Predation As a Primary Limiting Factor: a Comparison of the Effects of Three Predator Control Regimes on South Island Robins (Petroica Australis) in Dunedin, NZ
    Predation as a primary limiting factor: A comparison of the effects of three predator control regimes on South Island robins (Petroica australis) in Dunedin, NZ. A thesis submitted for the degree of Master of Science at the University of Otago, Dunedin, New Zealand Michael Alexander Terence Jones 10/02/2016 1 ACKNOWLEDGEMENTS I would like to thank Ian Jamieson for his tireless efforts as my supervisor, mentor and friend. He provided me with an opportunity to work in some of the most remarkable places in New Zealand with some of its most treasured species. He also enabled me to contribute to the field of zoology, one I have been passionate about since as early as I can remember. Without Ian’s support and guidance none of this could have been achieved. I would also like to thank Yolanda van Heezik and Phil Seddon for their willingness to take me and the robin project on after Ian’s passing. They have worked tirelessly to help me mould my thoughts and writing into a legible thesis and I will be forever grateful for their help. This research would not have been achievable without the dedication and hard work of all the field workers and volunteers over the years. I would like to thank Leon ‘Leroy Bernard’ Berard, Jamie Cooper, Fiona Gordon, Tracy Dearlove, Rebecca McMillan and Luke Easton for all the long hours they spent watching countless robins. A special thanks to Sam Ray for organising everything and making sure all the equipment was available and booked and putting up with Leon and myself over the long summer period.
    [Show full text]
  • NLM Leptospermum Lanigerum – Melaleuca Squarrosa Swamp Forest
    Vegetation Condition Benchmarks version 3 Non-Eucalypt Forest and Woodland NLM Leptospermum lanigerum – Melaleuca squarrosa swamp forest Community Description: Leptospermum lanigerum – Melaleuca squarrosa swamp forests dominated by Leptospermum lanigerum and/or Melaleuca squarrosa are common in the north-west and west and occur occasionally in the north-east and east where L. lanigerum usually predominates. There are also extensive tracts on alluvial flats of the major south-west rivers. The forests are dominated by various mixtures of L. lanigerum and M. squarrosa but with varying lesser amounts of various species of Acacia and rainforest species also present. Trees are usually > 8 m in height. Benchmarks: Length Component Cover % Height (m) DBH (cm) #/ha (m)/0.1 ha Canopy 70% - - - Large Trees - 10 25 800 Organic Litter 40% - Logs ≥ 10 - 20 Large Logs ≥ 12.5 Recruitment Episodic Understorey Life Forms LF code # Spp Cover % Tree or large shrub T 4 20 Medium shrub/small shrub S 3 15 Herbs and orchids H 5 5 Grass G 1 1 Large sedge/rush/sagg/lily LSR 1 1 Medium to small sedge/rush/sagg/lily MSR 2 1 Ground fern GF 2 5 Tree fern TF 1 5 Scrambler/Climber/Epiphytes SCE 2 5 Mosses and Lichens ML 1 20 Total 10 22 Last reviewed – 5 July 2016 Tasmanian Vegetation Monitoring and Mapping Program Department of Primary Industries, Parks, Water and Environment http://www.dpipwe.tas.gov.au/tasveg NLM Leptospermum lanigerum – Melaleuca squarrosa swamp forest Species lists: Canopy Tree Species Common Name Notes Leptospermum lanigerum woolly teatree Melaleuca
    [Show full text]
  • BIOACTIVE LEPTOSPERMUM for GIPPSLAND Rob Waddell Grand Ridge Propagation WHO ARE WE?
    BIOACTIVE LEPTOSPERMUM FOR GIPPSLAND Rob Waddell Grand Ridge Propagation WHO ARE WE? • Grand Ridge Propagation nursery • Based at Seaview, south of Warragul • We have sheep, cattle, a nursery and more recently a bee hive (or 2) • 2017 production about 120,000 native seedlings, planting about 30,000 Which species have potential for Gippsland? Leptospermum scoparium (Manuka) • Grows 3-5m • Flowers November/December • Seed sourced from New Zealand’s North and South islands from wild populations producing MGO 300 to 500 honey Leptospermum polygalifolium ssp polygalifolium (Jelly Bush) • Grows 3-7m • Flowers November/December • Seed sourced from southern NSW Leptospermum lanigerum (Woolly tea tree) • Grows 3-7m • Flowers October/November • Seed sourced locally (test results to come) • Tolerates extremely wet and boggy conditions Leptospermum continentale (Prickly tea tree) • Grows 3-5m • Flowers January/February • Seed sourced locally (test results to come) Some of the key factors for success • Level of genetic bioactivity of the seedlings • Nectar yield-massive flower production • Plant density • Principal nectar source for foraging bees Planting densities for Gippsland What is your end goal? • WINDBREAKS • PLANTATIONS • Tea tree only plant 2m apart • Grazing sheep or slashing grass • Mix species winbreaks (tea tree, plant 5 to 6m apart or 400 to eucalypts etc) plant 3m apart 300 plants/ha • Full coverage of site plant 2 to 3m apart or 2500 to 1150 plants/ha HONEY! • Takes 12 to 18 months to reach peak bioactivity • Can be difficult to extract, could have implications for flow hives? • Potential yields up to 40kg/hive with 1 to 4 hives/ha (New Zealand data) Other considerations • Flowering takes 3 to 4 years from planting depending on site • Ensure species is suitable for the site • Soil types, waterlogging, coastal exposure • Aspect • Shading QUESTIONS?.
    [Show full text]
  • Is Kanuka and Manuka Establishment in Grassland Constrained by Mycorrhizal Abundance?
    172 AvailableNew on-lineZealand at: Journal http://www.newzealandecology.org/nzje/ of Ecology, Vol. 37, No. 2, 2013 Is kanuka and manuka establishment in grassland constrained by mycorrhizal abundance? Murray Davis1*, Ian A. Dickie2, Thomas Paul3 and Fiona Carswell2 1Scion, PO Box 29237, Christchurch 8540, New Zealand 2Landcare Research, PO Box 69040, Lincoln 7640, New Zealand 3Scion, Private Bag 3020, Rotorua 3046, New Zealand *Author for correspondence ([email protected]) Published online: 14 May 2013 Abstract: Two indigenous small tree and shrub species, kanuka (Kunzea ericoides) and manuka (Leptospermum scoparium), have potential as reforestation species in New Zealand as they are forest pioneer species that can invade grassland naturally from present seed sources. The aim of this study was to determine if establishment of kanuka and manuka from seed in grassland distant from stands of these species might be constrained by lack of appropriate mycorrhizal fungi. Both species were grown in an unsterilised grassland soil from a low- productivity montane site assumed to be devoid of appropriate mycorrhizal fungi and inoculated with sterilised or unsterilised O-horizon or mineral soil from beneath three kanuka and three manuka communities expected to contain such fungi. Inoculation with unsterilised O-horizon soil improved kanuka biomass by 36–92%, depending on the source of the inoculant. Inoculation did not improve manuka biomass. No ectomycorrhizal infection was observed on either kanuka or manuka in samples examined under binocular microscope. The biomass response by kanuka to inoculation may be due to introduction of more effective arbuscular mycorrhizal fungi from kanuka communities or possibly to the introduction of soil microorganisms.
    [Show full text]
  • Coastal Tea-Tree
    DECLARED PLANT WHY IS IT A PROBLEM? Coastal tea-tree is often COASTAL TEA-TREE incorrectly assumed to be native to South Australia, and was planted widely last century as an Leptospermum laevigatum amenity plant on exposed coastal sites. It spreads from plantings Coastal tea-tree is a shrub or small tree, native to the into the adjoining native east coast of Australia. vegetation, particularly after fires. It is an invasive plant outside Coastal tea-tree is declared under the DESCRIPTION its natural range in southern Natural Resources Management Act Habit: Shrub or multi-trunked tree 2-5 m Australia, as well as North 2004. Its sale is prohibited, and control tall, with spreading branches and papery America and South Africa. Coastal may be enforced in the South East and brown bark that becomes thick and grey tea-tree is highly flammable and Kangaroo Island NRM regions. on the trunk. may increase fire risk. Other common names: Victorian tea- Leaves: Blue-green or grey-green, tree, Australian myrtle, coast tea-tree, tea obovate, blunt or with a tiny point at the tree. tip, 1-3 cm long, with silky hairs when developing but soon becoming hairless. Family: Myrtaceae. They smell like eucalyptus when crushed. Synonyms: Fabricia laevigata, Fabricia Flowers: 1.5-2 cm wide, in pairs on short myrtifolia. stalks in the axils of leaves. Petals 5, white, Origin: eastern Australia. Introduced as an rounded, 5-9 mm long, widely spaced ornamental and amenity tree as it is easily around a green cup-shaped receptacle. grown and recognised as an Australian Stamens numerous, c.
    [Show full text]
  • Alsip Home and Nursery Helene Strybing Tea-Tree
    Helene Strybing Tea-Tree* Leptospermum scoparium 'Helene Strybing' Height: 10 feet Spread: 10 feet Sunlight: Hardiness Zone: 9 Other Names: Manuka, New Zealand Tea-Tree Description: Pretty, pink apple-blossom flowers and nice foliage make this drought tolerant plant a lovely hedge or utility plant on dry sites; prune to avoid seed from spreading; flowering stems make nice cutflowers; not to be confused with Melaleuca, Tea-Tree Helene Strybing Tea-Tree flowers Photo courtesy of NetPS Plant Finder Ornamental Features Helene Strybing Tea-Tree is covered in stunning pink flowers along the branches from late spring to early summer. The flowers are excellent for cutting. It has attractive grayish green foliage. The small narrow leaves are highly ornamental and remain grayish green throughout the winter. The fruit is not ornamentally significant. Landscape Attributes Helene Strybing Tea-Tree is a dense multi-stemmed evergreen shrub with an upright spreading habit of growth. Its relatively fine texture sets it apart from other landscape plants with less refined foliage. This is a relatively low maintenance shrub, and should only be pruned after flowering to avoid removing any of the current season's flowers. It has no significant negative characteristics. Helene Strybing Tea-Tree is recommended for the following landscape applications; - Mass Planting - Hedges/Screening Helene Strybing Tea-Tree in bloom - General Garden Use Photo courtesy of NetPS Plant Finder - Container Planting Planting & Growing Helene Strybing Tea-Tree will grow to be about 10 feet tall at maturity, with a spread of 10 feet. It tends to be a little leggy, with a typical clearance of 1 foot from the ground, and is suitable for planting under power lines.
    [Show full text]
  • Leptospermum — a New Image 55
    Leptospermum — A New Image 55 Leptospermum — A New Image© John Seelye, Bev Hofmann, Garry Burge, and Ed Morgan New Zealand Institute for Crop & Food Research Ltd, Private Bag 11600, Palmerston North Ross Bicknell New Zealand Institute for Crop & Food Research Ltd, Private Bag 4704, Christchurch INTRODUCTION The genus Leptospermum contains more than 70 species that are endemic to Southeast Asia, Australia, and New Zealand. The majority of species are endemic to Australia (Thompson, 1983; 1989). New Zealand has only one species, L. scoparium, which is also endemic to New South Wales, Victoria, and Tasmania. Selected forms of several species are sold in the nursery trade. However, only L. scoparium has been extensively bred as a garden plant (Dawson, 1990). More than 100 cultivars of L. scoparium have been named, but less than 30 cultivars have been bred from all the other species (Harris et al., 1995). Flower colour of L. scoparium ranges from white to pink, to crimson, with both single- and double-flowered types, and plant forms from upright to prostrate. The genetic base of these L. scoparium cultivars is quite narrow. The red petal colour of most cultivars appears to have been derived from 2 or 3 wild accessions (Harrison, 1974). Most of the original breeding of L. scoparium was conducted by Lammerts (1945) in California. He crossed a red-petaled cultivar, L. scoparium ‘Nichollsii’, with a pale-pink double-flowered cultivar, L. scoparium ‘Rose Double’, and subsequent populations of this breeding were generated by selfing or intercross- ing their progeny. This possibly explains why there is little variation in many characteristics, such as cold tolerance, in the main cultivars despite this variation in wild ecotypes (Harris and Decourtye, 1991).
    [Show full text]
  • The Manuka & Kanuka Plantation Guide
    The Mānuka & KānukaPlantation Guide April 2017 ACKNOWLEDGEMENTS PREPARATION OF THE GUIDE WAS MADE POSSIBLE THROUGH FUNDING FROM THE FOLLOWING ORGANISATIONS. WE ARE ALSO GRATEFUL TO THE INTERVIEWEES WITHOUT WHOM THIS GUIDE WOULD NOT HAVE DELIVERED THE REAL-WORLD DATA, INSIGHTS, AND INFORMATION NEEDED. THANKS ALSO TO THE MANY BOFFA MISKELL LTD STAFF WHO GENEROUSLY SHARED THEIR EXPERTISE AND COSTS INFORMATION. DOCUMENT QUALITY ASSURANCE BIBLIOGRAPHIC REFERENCE FOR CITATION: BOFFA MISKELL LIMITED 2017. THE MĀNUKA & KĀNUKA PLANTATION GUIDE: PREPARED BY: LOUISE SAUNDERS, BOFFA MISKELL LIMITED INTERVIEWS BY: MATTHEW LAY REVIEWED BY: STEPHEN FULLER, BOFFA MISKELL LIMITED DON SHEARMAN, TARANAKI DISTRICT COUNCIL GRANT BLACKIE, WAIKATO REGIONAL COUNCIL ISSUE DATE: APRIL 2017 USE AND RELIANCE THIS REPORT HAS BEEN PREPARED BY BOFFA MISKELL LIMITED ON THE BASIS OF THE INFORMATION AVAILABLE TO US AT THE TIME OF PUBLICATION. BOFFA MISKELL DOES NOT ACCEPT ANY LIABILITY OR RESPONSIBILITY IN RELATION TO THE USE OF THIS REPORT. ANY USE OR RELIANCE BY A THIRD PARTY IS AT THAT PARTY’S OWN RISK. WHERE INFORMATION HAS BEEN OBTAINED FROM OTHER EXTERNAL SOURCES, IT HAS BEEN ASSUMED THAT IT IS ACCURATE, WITHOUT INDEPENDENT VERIFICATION, UNLESS OTHERWISE INDICATED. NO LIABILITY OR RESPONSIBILITY IS ACCEPTED BY BOFFA MISKELL LIMITED FOR ANY ERRORS OR OMISSIONS. FILE REF:T15144_MANUKA PLANTING_GUIDELINE_FINAL THE MAJORITY OF THE PLATES IN THIS DOCUMENT WERE TAKEN BY LOUISE SAUNDERS (BOFFA MISKELL), OTHER THAN THE FOLLOWING: PLATE 44 - REBECCA RYDER (BOFFA MISKELL), PLATE 56 - MARCUS GIRVEN (BOFFA MISKELL), PLATES 50 - 53 AND 55 - MATTHEW LAY, AND THE IMAGES THAT APPEAR ON PAGES 26 - 31 WERE PROVIDED BY SVEN STELLIN Table of Contents 1.
    [Show full text]
  • Developing Leptospermum for Cut Flowers
    Developing leptospermum for cut flowers APRIL 2014 RIRDC Publication No. 13/102 Developing Leptospermum for cut flowers by Anthony T. Slater, John D. Faragher, Slobodan Vujovic, Fran Richardson, Geoff Kelly, Peter Franz and MaryAnne Blakemore April 2014 RIRDC Publication No 13/102 RIRDC Project No DAV-184A © 2014 Rural Industries Research and Development Corporation. All rights reserved. ISBN 978-1-74254-595-0 ISSN 1440-6845 Developing Leptospermum for cut flowers Publication No. 13/102 Project No. DAV-184A The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication. This publication is copyright. Apart from any use as permitted under the Copyright Act 1968, all other rights are reserved.
    [Show full text]
  • TAXON:Leptospermum Polygalifolium Salisb. SCORE:15.0 RATING:High
    TAXON: Leptospermum SCORE: 15.0 RATING: High Risk polygalifolium Salisb. Taxon: Leptospermum polygalifolium Salisb. Family: Myrtaceae Common Name(s): tantoon Synonym(s): Leptospermum flavescens Sm. yellow tea tree Assessor: Chuck Chimera Status: Assessor Approved End Date: 7 Aug 2018 WRA Score: 15.0 Designation: H(Hawai'i) Rating: High Risk Keywords: Shrub, Naturalized, Environmental Weed, Dense Stands, Wind-Dispersed Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 y Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 y outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 y 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) n 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) n 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) y 305 Congeneric weed n=0, y = 1*multiplier (see Appendix 2) y 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals 405 Toxic to animals y=1, n=0 n 406 Host for recognized pests and pathogens 407 Causes allergies or is otherwise toxic to humans y=1, n=0 n 408 Creates a fire hazard in natural ecosystems 409 Is a shade tolerant plant at some stage of its life cycle Creation Date: 7 Aug 2018 (Leptospermum Page 1 of 17 polygalifolium Salisb.) TAXON: Leptospermum SCORE: 15.0 RATING: High Risk polygalifolium Salisb.
    [Show full text]
  • Understanding Leptospermum from Leptospermum Scoparium
    , where an orange is different to a lemon, scoparium honey. While this difference would not be readily identified Leptospermum scoparium is different to all the other species that come by consumers, the nutritional values between the two honeys would be under the broader Leptospermum genus. expected to differ as there are significant differences in the protein and In Australia, there are many other much more common lipid composition of pollens collected from various plant species. Leptospermum species growing amongst the Leptospermum scoparium plants, Considerable work has been completed on the chemical profiles of including those in Tasmania. It is highly unlikely that honeybees would Australian and New Zealand honeys. This means that it is reasonably differentiate between theLeptospermum species and selectively target straightforward to distinguish the two honey types. Of particular Leptospermum scoparium. interest is the elevated levels of 2-methoxybenzoic acid which is Mānuka When compared side by universally found in side, the honey derived from Australian Leptospermum predominantly Leptospermum “There are easily recognizable honeys. It is a well-known scoparium – the Mānuka bittering agent used by tree – in New Zealand is physical and visual differences” the food manufacturing very different to the honey industries. In fact, research derived from the collection of shows that the standard Honey Australian Leptospermum plants. There are easily recognizable physical consumer response to consuming Australian Leptospermum honey is and visual differences, along with chemical and, very probably, one of distaste due to a strong bitter flavour. A review of Australian bioactive differences. beekeepers’ journals demonstrates that their Leptospermum honey, The physical and visual differences are perhaps the easiest to historically called tea-tree or jellybush honey, was not a sought-after or understanding Leptospermum spot.
    [Show full text]