ON Semiconductor Is

Total Page:16

File Type:pdf, Size:1020Kb

ON Semiconductor Is ON Semiconductor Is Now To learn more about onsemi™, please visit our website at www.onsemi.com onsemi and and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as-is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and holdonsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others. AND8116/D Integrated Relay/Inductive Load Drivers for Industrial and Automotive Applications www.onsemi.com Abstract APPLICATION NOTE Most PC board mounted relays are driven by microprocessors or other sensitive electronic devices. A successful coil drive circuit requires isolation between the relay and the microprocessor circuitry. Effective drive Industrial and Automotive Application Requirements circuits must account for drive current and voltage The device requirements for industrial and automotive requirements as well as effective suppression of L di/dt applications are different and must be addressed in different transients which can destroy microprocessor circuits. While manner. While the requirements for automotive applications it is easy to over-design an effective drive circuit, today’s are the most difficult to comply with, industrial designs must be cost competitive. Integrating a monolithic requirements traditionally allow more latitudes. Relay coil IC driver device into the relay will provide significant value currents vary considerably depending on the applications. to the system designer. The largest class of industrial and automotive relays have This paper describes the operation of coils with current consumption between 50 and 150 mA. ON Semiconductor’s integrated relay driver products to Selection of a suitable relay driver requires many interface sensitive electronic devices with mechanical constraints to be evaluated. For automotive applications, it relays to accomplish different control/power functions. is necessary to put special attention in the following Important benefits such as PC board space savings and requirements: components count reduction are also explained. • Load Dump (80 V, 300 ms) Introduction • Dual Voltage Jump Start (24 V or More) Although the advances in the electronics industry are • Reverse Battery (−14 V, 1 Minute or More) increasing day by day, mechanical relays are still • ESD Immunity (according AEC−Q100 Specification) extensively used in industrial and automotive applications to • Operating Ambient Temperature (−40°C to 85°C) control high current loads. Their low cost and excellent fault tolerance make relays to be an useful and reliable solution Meeting these automotive requirements usually results in in industrial and automotive applications environments. specifying an oversized and non-cost effective relay driver, The integrated relay driver devices NUD3105, NUD3112 or one requiring many protection components. and NUD3124 offered by ON Semiconductor are Industrial applications on the other hand do not have many considered to be the ideal device solution to control requirements different than the standard ones such as ESD mechanical relays used in industrial and automotive immunity (usually 2.0 kV HBM), and a given range of applications. Their integrated design allows significant operating ambient temperature (usually between 0°C to simplification and cost reductions when replacing 85°C). However, some applications also call for protection traditional discrete solutions such as bipolar transistors plus devices against transient voltage conditions, which creates free-wheeling diodes. the need for extra protection components too. © Semiconductor Components Industries, LLC, 2015 1 Publication Order Number: May, 2015 − Rev. 2 AND8116/D AND8116/D STANDARD DISCRETE RELAY DRIVERS For both type of applications industrial and automotive, +12 V the most traditional and popular relay drivers are the ones formed discretely with a bipolar transistor, two bias resistors D1 and a free-wheeling diode. In some cases, it is required to add extra components such as MOVs (metal oxide varistors) and extra diodes to ensure proper protection. Figure 1 shows a typical discrete relay driver with the extra protection D2 RELAY devices. Diode D1 provides reverse supply protection and +5 V/3.3 V diode D2 provides a clamp function to suppress the voltage spike generated by the relay’s coil during the turn-off interactions (V = Ldi/dt). A power MOV device is used to R1 VARISTOR LOGIC Q1 limit positive transients to within the bipolar transistor’s breakdown voltage. The saturation voltage of the bipolar R2 transistor (typically over 1.0 V) causes high power dissipation which in some cases eliminates the option to use inexpensive surface mount package devices such as 0 SOT−23 or smaller, therefore the need for bigger packages Figure 1. Typical Discrete Relay Driver such as TO220 is always present. The resulting discrete circuit is expensive because it takes several components and a big space in the PC board. ON SEMICONDUCTOR’S RELAY DRIVERS The ON Semiconductor’s relay drivers portfolio is Drain (3) divided in two main categories: • Industrial Version (Devices NUD3105, NUD3112) • Automotive Version (Device NUD3124) Clamp Zener 7 V or 14 V Gate (1) 1.0 k Industrial Version Clamp Zener ESD Figure 2 describes the industrial relay driver version 7 V or 14 V (devices NUD3105, NUD3112). This device integrates Zener 7 V several discrete components in a single SOT−23 three 300 k leaded surface mount package to achieve a simpler and more ESD efficient solution than the conventional discrete relay Zener drivers. The characteristics of the integrated devices are 7 V listed below: • N-Channel FET 40 V, 500 mA Source (2) • ESD Protection Zener Diodes (7.0 V) Figure 2. Industrial Relay Driver Description • Bias Resistors (1.0 kW in the Gate and 300 kW between (NUD3105 and NUD3112 Devices) Gate and Source) • Clamping Protection Zener Diodes (7.0 V for 5.0 V Relay’s Coils, and 14 V for 12 V Coils) www.onsemi.com 2 AND8116/D The 40 V N-channel FET is designed to switch the relay’s against ESD conditions possibly induced by persons during coil for currents up to 500 mA. The clamping protection the handling or assembly of the device. And the bias resistor Zener diodes (14 V) provides a clamp function to suppress provides the drive control signals to the FET. the voltage spike generated by the relay’s coil during the Figure 3 illustrates the typical connection diagram of the turn−off interactions (V = Ldi/dt). The ESD protection NUD3105/NUD3112 devices: Zener diodes protects the gate-source silicon junction +12 V/5.0 V RELAY NUD3105, NUD3112 +5 V/3.3 V Clamp Zener 7 V or 14 V 1.0 k LOGIC Clamp Zener ESD 7 V or 14 V Zener 14 V 300 k ESD Zener 14 V 0 Figure 3. Typical Connection Diagram (NUD3105 5.0 V Relay’s Coils and NUD3112 for 12 V) When positive logic voltage is applied to the gate of the device (5.0 V/3.3 V), the FET is turned-on which activates VSUPPLY – 10 V/div the relay. When the FET is turned-off, the relay’s coil is V – 10 V/div deactivated which causes it to kickback and generates a high GS voltage spike, this voltage spike is suppressed by the clamp Zener diodes placed across the FET. This operation Inductor sequence is repeated for all the on and off operations of the kick back relay driver. Figure 4 shows the voltage and current VDS – 10 V/div waveforms generated across the NUD3112 relay driver when it is controlling an OMRON relay (G8TB−1A−64). This relay has the following coil characteristics: L = 46 mH, ID – 50 mA/div Rdc = 100 W. The current that the relay takes for 12 V of supply voltage is 120 mA.
Recommended publications
  • MM2EMD L7.Pdf
    University of Nottingham Electromechanical devices MM2EMD Lecture 7 – Transistors - Switching high voltage things on with a low voltage Dr. Roderick MacKenzie [email protected] Summer 2015 @rcimackenzie Released under Outline of the lecture •No recap of last lecture :) •Transistor basics •Relays (Mechanical transistor) •NPN Bipolar Junction Transistors •PNP Bipolar Junction Transistors •MOSFETs •Push pull pairs to drive MOSFETs •One last thing •Summary 2 Roderick MacKenzie MM2EMD Electromechanical devices Outline of the lecture •No recap of last lecture :) •Transistor basics •Relays (Mechanical transistor) •NPN Bipolar Junction Transistors •PNP Bipolar Junction Transistors •MOSFETs •Push pull pairs to drive MOSFETs •One last thing •Summary 3 Roderick MacKenzie MM2EMD Electromechanical devices Roderick MacKenzie Roderick electrical devices suchas motors. high voltage control electronics • This lecture is making low voltageThis lecture Think back to lecture 1. lecture Think backto Dave Jones Smart Electronic Circuits (low voltage) Circuits voltage) (high S.J. de Waard Simple Simple Electrical MM2EMD Electromechanical devices 4 Think about an AND gate chip And gate Biro •Look at the tiny thin pins which are used to carry current in and out of the chip. •These pins can supply 25 mA @ 5V at the most. 5 Roderick MacKenzie MM2EMD Electromechanical devices But why is this? i •If we take the top off the chip h p o with acid. G ● Look how much small the actual chip is and look at the tiny bond wires (25 mA @ 5V max!!!) 6 Roderick MacKenzie MM2EMD Electromechanical devices Roderick MacKenzie Roderick 500 V • It needsIt Now think about this motor. this about Now think to run.to 10 Amps 10 at CMBJ the current.
    [Show full text]
  • What Are Electronic Timing Relays? a Relay Is an Electromagnetic Switch Which Operates on a Small Electric Current
    What Do You Know About Electronic Timing Relays? There are certain components that form the core of the modern control systems. One such important component used in many applications is an Electronic Timing Relay (ETR). Let us start by understanding some basics. What are Electronic Timing Relays? A relay is an electromagnetic switch which operates on a small electric current. These switches are used to turn on or off a circuit of higher amperage. When electricity is applied, the electromagnetic coil causes the armature to move, opening or closing the contacts, controlling the flow of electricity from a high current source connected to the load side of the relay. Relays act as bridges that activate larger currents using smaller ones. This allows you to use a relay to safely switch on and off different devices. An Electronic Timing Relay has circuitry integrated which controls the armature motion upon input voltage being applied. This addition gives the relay the property of time-delay actuation. Electronic Timing Relays are constructed to delay armature motion on coil energization, de-energization, or both. ETRs provide a wide range of selectable functions so that users can customize their specific machine operation. Relay Components and Operation What are the Best Features of Electronic Timing Relays? Electronic timing relays are used in a number of electronic applications, owing to the unending list of their features, which are as follows: • Multi-function timer, which allows the user to adjust between multiple timing functions. • High duty cycle applications. • DIN rail or panel mounting. • Resistant to mechanical shock and vibration.
    [Show full text]
  • Photovoltaic Couplers for MOSFET Drive for Relays
    Photocoupler Application Notes Basic Electrical Characteristics and Application Circuit Design of Photovoltaic Couplers for MOSFET Drive for Relays Outline: Photovoltaic-output photocouplers(photovoltaic couplers), which incorporate a photodiode array as an output device, are commonly used in combination with a discrete MOSFET(s) to form a semiconductor relay. This application note discusses the electrical characteristics and application circuits of photovoltaic-output photocouplers. ©2019 1 Rev. 1.0 2019-04-25 Toshiba Electronic Devices & Storage Corporation Photocoupler Application Notes Table of Contents 1. What is a photovoltaic-output photocoupler? ............................................................ 3 1.1 Structure of a photovoltaic-output photocoupler .................................................... 3 1.2 Principle of operation of a photovoltaic-output photocoupler .................................... 3 1.3 Basic usage of photovoltaic-output photocouplers .................................................. 4 1.4 Advantages of PV+MOSFET combinations ............................................................. 5 1.5 Types of photovoltaic-output photocouplers .......................................................... 7 2. Major electrical characteristics and behavior of photovoltaic-output photocouplers ........ 8 2.1 VOC-IF characteristics .......................................................................................... 9 2.2 VOC-Ta characteristic ........................................................................................
    [Show full text]
  • Experiment (1) Principles of Switching
    Experiment (1) Principles of Switching Introduction When you use microcontrollers, sometimes you need to control devices that requires more electrical current than a microcontroller can supply; for this, electrical relays and transistors are used. In this experiment, we will investigate two types of switching; electromechanical switching and solid state switching. Objectives This experiment aims to: 1- Understand the basic principles of switching devices. 2- Introduction to electromechanical switching as well as solid state switching. 3- Understand the advantages and disadvantages of each type. 4- Study the relative speed of different type of switches. Theory Electromechanically Relays Relays are electromechanical devices that use an electromagnet to operate a pair of movable contacts from an open position to a closed position. The relay is a switch that is controlled by a small electric current. It can be used to control motors, heaters or lamps circuits which themselves can draw a lot more electrical power. Figure 1 shows the circuit symbol for a relay. Figure 1: Circuit symbol for a relay In figure 2, the relay’s coil is energized by the low-voltage (12 VDC) source, while the single- pole, single-throw (SPST) contact interrupts the high-voltage (480 VAC) circuit. It is quite likely that the current required to energize the relay coil will be hundreds of times less than the current rating of the contact. Typical relay coil currents are well below 1 amp, while typical contact ratings for industrial relays are at least 10 amps. Mechatronics Systems Design Lab Figure 2: Relay drive an AC load One relay coil/armature assembly may be used to actuate more than one set of contacts.
    [Show full text]
  • IXYS Integrated Circuits Division Introduces High Current MOSFET Power Solid State Relay (SSR)
    PRESS RELEASE Contact: Catherine Austin Ph: 978 - 524 - 6823 Fax: 978 - 524 - 4900 IXYS Integrated Circuits Division Introduces High Current MOSFET Power Solid State Relay (SSR) The CPC1 7 0 5Y is a 60V, DC - Only Power Relay , I deal for Variety of High Performance Reliable Switching Applications Beverly, MA – October 1 2, 2017. IXYS Integrated Circuits Division (ICD), Inc., a wholly owned subsidia ry of IXYS Corporation (NASDAQ: IXYS), announced the imm edi ate availability of the CPC1705Y, a 60V, 3.25A , DC - Switching Power SSR. This is the industry’s highest load current rating for a single - pole normally closed ( 1 - Form B) solid state relay using an opti c ally coupled, single MOSFET output switch architecture in a p ower IC package . T he CPC1705Y SSR provides 2500Vrms of input to output isolation and has a very low 0.09 o hms maximum on - r esistance. The relay output is constructed with an efficient MOSFET switch that utilizes I CD’s patented O ptoMOS architecture. The input contro ls the optically cou pled output requiring only 5mA of input current to activate the isolated DC switch. The device is offered in IXYS ICD’s 4 - pin Power Single In - line Package (Power SIP) (10.2 height X 21 .1 length X 3.3 width in mm) which facilitates multiple channel switching in dense printed circuit board design s and has an operational temperature range from - 40 to +85 Celsius. Off state leakage current is 1 microampere maximum at 25 Celsius. The CPC17 05Y 1 - Form - B SSR is complementary to IXYS ICD’s popular CPC1706Y Normally Open ( 1 - Form - A ) SSR with similar specifications.
    [Show full text]
  • Hands on Relay School Transformer Protection Open Lecture Hands on Relay School Transformer Protection Open Lecture
    Hands On Relay School Transformer Protection Open Lecture Hands On Relay School Transformer Protection Open Lecture Class Outline • Transformer protection overview • Review transformer connections • Discuss challenges and methods of current differential Protection • Discuss other protective elements used in transformer protection Scott Cooper [email protected] (727)415-5843 Eastern Regional Manager 204 37th Avenue North #281 Manta Test Systems Saint Petersburg, FL 33704 Transformer Protection Overview Transformer Protection Zones Types of Protection Mechanical Protection • Analysis of Accumulated Gases – Looks for arcing by‐products • Sudden Pressure Relays – Orifice allows for normal thermal expansion/contraction. Arcing causing pressure waves in oil or gas space overwhelming the orifice and actuating the relay. • Thermal – Caused by overload, over excitation, harmonics and geo magnetically induced currents • Hot spot temperature • Top Oil • LTC Overheating Types of Protection Relay Protection • Internal Short Circuit – Phase: 87HS, 87T – Ground: 87HS, 87T, 87GD • System Short Circuit Back Up Protection – Phase and Ground Faults • Buses: 50, 50N, 51, 51N, 46 • Lines: 50, 50N, 51, 51N, 46 Types of Protection Relay Protection • Abnormal Operating Conditions – Open Circuits: 46 – Overexcitation: 24 – Undervoltage: 27 – Abnormal Frequency: 81U – Breaker Failure: 50BF, 50BF‐N Phase Differential Overview • What goes into a “unit” comes out of I + I + I = 0 a “unit” 1 2 3 • Kirchoff’s Law: The sum of the I I 1 UNIT 2 currents entering and
    [Show full text]
  • Design Considerations for Solid State Relays Application Note 5452
    Design Considerations for Solid State Relays Application Note 5452 Introduction Solid State Relay and Electromechanical Relay For low voltage signaling applications or low power Comparison switching applications, optically isolated solid state relays A solid state relay offers significant advantages to the (SSRs) with MOSFET outputs provide significant advan- designer. Paramount amongst these advantages is the tages over traditional electromechanical relays (EMRs). almost infinite switching cycles an SSR can perform since In this application note, novel input LED drive current there are no mechanical parts or mechanisms to wear-out. circuits that ensure proper SSR turn-on and turn-off are The solid state reliability and billions of switching cycles discussed. Design techniques for paralleling SSRs for are the SSRs most significant features. Other advantages higher load current or for stacking SSRs for higher load include no contact bounce, the ability to handle relatively withstand voltages are also shown. Finally, example high inrush currents, and immunity to EMI and RFI. applications will show where the strengths of SSRs can be There are no mechanical parts inside SSRs and as a result particularly well used. they are essentially immune to shock, vibration and acceleration. Optically isolated solid state relays are classified as: Form A, single pole, single-throw, normally open; Form B, single Some disadvantages of the SSR include a small but finite pole, single throw, normally closed; and Form C, single off-state leakage current and relatively higher output on pole, double throw with one contact closed and the resistance compared to EMRs. In addition, it is difficult to other contact open.
    [Show full text]
  • Technical Explanation for General-Purpose Relays
    Technical Explanation for General-purpose Relays CSM_GeneralRelay_TG_E_10_2 Introduction Sensors What Is a Relay? Basically, a Relay is a device with contacts that opens and closes a switch as the result of an input signal (voltage or current) applied to a coil. Signal applied to Electromagnetism The output Switches Safety Components Relays Control Components Automation Systems Motion / Drives an input coil. operates a motion. contacts operate. Motion is transferred. Output Other Names • Electromagnetic relay Input • Auxiliary relay • Miniature relay •Power relay etc. Electromagnetic section Switch (coil) (contact structure) To get an idea of what relays are, think of a children's athletic carnival. The baton Little A holds on tightly to the baton and passes it to the big B. is the signal. This is a relay. Little A Big B Energy Conservation Support / Environment Measure Equipment Power Supplies / In Addition Others Common 1 Technical Explanation for General-purpose Relays Applications for Relays Sensors Relays are widely used in most machines and devices that use electricity. Refrigerators Home electrical appliances Washing machines, etc. Switches Safety Components Relays Control Components Automation Systems Motion / Drives Molding equipment Packing machinery Industrial machinery Industrial robots Programmable controllers, etc. Chemical plants Shale gas plants Plants Control panels at power stations and transformer substations Control panels for building management, etc. Relay Applications Scientific equipment Constant temperature tanks, etc. Automatic vending machines Vending machines and entertainment equipment Amusement machines, etc. Energy Conservation Support / Environment Measure Equipment Communications and Measurement equipment, etc. measurement equipment Power Supplies / In Addition OA devices Copy machines, etc. Others Common 2 Technical Explanation for General-purpose Relays Types of Relays Sensors There are mainly two types of relays: mechanical relays and solid state relays.
    [Show full text]
  • R842 Electronic Relay for Electric Baseboards
    R842 Electronic Relay For Electric Baseboards • Built-in transformer • Universal replacement part • Compatible with electronic T186 room sensor Description Viconics’ innovative R842 electronic relay has been designed for silent control of high voltage resistive heater loads (120V to 600 Vac) from a low voltage control circuit. Typical applications include control of electric baseboard and cabinet heaters in commercial buildings. Inductive motor loads can also be controlled (120 and 240 Vac models only). Using advanced microprocessor-based circuitry, the R842 is capable of handling greater than 500,000 cycles (typical). It has a built-in transformer and is compatible with most industry standard electromechanical or electronic thermostats with on/off outputs. A unique feature of product is that it can operate with a value priced Viconics’ T186 electronic PI (proportional and integral) room thermostat with setpoint capability, providing exceptional accuracy, comfort, and energy savings. Fig.1 - R842 relay for electric baseboards Features Benefits ⇒ Permits fully electronic PI control • Unique compatibility with Viconics’ own designer ⇒ Improved accuracy (+/-0.3ºC) and comfort electronic thermostat ⇒ Energy savings ⇒ Aesthetically pleasing thermostat • Reliable microprocessor-based design ⇒ Long life • Compatible with all standard 24 V thermostats ⇒ Adds flexibility ⇒ Not affected by ambient temperatures typically • Constant 10 second time delay found in older, thermal type baseboard relays ⇒ Less inventory to stock • Built-in transformer
    [Show full text]
  • Inductive Load Arc Suppression Application Note
    Application Note: Inductive Load Arc Suppression Figure 2. Introduction Bidirectional TVS Diode When a reed switch or reed sensor is used to control an Reed Switch/Sensor inductive device (relay coil, solenoid, transformer, small motor, etc.), the energy stored in the inductance in the device Load will subject the switch contacts to a high voltage when the reed switch opens. When the switch contacts open, the contact gap is initially small. Arcing across this contact gap RL can occur immediately after the switch opens. This can TVS Vs happen in resistive as well as inductive loads, but inductive loads generate a higher voltage and this causes increased L arcing. Increased arcing decreases switch life. Direct current (DC) inductive circuits typically use a diode to prevent the high voltage. The diode in the circuit is called a suppression diode, flyback diode, freewheeling diode, or catch diode. However, a diode cannot be used in an alternating current (AC) circuit. AC arc suppression requires the use of a RC suppression has the advantage of limiting the switch metal-oxide varistor (MOV), a bidirectional transient voltage contact voltage at the time of switch opening when the suppressor (TVS) diode, or an RC suppression network. An size of the contact gap is small. RC suppression can also RC suppression network is also called a snubber. The various be used to reduce arcing and improve life in resistive arc suppression methods have various advantages and loads. With RC suppression, a seriesconnected capacitor disadvantages. Using no suppression is also an option if life and resistor network is placed across (in parallel with) the is adequate without it.
    [Show full text]
  • Low-Cost AC Solid-State Relay with Mosfets Reference Design
    TI Designs Low-Cost AC Solid-State Relay With MOSFETs Description Features The low-cost AC solid-state relay (SSR) with • No Clicking Sound MOSFETs reference design is a single relay • Low-Cost BOM replacement that enables efficient power management for a low-power alternative to standard • MOSFET Based Design for Fast ON/OFF electromechanical relays in thermostat applications. Switching This SSR reference design is the base model of the • Self-Powered self-powered SSR providing a low-cost solution for • Zero Power From Thermostat Battery low-cost thermostats. • Inherent Snubber Circuit Reducing Voltage Spike Resources Created by Inductive Loads • Low Power and Quiescent Current Components TIDA-01064 Design Folder • Undervoltage Protection ATL431 Product Folder LP339 Product Folder Applications SN74AUP1G74 Product Folder • Thermostats CSD18541F5 Product Folder TIDA-00377 Tools Folder • HVAC Systems TIDA-00751 Tools Folder • Building Automation ASK Our E2E Experts Undervoltage lockout DC power supply LP339(A) 2 × ATL431 Control logic ON MOSFET switch 24 V SN74LVC1G74 AC OFF 2 × CSD18541F5 LP339(B,C,D) Load Copyright © 2016, Texas Instruments Incorporated An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and other important disclaimers and information. TIDUC87A–September 2016–Revised March 2017 Low-Cost AC Solid-State Relay With MOSFETs 1 Submit Documentation Feedback Copyright © 2016–2017, Texas Instruments Incorporated System Overview www.ti.com 1 System Overview 1.1 System Description A solid-state relay (SSR) is an electronic switching device that switches on or off when a small external voltage is applied across its control terminals. SSRs consist of an input logic to respond to an appropriate input (control signal), a solid-state electronic switching device to switch power to the load circuitry, and a coupling mechanism to enable the control signal to activate this switch without mechanical parts.
    [Show full text]
  • Bistable Relay Computer Brc44 for Education in Digital Technologies
    INTERNATIONAL SCIENTIFIC JOURNAL "INDUSTRY 4.0" WEB ISSN 2534-997X; PRINT ISSN 2534-8582 BISTABLE RELAY COMPUTER BRC44 FOR EDUCATION IN DIGITAL TECHNOLOGIES Assoc. Prof. Dipl. Eng. Svetoslav Zabunov PhD, Prof. DSc Dipl. Eng. Garo Mardirossian, Prof. Dipl. Eng. Roumen Nedkov PhD Space Research and Technology Institute – Bulgarian Academy of Sciences [email protected] Abstract: The contemporary high-efficiency education in the sphere of digital technologies requires the employment of such demonstration methods and tools, which enable visual representation and illustration of the computer technologies in an attractive and accessible form. The aim is to let the learners, even if unprepared in the basic scientific and technological areas – physics, mathematics, informatics, electrical and electronic engineering, etc., easily to understand the working principle of the digital computer. The goal of this development, the subject of the current material, is the creation of a digital computer, realized using bistable relays (BRC44). The application is with the education of students and pupils in universities and schools in the educational subjects: informatics, computer science, information technologies, electronics, and physics. The BRC44 computer is a 4-bit computer with 4-bit data bus to the ROM memory. The employed architecture is of the Harvard type. The computer uses only bistable relays as active electronic elements without the implementation of monostable relays, vacuum electronic tubes, transistors and integrated circuits. The bistable relay based computer is designed around four master printed circuit boards, on which are mounted the bistable relays, the semiconducting diodes, the light emitting diodes, etc. The approbation of the BRC44 prototype with students demonstrated the easy perception of the working principle of the digital computer, due to the pictorial presentation, the light indication of the current state of each relay, etc.
    [Show full text]