A Revision of the Ahermatypic Scleractinia of the Philippine Islands and Adjacent Waters, Part 1

Total Page:16

File Type:pdf, Size:1020Kb

A Revision of the Ahermatypic Scleractinia of the Philippine Islands and Adjacent Waters, Part 1 * A Revision of the Ahermatypic Scleractinia of the Philippine Islands and Adjacent Waters, Part 1: Fungiacyathidae, Micrabaciidae, Turbinoliinae, Guyniidae, and Flabellidae STEPHEN D. CAIRNS I SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 486 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Folklife Studies Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world of science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review. Press requirements for manuscript and art preparation are outlined on the inside back cover. Robert McC. Adams Secretary Smithsonian Institution SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 486 A Revision of the Ahermatypic Scleractinia of the Philippine Islands and Adjacent Waters, Part 1: Fungiacyathidae, Micrabaciidae, Turbinoliinae, Guyniidae, and Flabellidae Stephen D. Cairns SMITHSONIAN INSTITUTION PRESS Washington, D.C. 1989 ABSTRACT Cairns, Stephen D. A Revision of the Ahermatypic Scleractinia of the Philippine Islands and Adjacent Waters, Part 1: Fungiacyathidae, Micrabaciidae, Turbinoliinae, Guyniidae, and Flabellidae. Smithsonian Contributions to Zoology, number 486,136 pages, 3 figures, 42 plates, 1989.—Fifty-three species of ahermatypic Scleractinia—about half of the Philippine aher- matypic fauna—belonging to four families and one subfamily are described and illustrated. Five additional species found in adjacent waters just north of the Philippines are also included in the faunistic revision. In order to better evaluate the genus Leptopenus, L. antarcticus, from Antarctica, is also included in this revision as a new species, making a total of 59 species revised. Concurrent with the species revision, higher-level taxa were reanalyzed and revised, resulting in the description of four new genera: Endocyathopora, Thrypticotrochus, Truncatoguynia, and Truncatoflabellum and 17 new species; the formation of 13 new species combinations; and the establishment of two new subgeneric ranks: Fungiacyathus (Bathyactis) and Flabellum (Ulocyathus). To help stabilize the nomenclature of taxonomically confusing species, neotypes were designated for two species: Flabellum (= Truncatoflabellum) cumingii and Flabellum (= Truncatoflabellum) candeanum; and lectotypes were chosen for four other species: Bathyactis (= Fungiacyathus) sibogae, Flabellum pavoninum, Flabellum distinctum, and Flabellum patens. Approximately 4400 specimens were examined from 178 stations throughout the Philippines, as well as most of the previously reported specimens from this area. A historical resume is given of previous literature on ahermatypic Scleractinia in the Philippine Islands. Character tables or keys are provided for the genera of Micrabaciidae, Turbinoliinae, Guyniidae, and Flabellidae, and character tables are provided for the Philippine species of Fungiacyathus, Stephanophyllia, Flabellum (Flabellum), and Truncatoflabellum. The Philippine Islands and Indonesia, especially the Sulu Sea, are considered to be at or near the center of ahermatypic species diversity and thus represent the most diverse ahermatypic fauna in the world. East and west of the Philippines the number of species held in common falls rapidly, but relatively high percentages of shared species are found to the north: 30%-32% for the South China Sea off Hong Kong, and 36%-38% for off Japan. The highest number of shared species, however, is with Indonesia (25-27 species, 47%-51%), with which the Philippines probably forms a zoogeographic unit Of the 53 species reported from the Philippines, 27 are new records for this island group. OFFICIAL PUBLICATION DATE is handstamped in a limited number of initial copies and is recorded in the Institution's annual report, Smithsonian Year. SERIES COVER DESIGN: The coral Montastrea cavernosa (Linnaeus). Library of Congress Cataloging in Publication Data Cairns, Stephen. A revision of the ahermatypic Scleractinia of the Philippine Islands and adjacent waters / Stephen D. Cairns. p. cm.—(Smithsonian contributions to zoology ; no. 486- ) Contents: pc 1. Fungiacyathidae, Micrabaciidae, Turbinoliinae, Guyniidae, and Flabellidae. 1. Scleractinia—Philippines—Classification. I.Titlc. II. Title: Ahermatypic Scleractinia of the Philippine Islands and adjacent waters. III. Series. IV. Series: Smithsonian contributions to zoology ; no. 486, etc. QLl.S54no. 486, etc. [QL377.C7] 591 s-dc20 Contents Page Epigraph vi Introduction 1 Abbreviations 1 Acknowledgments 2 Historical Resume 2 Material 3 Methods 4 Order SCLERACTINIA Bourne, 1900 5 Suborder FUNGIINA Verrill, 1865 5 Superfamily FUNGIICAE Dana, 1846 5 Family FUNGIACYATHIDAE Chevalier, 1987 5 Fungiacyathus Sars, 1872 5 Key 1: The Six Species of Fungiacyathus Known from the Philippine Islands 6 Subgenus Fungiacyathus (Fungiacyathus) Sars, 1872, new rank ... 6 1. Fungiacyathus (F.) stephanus (Alcock, 1893) 7 2. Fungiacyathus (F.) paliferus (Alcock, 1902) 9 Fungiacyathus (Bathyactis) Moseley, 1881, new rank 10 3. Fungiacyathus (B.) sibogae (Alcock, 1902) 10 4. Fungiacyathus (B.) granulosus, new species 11 5. Fungiacyathus (B.) variegatus, new species 11 6. Fungiacyathus (B.) turbinolioides, new species 12 Family MICRABACIIDAE Vaughan, 1905 13 Key 2: The Genera of Micrabaciidae 13 Leptopenus Moseley, 1881 14 7. Leptopenus species A 14 Leptopenus antarcticus, new species 15 Letepsammia Yabe and Eguchi, 1932 15 8. Letepsammia formosissima (Moseley, 1876) 15 Rhombopsammia Owens, 1986 18 9. Rhombopsammia squiresi Owens, 1986 18 10. Rhombopsammia niphada Owens, 1986 19 Stephanophyllia Michelin, 1841 21 11. Stephanophyllia fungulus Alcock, 1902 21 12. Stephanophyllia neglecta Boschma, 1923 23 Suborder CARYOPHYLLIINA Vaughan and Wells, 1943 24 Superfamily CARYOPHYLLUCAE Dana, 1846 24 Family CARYOPHYLLJIDAE Dana, 1846 24 Subfamily TURBINOUINAE Milne Edwards and Haime, 1848 24 Key 3: The Genera of Turbinoliinae 25 Notocyathus Tbnison-Woods, 1880 26 13. Notocyathus venustus (Alcock, 1902), new combination .... 27 14. Notocyathus conicus (Alcock, 1902) 28 Peponocyathus Gravier, 1915 28 15. Peponocyathus australiensis (Duncan, 1870), new combin- ation 30 ui IV SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY 16. Peponocyathus folliculus (Pourtalfcs, 1868) 32 Tropidocyathus Milne Edwards and Haime, 1848 33 17. Tropidocyathus lessoni (Michelin, 1842) 33 18. Tropidocyathus pilots (Alcock, 1902), new combination ... 34 Idiotrochus Wells, 1935 35 19. Idiotrochus kikutii (Yabe and Eguchi, 1941), new combin- ation 36 Thrypticotrochus, new genus 37 20. Thrypticotrochus multilobatus, new species 37 Sphenotrochus Milne Edwards and Haime, 1848 37 Subgenus Sphenotrochus (Sphenotrochus) Milne Edwards and Haime, 1848 38 21. Sphenotrochus (S.) hancocki Durham and Barnard, 1952 ... 38 Endocyathopora, new genus 39 22. Endocyathopora laticostata, new species 39 Superfamily FLABELLICAE Bourne, 1905 40 Family GUYNIIDAE Hickson, 1910 40 Guynia Duncan, 1872 40 23. Guynia annulata Duncan, 1872 42 Truncatoguynia, new genus 42 24. Truncato guynia irregularis, new species 43 Family FLABELLIDAE Bourne, 1905 43 Flabellum Lesson, 1831 44 Subgenus Flabellum (Flabellum) Lesson, 1831 46 25. Flabellum (F.) pavoninum Lesson, 1831 46 26. Flabellum (F.) magnificum Marenzeller, 1904 50 27. Flabellum (F.) patens Moseley, 1881 51 28. Flabellum (F.) lamellulosum Alcock, 1902 52 29. Flabellum (F.) politum, new species 53 30. Flabellum (F.) dens Alcock, 1902 54 Subgenus Flabellum (Ulocyathus) Sars, 1851 54 31. Flabellum (U.) deludens Marenzeller, 1904 55 32. Flabellum (U.) japonicum Moseley, 1881 56 33. Flabellum (U.) marenzelleri, new species 57 34. Flabellum (U.) messum Alcock, 1902, new rank 58 35. Flabellum (U.) sexcostatum, new species 59 36. ?Flabellum (U.) conuis Moseley, 1881 59 Truncatoflabellum, new genus 60 37. Truncatoflabellum aculeatum (Milne Edwards and Haime, 1848), new combination 61 38. Truncatoflabellum crassum (Milne Edwards and Haime, 1848), new combination 64 39. Truncatoflabellum spheniscus (Dana, 1846), new combin- ation 65 40. Truncatoflabellum stokesi (Milne Edwards and Haime,
Recommended publications
  • MARINE FAUNA and FLORA of BERMUDA a Systematic Guide to the Identification of Marine Organisms
    MARINE FAUNA AND FLORA OF BERMUDA A Systematic Guide to the Identification of Marine Organisms Edited by WOLFGANG STERRER Bermuda Biological Station St. George's, Bermuda in cooperation with Christiane Schoepfer-Sterrer and 63 text contributors A Wiley-Interscience Publication JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore ANTHOZOA 159 sucker) on the exumbrella. Color vari­ many Actiniaria and Ceriantharia can able, mostly greenish gray-blue, the move if exposed to unfavorable condi­ greenish color due to zooxanthellae tions. Actiniaria can creep along on their embedded in the mesoglea. Polyp pedal discs at 8-10 cm/hr, pull themselves slender; strobilation of the monodisc by their tentacles, move by peristalsis type. Medusae are found, upside­ through loose sediment, float in currents, down and usually in large congrega­ and even swim by coordinated tentacular tions, on the muddy bottoms of in­ motion. shore bays and ponds. Both subclasses are represented in Ber­ W. STERRER muda. Because the orders are so diverse morphologically, they are often discussed separately. In some classifications the an­ Class Anthozoa (Corals, anemones) thozoan orders are grouped into 3 (not the 2 considered here) subclasses, splitting off CHARACTERISTICS: Exclusively polypoid, sol­ the Ceriantharia and Antipatharia into a itary or colonial eNIDARIA. Oral end ex­ separate subclass, the Ceriantipatharia. panded into oral disc which bears the mouth and Corallimorpharia are sometimes consid­ one or more rings of hollow tentacles. ered a suborder of Scleractinia. Approxi­ Stomodeum well developed, often with 1 or 2 mately 6,500 species of Anthozoa are siphonoglyphs. Gastrovascular cavity compart­ known. Of 93 species reported from Ber­ mentalized by radially arranged mesenteries.
    [Show full text]
  • Biological Results of the Chatham Islands 1954 Expedition
    ISSN 2538-1016; 29 NEW ZEALAND DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH BULLETIN 139 (6) Biological Results of The Chatham Islands 1954 Expedition PART 6 Scleractinia BY DONALD F. SQUIRES New Zealand Oceanographic Institute Memoir No. 29 1964 This publication is the sixth part of the Department of Scientificand Industrial Research Bulletin 139, which records the Biological Results of the Chatham Islands 1954 Expedition. Parts already published are: Part 1. Crustacea, by R. K. Dell, N. S. Jones, and J. C. Yaldwyn. Part 2. Archibenthal and Littoral Echinoderms, by H. Barraclough Fell. Part 3. Polychaeta Errantia, by G. A. Knox. Part 4. Marine Mollusca, by R. K. Dell; Sipunculoidea, by S. J. Edmonds. Part 5. Porifera: Demospongiae, by Patricia R. Bergquist; Porifera: Keratosa, by Patricia R. Bergquist; Crustacea Isopoda: Bopyridae, by R. B. Pike; Crustacea Isopoda: Serolidae, by D. E. Hurley; Hydroida, by Patricia M. Ralph. Additional parts are in preparation. A "General Account" of the Expedition was published as N.Z. Department of Scientific and Industrial Research Bulletin No. 122 (1957). BIOLOGICAL RESULTS OF THE CHATHAM ISLANDS 1954 EXPEDITION PART 6-SCLERACTINIA This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ Photograph: G. A. Knox. The Sero/is bromleyana - Spatangus multispinus community on the sorting screen. Aberrant growth form of Flabellum knoxi is in the lower left(see also plate 1, figs. 4-6). The abundant tubes are those of Hya!inoecia tubicola, the large starfish is Zoroaster spinu!osus, the echinoids Parameretia multituberculata.
    [Show full text]
  • Information Review for Protected Deep-Sea Coral Species in the New Zealand Region
    INFORMATION REVIEW FOR PROTECTED DEEP-SEA CORAL SPECIES IN THE NEW ZEALAND REGION NIWA Client Report: WLG2006-85 November 2006 NIWA Project: DOC06307 INFORMATION REVIEW FOR PROTECTED DEEP-SEA CORAL SPECIES IN THE NEW ZEALAND REGION Authors Mireille Consalvey Kevin MacKay Di Tracey Prepared for Department of Conservation NIWA Client Report: WLG2006-85 November 2006 NIWA Project: DOC06307 National Institute of Water & Atmospheric Research Ltd 301 Evans Bay Parade, Greta Point, Wellington Private Bag 14901, Kilbirnie, Wellington, New Zealand Phone +64-4-386 0300, Fax +64-4-386 0574 www.niwa.co.nz © All rights reserved. This publication may not be reproduced or copied in any form without the permission of the client. Such permission is to be given only in accordance with the terms of the client's contract with NIWA. This copyright extends to all forms of copying and any storage of material in any kind of information retrieval system. Contents Executive Summary iv 1. Introduction 1 2. Corals 1 3. Habitat 3 4. Corals as a habitat 3 5. Major taxonomic groups of deep-sea corals in New Zealand 5 6. Distribution of deep-sea corals in the New Zealand region 9 7. Systematics of deep-sea corals in New Zealand 18 8. Reproduction and recruitment of deep-sea corals 20 9. Growth rates and deep-sea coral ageing 22 10. Fishing effects on deep-sea corals 24 11. Other threats to deep-sea corals 29 12. Ongoing research into deep-sea corals in New Zealand 29 13. Future science and challenges to deep-sea coral research in New Zealand 30 14.
    [Show full text]
  • Checklist of Fish and Invertebrates Listed in the CITES Appendices
    JOINTS NATURE \=^ CONSERVATION COMMITTEE Checklist of fish and mvertebrates Usted in the CITES appendices JNCC REPORT (SSN0963-«OStl JOINT NATURE CONSERVATION COMMITTEE Report distribution Report Number: No. 238 Contract Number/JNCC project number: F7 1-12-332 Date received: 9 June 1995 Report tide: Checklist of fish and invertebrates listed in the CITES appendices Contract tide: Revised Checklists of CITES species database Contractor: World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge, CB3 ODL Comments: A further fish and invertebrate edition in the Checklist series begun by NCC in 1979, revised and brought up to date with current CITES listings Restrictions: Distribution: JNCC report collection 2 copies Nature Conservancy Council for England, HQ, Library 1 copy Scottish Natural Heritage, HQ, Library 1 copy Countryside Council for Wales, HQ, Library 1 copy A T Smail, Copyright Libraries Agent, 100 Euston Road, London, NWl 2HQ 5 copies British Library, Legal Deposit Office, Boston Spa, Wetherby, West Yorkshire, LS23 7BQ 1 copy Chadwick-Healey Ltd, Cambridge Place, Cambridge, CB2 INR 1 copy BIOSIS UK, Garforth House, 54 Michlegate, York, YOl ILF 1 copy CITES Management and Scientific Authorities of EC Member States total 30 copies CITES Authorities, UK Dependencies total 13 copies CITES Secretariat 5 copies CITES Animals Committee chairman 1 copy European Commission DG Xl/D/2 1 copy World Conservation Monitoring Centre 20 copies TRAFFIC International 5 copies Animal Quarantine Station, Heathrow 1 copy Department of the Environment (GWD) 5 copies Foreign & Commonwealth Office (ESED) 1 copy HM Customs & Excise 3 copies M Bradley Taylor (ACPO) 1 copy ^\(\\ Joint Nature Conservation Committee Report No.
    [Show full text]
  • Biodiversity of the Kermadec Islands and Offshore Waters of the Kermadec Ridge: Report of a Coastal, Marine Mammal and Deep-Sea Survey (TAN1612)
    Biodiversity of the Kermadec Islands and offshore waters of the Kermadec Ridge: report of a coastal, marine mammal and deep-sea survey (TAN1612) New Zealand Aquatic Environment and Biodiversity Report No. 179 Clark, M.R.; Trnski, T.; Constantine, R.; Aguirre, J.D.; Barker, J.; Betty, E.; Bowden, D.A.; Connell, A.; Duffy, C.; George, S.; Hannam, S.; Liggins, L..; Middleton, C.; Mills, S.; Pallentin, A.; Riekkola, L.; Sampey, A.; Sewell, M.; Spong, K.; Stewart, A.; Stewart, R.; Struthers, C.; van Oosterom, L. ISSN 1179-6480 (online) ISSN 1176-9440 (print) ISBN 978-1-77665-481-9 (online) ISBN 978-1-77665-482-6 (print) January 2017 Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries websites at: http://www.mpi.govt.nz/news-resources/publications.aspx http://fs.fish.govt.nz go to Document library/Research reports © Crown Copyright - Ministry for Primary Industries TABLE OF CONTENTS EXECUTIVE SUMMARY 1 1. INTRODUCTION 3 1.1 Objectives: 3 1.2 Objective 1: Benthic offshore biodiversity 3 1.3 Objective 2: Marine mammal research 4 1.4 Objective 3: Coastal biodiversity and connectivity 5 2. METHODS 5 2.1 Survey area 5 2.2 Survey design 6 Offshore Biodiversity 6 Marine mammal sampling 8 Coastal survey 8 Station recording 8 2.3 Sampling operations 8 Multibeam mapping 8 Photographic transect survey 9 Fish and Invertebrate sampling 9 Plankton sampling 11 Catch processing 11 Environmental sampling 12 Marine mammal sampling 12 Dive sampling operations 12 Outreach 13 3.
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • Cold-Water Corals Online Appendix: Recent Azooxanthellate Scleractinia
    Cold-water Corals Online Appendix Phylogenetic list of 711 valid Recent azooxanthellate scleractinian species, with their junior synonyms and depth ranges Notes Type species of the genus indicated with an asterisk, valid species names in bold-type Eleven facultatively zooxanthellate species Taxa prefaced with a single square bracket are not valid species and thus are not counted Last revised September 2008 (Stephen D. Cairns) Suborder ASTROCOENIINA FAMILY POCILLOPORIDAE Gray, 1842 Madracis Milne Edwards & Haime, 1849 *asperula Milne Edwards & Haime, 1849 (facultative, H. Zibrowius, pers. comm..; 0-311 m) pharensis cf. pharensis (Heller, 1868) (facultative; 6-333 m) =?M. cf. pharensis sensu Cairns, 1991: 6 (Galápagos, 30-343 m) =?M. cf. pharensis sensu Cairns & Zibrowius, 1997: 67 (Banda Sea, 85-421 m) asanoi Yabe & Sugiyama, 1936 (110-183 m) =M. palaoensis Yabe & Sugiyama, 1936 kauaiensis Vaughan, 1907 (44-541 m) ?=singularis Rehberg, 1892 ?=interjecta Marenzeller, 1907 var. macrocalyx Vaughan, 1907 (160-260 m) hellana Milne Edwards & Haime, 1850 (46 m) myriaster (Milne Edwards & Haime, 1849) (37-1220 m) =Stylophora mirabilis Duchassaing & Michelotti, 1860 =Axohelia schrammii Pourtalès, 1874 brueggemanni (Ridley, 1881) (51-130 m) =M. scotiae Gardiner, 1913 profunda Zibrowius, 1980 (112-327 m) [sp. A =sensu Wells, 1954: 414 (Marshall I.) =cf. asperula, sensu Cairns, 1991: 5 (Galápagos, 46-64 m) =sensu Cairns & Keller, 1993:228 (SWIO, 62-160 m) =sensu Cairns, 1994: 36 (Japan, 46-110 m) =sensu Cairns & Zibrowius, 1997: 67 (Philippines, 124-208 m) Suborder FUNGIINA Superfamily FUNGIOIDEA Dana, 1846 FAMILY FUNGIACYATHIDAE Chevalier, 1987 Fungiacyathus (F.) Sars, 1872 *fragilis Sars, 1872 (200-2200 m) (not F. fragilis Keller, 1976 (junior homonym)) =Bathyactis hawaiiensis Vaughan, 1907 paliferus (Alcock, 1902) (69-823 m) =Bathyactis kikaiensis Yabe & Eguchi, 1942 (fossil) =F.
    [Show full text]
  • Taxonomy and Phylogenetic Relationships of the Coral Genera Australomussa and Parascolymia (Scleractinia, Lobophylliidae)
    Contributions to Zoology, 83 (3) 195-215 (2014) Taxonomy and phylogenetic relationships of the coral genera Australomussa and Parascolymia (Scleractinia, Lobophylliidae) Roberto Arrigoni1, 7, Zoe T. Richards2, Chaolun Allen Chen3, 4, Andrew H. Baird5, Francesca Benzoni1, 6 1 Dept. of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milan, Italy 2 Aquatic Zoology, Western Australian Museum, 49 Kew Street, Welshpool, WA 6106, Australia 3Biodiversity Research Centre, Academia Sinica, Nangang, Taipei 115, Taiwan 4 Institute of Oceanography, National Taiwan University, Taipei 106, Taiwan 5 ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia 6 Institut de Recherche pour le Développement, UMR227 Coreus2, 101 Promenade Roger Laroque, BP A5, 98848 Noumea Cedex, New Caledonia 7 E-mail: [email protected] Key words: COI, evolution, histone H3, Lobophyllia, Pacific Ocean, rDNA, Symphyllia, systematics, taxonomic revision Abstract Molecular phylogeny of P. rowleyensis and P. vitiensis . 209 Utility of the examined molecular markers ....................... 209 Novel micromorphological characters in combination with mo- Acknowledgements ...................................................................... 210 lecular studies have led to an extensive revision of the taxonomy References ...................................................................................... 210 and systematics of scleractinian corals. In the present work, we Appendix .......................................................................................
    [Show full text]
  • Patterns of Septal Biomineralization in Scleractinia Compared with Their 28S Rrna Phylogeny
    PBlackwell Publishingatterns Ltd. of septal biomineralization in Scleractinia compared with their 28S rRNA phylogeny: a dual approach for a new taxonomic framework JEAN-PIERRE CUIF, GUILLAUME LECOINTRE, CHRISTINE PERRIN, ANNIE TILLIER & SIMON TILLIER Accepted: 2 December 2002 Cuif, J.-P., Lecointre, G., Perrin, C., Tillier, A. & Tillier, S. (2003). Patterns of septal bio- mineralization in Scleractinia compared with their 28S rRNA phylogeny: a dual approach for a new taxonomic framework. — Zoologica Scripta, 32, 459–473. A molecular phylogeny of the Scleractinia is reconstructed from approximately 700 nucleo- tides of the 5′end of the 28S rDNA obtained from 40 species. A comparison of molecular phylogenic trees with biomineralization patterns of coral septa suggests that at least five clades are corroborated by both types of data. Agaricidae and Dendrophylliidae are found to be monophyletic, that is supported by microstructural data. Conversely, Faviidae and Caryophyl- liidae are found to be paraphyletic: Cladocora should be excluded from the faviids, whereas Eusmilia should be excluded from the caryophylliids. The conclusion is also supported by the positions, sizes and shapes of centres of calcification. The traditional Guyniidae are diphyletic, corroborating Stolarski’s hypothesis ‘A’. Some results from our most parsimonious trees are not strongly statistically supported but corroborated by other molecular studies and micro- structural observations. For example, in the scleractinian phylogenetic tree, there are several lines of evidence (including those from our data) to distinguish a Faviidae–Mussidae lineage and a Dendrophylliidae–Agaricidae–Poritidae–Siderastreidae lineage. From a methodological standpoint, our results suggest that co-ordinated studies creating links between biomineralization patterns and molecular phylogeny may provide an efficient working approach for a re- examination of scleractinian classification.
    [Show full text]
  • Deep‐Sea Coral Taxa in the U.S. Gulf of Mexico: Depth and Geographical Distribution
    Deep‐Sea Coral Taxa in the U.S. Gulf of Mexico: Depth and Geographical Distribution by Peter J. Etnoyer1 and Stephen D. Cairns2 1. NOAA Center for Coastal Monitoring and Assessment, National Centers for Coastal Ocean Science, Charleston, SC 2. National Museum of Natural History, Smithsonian Institution, Washington, DC This annex to the U.S. Gulf of Mexico chapter in “The State of Deep‐Sea Coral Ecosystems of the United States” provides a list of deep‐sea coral taxa in the Phylum Cnidaria, Classes Anthozoa and Hydrozoa, known to occur in the waters of the Gulf of Mexico (Figure 1). Deep‐sea corals are defined as azooxanthellate, heterotrophic coral species occurring in waters 50 m deep or more. Details are provided on the vertical and geographic extent of each species (Table 1). This list is adapted from species lists presented in ʺBiodiversity of the Gulf of Mexicoʺ (Felder & Camp 2009), which inventoried species found throughout the entire Gulf of Mexico including areas outside U.S. waters. Taxonomic names are generally those currently accepted in the World Register of Marine Species (WoRMS), and are arranged by order, and alphabetically within order by suborder (if applicable), family, genus, and species. Data sources (references) listed are those principally used to establish geographic and depth distribution. Only those species found within the U.S. Gulf of Mexico Exclusive Economic Zone are presented here. Information from recent studies that have expanded the known range of species into the U.S. Gulf of Mexico have been included. The total number of species of deep‐sea corals documented for the U.S.
    [Show full text]
  • New Azooxanthellate Genus of Scleractinia (Flabellidae) from the Australian Cenozoic
    Journal of Paleontology, page 1 of 10 Copyright © 2017, The Paleontological Society 0022-3360/16/0088-0906 doi: 10.1017/jpa.2016.83 New azooxanthellate genus of Scleractinia (Flabellidae) from the Australian Cenozoic Stephen D. Cairns Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA 〈[email protected]〉 Abstract.—A new genus of flabellid scleractinian coral, Periplacotrochus, is described from the late Eocene to middle Miocene of Victoria, South Australia, and Tasmania. It differs from Placotrochus in having a pedicellate base, and from Flabellum in having a lamellar columella. Six previously described species are redescribed, illustrated, and reassigned to this genus (P. deltoideus Duncan, 1864, P. corniculatus Dennant, 1899, P. elongatus Duncan, 1864, P. pueblensis Dennant, 1903,P.inflectus Dennant, 1903, and P. magnus Dennant, 1904), and one new species is described: P. cudmorei. One species, Placotrochus elegans Tennison-Woods, 1878a, is considered as a nomen dubium. A key is provided to the seven species placed in this genus. Introduction According to Duncan (1864), the genus Flabellum could be considered mimetic to Truncatoflabellum, differing only in Duncan (1864) noted that there were ‘paired’ flabellid genera, or lacking transverse division. In the same way, Periplacotrochus maybe only groups of species, differing from one another by only could be considered mimetic to Flabellum, differing only in one character, such as the presence or absence of a lamellar having a lamellar columella. Likewise, Truncatoflabellum could columella. He called these ‘mimetic’ genera, or those that mimic be considered mimetic to Placotrochus, differing only in lacking one another, except for one character.
    [Show full text]
  • Volume 2. Animals
    AC20 Doc. 8.5 Annex (English only/Seulement en anglais/Únicamente en inglés) REVIEW OF SIGNIFICANT TRADE ANALYSIS OF TRADE TRENDS WITH NOTES ON THE CONSERVATION STATUS OF SELECTED SPECIES Volume 2. Animals Prepared for the CITES Animals Committee, CITES Secretariat by the United Nations Environment Programme World Conservation Monitoring Centre JANUARY 2004 AC20 Doc. 8.5 – p. 3 Prepared and produced by: UNEP World Conservation Monitoring Centre, Cambridge, UK UNEP WORLD CONSERVATION MONITORING CENTRE (UNEP-WCMC) www.unep-wcmc.org The UNEP World Conservation Monitoring Centre is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organisation. UNEP-WCMC aims to help decision-makers recognise the value of biodiversity to people everywhere, and to apply this knowledge to all that they do. The Centre’s challenge is to transform complex data into policy-relevant information, to build tools and systems for analysis and integration, and to support the needs of nations and the international community as they engage in joint programmes of action. UNEP-WCMC provides objective, scientifically rigorous products and services that include ecosystem assessments, support for implementation of environmental agreements, regional and global biodiversity information, research on threats and impacts, and development of future scenarios for the living world. Prepared for: The CITES Secretariat, Geneva A contribution to UNEP - The United Nations Environment Programme Printed by: UNEP World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge CB3 0DL, UK © Copyright: UNEP World Conservation Monitoring Centre/CITES Secretariat The contents of this report do not necessarily reflect the views or policies of UNEP or contributory organisations.
    [Show full text]