Regulation of Cardiac PKA Signaling by Camp and Oxidants

Total Page:16

File Type:pdf, Size:1020Kb

Regulation of Cardiac PKA Signaling by Camp and Oxidants antioxidants Review Regulation of Cardiac PKA Signaling by cAMP and Oxidants Friederike Cuello 1,2,* , Friedrich W. Herberg 3,* , Konstantina Stathopoulou 1,2 , Philipp Henning 3 and Simon Diering 1,2 1 Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; [email protected] (K.S.); [email protected] (S.D.) 2 DZHK (German Center for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany 3 Department of Biochemistry, University Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany; [email protected] * Correspondence: [email protected] (F.C.); [email protected] (F.W.H.); Tel.: +49-(0)-40/7410-57204 (F.C.); +49-(0)-561/804-4511 (F.W.H.); Fax: +49-(0)-40/7410-54876 (F.C.); +49-(0)-561/804-4466 (F.W.H.) Abstract: Pathologies, such as cancer, inflammatory and cardiac diseases are commonly associated with long-term increased production and release of reactive oxygen species referred to as oxidative stress. Thereby, protein oxidation conveys protein dysfunction and contributes to disease progression. Importantly, trials to scavenge oxidants by systemic antioxidant therapy failed. This observation supports the notion that oxidants are indispensable physiological signaling molecules that induce oxidative post-translational modifications in target proteins. In cardiac myocytes, the main driver of cardiac contractility is the activation of the β-adrenoceptor-signaling cascade leading to increased cel- lular cAMP production and activation of its main effector, the cAMP-dependent protein kinase (PKA). PKA-mediated phosphorylation of substrate proteins that are involved in excitation-contraction Citation: Cuello, F.; Herberg, F.W.; coupling are responsible for the observed positive inotropic and lusitropic effects. PKA-actions are Stathopoulou, K.; Henning, P.; counteracted by cellular protein phosphatases (PP) that dephosphorylate substrate proteins and Diering, S. Regulation of Cardiac thus allow the termination of PKA-signaling. Both, kinase and phosphatase are redox-sensitive PKA Signaling by cAMP and and susceptible to oxidation on critical cysteine residues. Thereby, oxidation of the regulatory PKA Oxidants. Antioxidants 2021, 10, 663. and PP subunits is considered to regulate subcellular kinase and phosphatase localization, while https://doi.org/10.3390/ intradisulfide formation of the catalytic subunits negatively impacts on catalytic activity with direct antiox10050663 consequences on substrate (de)phosphorylation and cardiac contractile function. This review article attempts to incorporate the current perception of the functionally relevant regulation of cardiac Academic Editor: Ashley J. Smuder contractility by classical cAMP-dependent signaling with the contribution of oxidant modification. Received: 26 February 2021 Keywords: kinase; phosphatase; cardiac myocyte; contractile function; oxidation Accepted: 20 April 2021 Published: 24 April 2021 Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in 1. Introduction published maps and institutional affil- The sympathetic nervous system represents the most powerful regulator of cardiac iations. contractile function. Thereby, the monoamine neurotransmitters epinephrine and nore- pinephrine innervate postsynaptic β-adrenoceptors on the surface of cardiac myocytes allowing canonical intracellular signal transduction. This involves the generation of the intracellular second messenger 30-50-cyclic adenosine monophosphate (cAMP) and subse- Copyright: © 2021 by the authors. quent activation of its principle cellular effector enzyme cAMP-dependent protein kinase Licensee MDPI, Basel, Switzerland. (PKA). Incessant investigations are focusing on understanding the isoform-specific, spa- This article is an open access article tiotemporal and structural contributions as well as disease-specific alterations in PKA distributed under the terms and signaling. PKA is “the kinase” in cardiac myocytes that links neurohumoral extracellu- conditions of the Creative Commons lar signals to changes in contractile function. This process termed excitation-contraction Attribution (CC BY) license (https:// coupling occurs via phosphorylation of key substrate proteins [1,2] (Figure1). creativecommons.org/licenses/by/ 4.0/). Antioxidants 2021, 10, 663. https://doi.org/10.3390/antiox10050663 https://www.mdpi.com/journal/antioxidants Antioxidants 2021, 10, x FOR PEER REVIEW 2 of 27 Antioxidants 2021, 10, 663 2 of 26 signals to changes in contractile function. This process termed excitation-contraction cou- pling occurs via phosphorylation of key substrate proteins [1,2] (Figure 1) FigureFigure 1. 1.Scheme Scheme summarizing summarizing the the signaling signaling network network between between PKA, PKA, PP1 PP1 and and PP2A, PP2A, their their inter-action inter- uponactionβAR upon stimulation βAR stimulation and cAMP and production cAMP production or direct or oxidative direct oxidative modification. modification. PKA phosphorylates PKA phos- andphorylates activates and inhibitor activates 1 (I-1),inhibitor which 1 (I-1), inhibits which PP1. inhibits Several PP1. B’-PP2A Several regulatory B‘-PP2A regulatory subunits havesubunits been have been shown to be subject to phosphorylation, B56δ is phosphorylated by PKA, enhancing shown to be subject to phosphorylation, B56δ is phosphorylated by PKA, enhancing PP2A activity PP2A activity by dissociation from the A-subunit. PP2A mediates I-1 dephosphorylation. PKA by dissociation from the A-subunit. PP2A mediates I-1 dephosphorylation. PKA phosphorylates phosphorylates substrate proteins in cardiac myocytes that regulate cardiac contraction, which is substratecounteracted proteins by PP2A in cardiac and PP1 myocytes action. In that addition regulate to the cardiac regulation contraction, by phosphorylation, which is counteracted signaling bysubunits PP2A andlabeled PP1 with action. a star In are addition susceptible to the to oxid regulationation. Green: by phosphorylation, enhanced activity, signaling red: inhibitory subunits labeledeffect. withThe scheme a star are synergizes susceptible aspects to oxidation. of the regula Green:tion enhancedof PKA, PP1 activity, and PP2A red: inhibitoryactivity by effect. phos- The schemephorylation synergizes and simultaneous aspects of the oxidation regulation to oforches PKA,trate PP1 contractility. and PP2A activity Numbers by phosphorylation1–9 referring to the and simultaneousrespective section oxidation in the to manuscript. orchestrate contractility. Numbers 1–9 referring to the respective section in the manuscript. 2. PKA Isoforms 2. PKAPKA Isoforms is a heterotetrameric enzyme that is composed of a dimeric regulatory (R) and twoPKA catalytic is a heterotetramericsubunits. Several enzyme PKA-C thatisoforms is composed are expressed of a dimeric in human regulatory tissue: C (R)α, andCβ twoand catalytic PrKX. C subunits.β isoform Severalexpression PKA-C appears isoforms to be arepredominantly expressed in in human the nervous tissue: and Cα,C theβ andimmune PrKX. system Cβ isoform and PKA-C expressionα is ubiquitously appears to beexpressed predominantly [3,4]. In humans, in the nervous PRKACG and (C theγ) immuneand PrKY system have been and PKA-Cdescribedα is as ubiquitously retrotransposons expressed [5,6]. Association [3,4]. In humans, of PKA-CPRKACG with either(Cγ) andof the PrKY two have existing been types described of regulatory as retrotransposons subunits, RI[ or5,6 RII,]. Association defines the of holoenzyme PKA-C with as either type ofI or the type two II existing PKA. While types the of expression regulatory of subunits, RI and RII RI differs or RII, substantially defines the between holoenzyme tissues, as typetype I I or PKA type activity II PKA. predominates While the expression in the heart of [7]. RI Importantly, and RII differs attempts substantially to quantify between PKA tissues,subunit type abundance I PKA activity in the heart, predominates revealed in high the heartabundance [7]. Importantly, of RI subunits attempts with an to quantifyapprox- PKAimately subunit 10-fold abundance [8]or even in 17-fold the heart, [9] excess revealed over high the catalytic abundance subunits. of RI subunitsThis observation with an approximatelywas rationally 10-foldexplained [8 ]by or RI even functioning 17-fold [as9] a excess cAMP overstorage the allowing catalytic the subunits. formation This of observationbiomolecular was condensates rationally enriched explained in bycAMP RI functioning and PKA activity, as a cAMP critical storage for effective allowing cAMP the formationcompartmentation of biomolecular [10]. Also, condensates the concept enriched of “buffered in cAMP cAMP and diffusion” PKA activity, supports critical the bio- for effectivelogical significance cAMP compartmentation of RI abundance: [10 cAMP]. Also, at the physiological concept of “bufferedconcentrations cAMP is diffusion”predomi- supportsnantly bound the biological to cAMP significance binding sites of and RI abundance: thus immobile cAMP [11]. at Those physiological sites could concentrations potentially isbe predominantly RI subunits. bound to cAMP binding sites and thus immobile [11]. Those sites could potentially be RI subunits. For both, RI and RII regulatory subunits, α and β isoforms have been described [12]. Generally, α isoforms are expressed ubiquitously and β isoforms display enhanced tis- sue specificity.
Recommended publications
  • Protein Phosphatases 1 and 2A and Their Naturally Occurring Inhibitors: Current Topics in Smooth Muscle Physiology and Chemical Biology
    J Physiol Sci (2018) 68:1–17 https://doi.org/10.1007/s12576-017-0556-6 REVIEW Protein phosphatases 1 and 2A and their naturally occurring inhibitors: current topics in smooth muscle physiology and chemical biology 1 2 3 1 Akira Takai • Masumi Eto • Katsuya Hirano • Kosuke Takeya • 4 5 Toshiyuki Wakimoto • Masaru Watanabe Received: 6 January 2017 / Accepted: 27 June 2017 / Published online: 5 July 2017 Ó The Author(s) 2017. This article is an open access publication Abstract Protein phosphatases 1 and 2A (PP1 and PP2A) Keywords Protein phosphorylation Á Protein phosphatase are the most ubiquitous and abundant serine/threonine 1 Á Protein phosphatase 2A Á Smooth muscle Á Phosphatase phosphatases in eukaryotic cells. They play fundamental inhibitors Á Signal transduction roles in the regulation of various cellular functions. This review focuses on recent advances in the functional studies of these enzymes in the field of smooth muscle physiology. Introduction Many naturally occurring protein phosphatase inhibitors with different relative PP1/PP2A affinities have been dis- Protein phosphatases 1 (PP1) and 2A (PP2A) are two of the covered and are widely used as powerful research tools. principal catalytic subunits that dephosphorylate proteins on Current topics in the chemical biology of PP1/PP2A inhi- serine and threonine residues in the cytosol of eukaryotic bitors are introduced and discussed, highlighting the cells. They are encoded by genes belonging to the PPP identification of the gene cluster responsible for the family and are abundantly expressed in all cell types. These biosynthesis of calyculin A in a symbiont microorganism enzymes achieve the substrate specificity and activity reg- of a marine sponge.
    [Show full text]
  • Isolation and Identification of Cyclic Polyketides From
    ISOLATION AND IDENTIFICATION OF CYCLIC POLYKETIDES FROM ENDIANDRA KINGIANA GAMBLE (LAURACEAE), AS BCL-XL/BAK AND MCL-1/BID DUAL INHIBITORS, AND APPROACHES TOWARD THE SYNTHESIS OF KINGIANINS Mohamad Nurul Azmi Mohamad Taib, Yvan Six, Marc Litaudon, Khalijah Awang To cite this version: Mohamad Nurul Azmi Mohamad Taib, Yvan Six, Marc Litaudon, Khalijah Awang. ISOLATION AND IDENTIFICATION OF CYCLIC POLYKETIDES FROM ENDIANDRA KINGIANA GAMBLE (LAURACEAE), AS BCL-XL/BAK AND MCL-1/BID DUAL INHIBITORS, AND APPROACHES TOWARD THE SYNTHESIS OF KINGIANINS . Chemical Sciences. Ecole Doctorale Polytechnique; Laboratoires de Synthase Organique (LSO), 2015. English. tel-01260359 HAL Id: tel-01260359 https://pastel.archives-ouvertes.fr/tel-01260359 Submitted on 22 Jan 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ISOLATION AND IDENTIFICATION OF CYCLIC POLYKETIDES FROM ENDIANDRA KINGIANA GAMBLE (LAURACEAE), AS BCL-XL/BAK AND MCL-1/BID DUAL INHIBITORS, AND APPROACHES TOWARD THE SYNTHESIS OF KINGIANINS MOHAMAD NURUL AZMI BIN MOHAMAD TAIB FACULTY OF SCIENCE UNIVERSITY
    [Show full text]
  • WO 2014/160698 Al 2 October 2014 (02.10.2014) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/160698 Al 2 October 2014 (02.10.2014) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, C07H 19/12 (2006.01) A61P 35/00 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, A61K 31/706 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, PCT/US20 14/03 1705 MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (22) International Filing Date: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, 25 March 2014 (25.03.2014) SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (25) Filing Language: English ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 61/805,459 26 March 2013 (26.03.2013) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (71) Applicant: CELGENE CORPORATION [US/US]; 86 TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, Morris Avenue, Summit, NJ 07901 (US).
    [Show full text]
  • Mortison 1.Pdf
    Chemical and Biochemical Interrogation of Molecular Specificity in Modular Polyketide Synthases by Jonathan D. Mortison A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Chemistry) in the University of Michigan 2010 Doctoral Committee: Professor David H. Sherman, Chair Professor John Montgomery Associate Professor Anna K. Mapp Assistant Professor Jason E. Gestwicki Acknowledgements I would like to thank my advisor, Dr. David H. Sherman, for the opportunity to join his research group at the University of Michigan. It has been a tremendously rewarding experience to work with him and explore many exciting projects at the interface of chemistry and biology. During my graduate career, his enthusiasm for science and perpetual optimism created an exceptionally positive atmosphere for learning. I am also grateful to have accompanied David on dive expeditions to gather samples for our natural products collection. These trips to Papua New Guinea (2007) and Costa Rica (2009) were wonderful opportunities both culturally and scientifically, allowing me to gain a unique view of these rich and biodiverse marine environments. I express thanks to my committee members, Dr. John Montgomery, Dr. Anna Mapp and Dr. Jason Gestwicki for serving on my thesis committee and providing helpful conversations during the course of my graduate work. I would also like to acknowledge co-workers and collaborators, especially Dr. Jeff Kittendorf and Dr. Sathish Rajamani for their work and guidance during the molecular cloning and biochemistry portion of my doctoral studies. Additional thanks go to graduate student Chris Rath for useful discussions on mass spectrometry and ongoing collaborations with FT-ICR MS studies.
    [Show full text]
  • Fostriecin-Mediated G2-M-Phase Growth Arrest Correlates With
    [CANCER RESEARCH 58. 3611-3619, August 15, 1998] Fostriecin-mediated G2-M-phase Growth Arrest Correlates with Abnormal Centrosome Replication, the Formation of Aberrant Mitotic Spindles, and the Inhibition of Serine/Threonine Protein Phosphatase Activity1 Aiyang Cheng, Ron Balczon, Zhuang Zuo, Jamie S. Koons, AiméeH. Walsh, and Richard E. Honkanen2 Departments of Biochemistry and Molecular Biology ¡A.C, Z Z. J. S. K., A. H. W.. R. E. H.I ami Structural and Cellular Biology ¡R.B.¡,College of Medicine. University of South Alabama. Mobile. Alabama 36688 ABSTRACT protein synthesis (7). Although these studies demonstrated that fos triecin affects a process essential for replication and transcription, no Fostriecin, a structurally unique phosphate ester, is presently under direct effect on DNA polymerase, RNA polymerase, or enzymes evaluation in clinical trials to determine its potential use as an antitumor within the purine or pyrimidine biosynthetic pathways has been noted drug in humans. Fostriecin has been reported as having inhibitory activity against DNA topoisomerase type II and protein phosphatases implicated (3, 7). Fostriecin was then shown to block cell growth in the G2 phase in cell-cycle control. However, the relative contribution of these mecha of the cell cycle and to have inhibitory activity against type II DNA nisms to the antitumor activity of Iosi ricchi has not yet been elucidated. In topoisomerase from Ehrlich ascites carcinomas (8), with 100 /J.M this study, after confirming that fostriecin is a potent inhibitor of
    [Show full text]
  • Safety, Tolerability, and Preliminary Activity of LB-100, an Inhibitor Of
    Published OnlineFirst December 30, 2016; DOI: 10.1158/1078-0432.CCR-16-2299 Cancer Therapy: Clinical Clinical Cancer Research Safety, Tolerability, and Preliminary Activity of LB-100, an Inhibitor of Protein Phosphatase 2A, in Patients with Relapsed Solid Tumors: An Open-Label, Dose Escalation, First-in-Human, Phase I Trial Vincent Chung1, Aaron S. Mansfield2, Fadi Braiteh3,4, Donald Richards4,5, Henry Durivage6, Richard S. Ungerleider6, Francis Johnson7, and John S. Kovach8 Abstract Purpose: To determine the MTD and to assess the safety, creatinine clearance, dyspnea, hyponatremia, and lympho- tolerability, and potential activity of LB-100, a first-in-class penia]. Ten (50%) of 20 response-evaluable patients had stable small-molecule inhibitor of protein phosphatase 2A (PP2A) in disease for four or more cycles. One patient with pancreatic adult patients with progressive solid tumors. adenocarcinoma had a partial response noted after 10 cycles, Experimental Design: LB-100 was administered intravenously which was maintained for five additional cycles. The other daily for 3 days in 21-day cycles in a 3 þ 3 dose escalation design. patients achieving stable disease had one of the following: Results: There were 29 patient entries over 7 dose escalations. fibrosarcoma, chondrosarcoma, thymoma, atypical carcinoid of One patient stopped treatment after one dose because of an acute lung, or ovarian, testicular, breast (n ¼ 2), and prostate cancer. infection and was reenrolled after recovery; each course was The recommended phase II dose of LB-100 is 2.33 mg/m2 daily analyzed as a separate patient entry. Two patients had dose- for 3 days every 3 weeks.
    [Show full text]
  • WO 2017/075451 Al 4 May 2017 (04.05.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/075451 Al 4 May 2017 (04.05.2017) P O P C T (51) International Patent Classification: (72) Inventors; and C12N 5/0783 (2010.01) C12Q 1/68 (2006.01) (71) Applicants : REGEV, Aviv [IL/US]; 15a Ellsworth Ave, A61K 35/17 (2015.01) Cambridge, MA 02139 (US). ANDERSON, Ana, Carri- zosa [US/US]; 110 Cypress Street, Unit 3 11, Brookline, (21) International Application Number: MA 02445 (US). CONG, Le [CN/US]; 100 Memorial PCT/US20 16/059463 Drive, Apt 8-21b, Cambridge, MA 02142 (US). KU- (22) International Filing Date: CHROO, Vijay, K. [IN/US]; 30 Fairhaven Road, Newton, 28 October 2016 (28.10.201 6) MA 02149 (US). SINGER, Meromit [US/US]; 10 Bel mont Place, Somerville, MA 02143 (US). WANG, Chao (25) Filing Language: English [US/US]; 6 Canal Park, Unit 302, Cambridge, MA 02 141 (26) Publication Language: English (US). (30) Priority Data: (74) Agents: KOWALSKI, Thomas, J. et al; Vedder Price 62/247,432 28 October 2015 (28. 10.2015) US P.C., 1633 Broadway, New York, NY 1001 9 (US). 62/384,589 7 September 2016 (07.09.2016) US (81) Designated States (unless otherwise indicated, for every (71) Applicants: THE BROAD INSTITUTE INC. [US/US]; kind of national protection available): AE, AG, AL, AM, 415 Main Street, Cambridge, MA 02142 (US). MAS¬ AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, SACHUSETTS INSTITUTE OF TECHNOLOGY BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, [US/US]; 77 Massachusetts Ave., Cambridge, MA 02142 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (US).
    [Show full text]
  • Phase I and Pharmacokinetic Study of the Topoisomerase II Catalytic Inhibitor Fostriecin
    British Journal of Cancer (1999) 79(5/6), 882–887 © 1999 Cancer Research Campaign Article no. bjoc.1998.0141 Phase I and pharmacokinetic study of the topoisomerase II catalytic inhibitor fostriecin RS de Jong1, NH Mulder1, DRA Uges2, DTh Sleijfer1, FJP Höppener4, HJM Groen3, PHB Willemse1, WTA van der Graaf1 and EGE de Vries1 Departments of 1Medical Oncology, 2Pharmacy and Toxicology, and 3Pulmonary Diseases, University Hospital Groningen, The Netherlands; 4EORTC New Drug Development Office, Amsterdam, The Netherlands Summary We conducted a phase I and pharmacokinetic study of the topoisomerase II catalytic inhibitor fostriecin. Fostriecin was administered intravenously over 60 min on days 1–5 at 4-week intervals. Dose was escalated from 2 mg m–2 day–1 to 20 mg m–2 day–1 in 20 patients. Drug pharmacokinetics was analysed with high performance liquid chromatography with UV-detection. Plasma collected during drug administration was tested in vitro for growth inhibition of a teniposide-resistant small-cell lung cancer (SCLC) cell line. The predominant toxicities were elevated liver transaminases (maximum common toxicity criteria (CTC) grade 4) and serum creatinine (maximum CTC grade 2). These showed only a limited increase with increasing doses, often recovered during drug administration and were fully reversible. Duration of elevated alanine–amino transferase (ALT) was dose-limiting in one patient at 20 mg m–2. Other frequent toxicities were grade 1–2 nausea/vomiting, fever and mild fatigue. Mean fostriecin plasma half-life was 0.36 h (initial; 95% CI, 0–0.76 h) and 1.51 h (terminal; 95% CI, 0.41–2.61 h).
    [Show full text]
  • (HDAC3) Activity Is Regulated by Interaction with Protein Serine/Threonine Phosphatase 4
    Downloaded from genesdev.cshlp.org on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press Histone deacetylase 3 (HDAC3) activity is regulated by interaction with protein serine/threonine phosphatase 4 Xiaohong Zhang,1,4 Yukiyasu Ozawa,1,4 Heehyoung Lee,1 Yu-Der Wen,1 Tse-Hua Tan,2 Brian E. Wadzinski,3 and Edward Seto1,5 1H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA; 2Department of Immunology, Baylor College of Medicine, Houston, Texas 77030, USA; 3Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA Histone deacetylase 3 (HDAC3) is one of four members of the human class I HDACs that regulates gene expression by deacetylation of histones and nonhistone proteins. Early studies have suggested that HDAC3 activity is regulated by association with the corepressors N-CoR and SMRT. Here we demonstrate that, in addition to protein–protein interactions with NCoR/SMRT, the activity of HDAC3 is regulated by both phosphorylation and dephosphorylation. A protein kinase CK2 phosphoacceptor site in the HDAC3 protein was identified at position Ser424, which is a nonconserved residue among the class I HDACs. Mutation of this residue was found to reduce deacetylase activity. Interestingly, unlike other class I HDACs, HDAC3 uniquely copurifies with the catalytic and regulatory subunits of the protein serine/threonine phosphatase 4 complex (PP4c/PP4R1). Furthermore, HDAC3 complexes displayed protein phosphatase activity and a series of subsequent mutational analyses revealed that the N terminus of HDAC3 (residues 1–122) was both necessary and sufficient for HDAC3–PP4c interactions. Significantly, both overexpression and siRNA knock-down approaches, and analysis of cells devoid of PP4c, unequivocally show that HDAC3 activity is inversely proportional to the cellular abundance of PP4c.
    [Show full text]
  • Evolutionary Stability of Antibiotic Protection in a Defensive Symbiosis
    Evolutionary stability of antibiotic protection in a defensive symbiosis Tobias Engla,b,1, Johannes Kroissa,c, Marco Kaid,2, Taras Y. Nechitayloa, Ales Svatosd, and Martin Kaltenpotha,b,1 aInsect Symbiosis Research Group, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; bEvolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, 55128 Mainz, Germany; cThermo Fisher Scientific GmbH, 63303 Dreieich, Germany; and dResearch Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany Edited by Nancy A. Moran, University of Texas at Austin, Austin, TX, and approved January 18, 2018 (received for review November 15, 2017) The increasing resistance of human pathogens severely limits the However, the presence of these compounds in situ and their efficacy of antibiotics in medicine, yet many animals, including relevance for the protective activity of the insects’ nutritional solitary beewolf wasps, successfully engage in defensive alliances resources have received little attention (32). By contrast, HPLC– with antibiotic-producing bacteria for millions of years. Here, we high-resolution MS, NMR, and imaging MS were successfully report on the in situ production of 49 derivatives belonging to used for in situ characterization of the chemical mediators in three antibiotic compound classes (45 piericidin derivatives, 3 another defensive symbiosis involving solitary beewolf wasps and streptochlorin derivatives, and nigericin) by the symbionts of 25 bee- antibiotic-producing Streptomyces bacteria (19, 21, 34). wolf host species and subspecies, spanning 68 million years of This specialized protective symbiosis occurs in the clade of evolution. Despite a high degree of qualitative stability in the antibiotic Philanthini digger wasps that are associated with host-specific mixture, we found consistent quantitative differences between species strains of the actinobacterium Streptomyces philanthi (35).
    [Show full text]
  • Strobilurin Biosynthesis in Basidiomycete Fungi
    ARTICLE DOI: 10.1038/s41467-018-06202-4 OPEN Strobilurin biosynthesis in Basidiomycete fungi Risa Nofiani1,2, Kate de Mattos-Shipley1, Karen E. Lebe3,4, Li-Chen Han 1, Zafar Iqbal1,5, Andrew M. Bailey6, Christine L. Willis 1, Thomas J. Simpson1 & Russell J. Cox 1,3,4 Strobilurins from fungi are the inspiration for the creation of the β-methoxyacrylate class of agricultural fungicides. However, molecular details of the biosynthesis of strobilurins have remained cryptic. Here we report the sequence of genomes of two fungi that produce strobilurins and show that each contains a biosynthetic gene cluster, which encodes a highly 1234567890():,; reducing polyketide synthase with very unusual C-terminal hydrolase and methyltransferase domains. Expression of stpks1 in Aspergillus oryzae leads to the production of prestrobilurin A when the fermentation is supplemented with a benzoyl coenzyme A (CoA) analogue. This enables the discovery of a previously unobserved route to benzoyl CoA. Reconstruction of the gene cluster in A. oryzae leads to the formation of prestrobilurin A, and addition of the gene str9 encoding an FAD-dependent oxygenase leads to the key oxidative rearrangement responsible for the creation of the β-methoxyacrylate toxophore. Finally, two methyl- transferases are required to complete the synthesis. 1 School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK. 2 Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Tanjungpura, Jl. Prof. Dr. H. Hadari Nawawi, Pontianak 78124, Indonesia. 3 Institute for Organic Chemistry, Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany. 4 BMWZ, Leibniz Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany.
    [Show full text]
  • Regulation of the Phosphoprotein Phosphatase 2A System and Its Modulation During Oxidative Stress: a Potential Therapeutic Target?
    Pharmacology & Therapeutics 198 (2019) 68–89 Contents lists available at ScienceDirect Pharmacology & Therapeutics journal homepage: www.elsevier.com/locate/pharmthera Regulation of the phosphoprotein phosphatase 2A system and its modulation during oxidative stress: A potential therapeutic target? I.S. Elgenaidi, J.P. Spiers ⁎ Department of Pharmacology and Therapeutics, Trinity College Dublin, Ireland article info abstract Phosphoprotein phosphatases are of growing interest in the pathophysiology of many diseases and are often the Keywords:: neglected partner of protein kinases. One family member, PP2A, accounts for dephosphorylation of ~55-70% of all Ischaemia serine/threonine phosphosites. Interestingly, dysregulation of kinase signalling is a hallmark of many diseases in PP2A HIF1α which an increase in oxidative stress is also noted. With this in mind, we assess the evidence to support oxidative CIP2A stress-mediated regulation of the PP2A system SMAPs In this article, we first present an overview of the PP2A system before providing an analysis of the regulation hypoxia of PP2A by endogenous inhibitors, post translational modification, and miRNA. Next, a detailed critique of data miRNA implicating reactive oxygen species, ischaemia, ischaemia-reperfusion, and hypoxia in regulating the PP2A holoenzyme and associated regulators is presented. Finally, the pharmacological targeting of PP2A, its endoge- nous inhibitors, and enzymes responsible for its post-translational modification are covered. There is extensive evidence that oxidative stress modulates multiple components of the PP2A system, however, most of the data pertains to the catalytic subunit of PP2A. Irrespective of the underlying aetiology, free radical- mediated attenuation of PP2A activity is an emerging theme. However, in many instances, a dichotomy exists, which requires clarification and mechanistic insight.
    [Show full text]