Hands on Relay School Transformer Protection Open Lecture Hands on Relay School Transformer Protection Open Lecture

Total Page:16

File Type:pdf, Size:1020Kb

Hands on Relay School Transformer Protection Open Lecture Hands on Relay School Transformer Protection Open Lecture Hands On Relay School Transformer Protection Open Lecture Hands On Relay School Transformer Protection Open Lecture Class Outline • Transformer protection overview • Review transformer connections • Discuss challenges and methods of current differential Protection • Discuss other protective elements used in transformer protection Scott Cooper [email protected] (727)415-5843 Eastern Regional Manager 204 37th Avenue North #281 Manta Test Systems Saint Petersburg, FL 33704 Transformer Protection Overview Transformer Protection Zones Types of Protection Mechanical Protection • Analysis of Accumulated Gases – Looks for arcing by‐products • Sudden Pressure Relays – Orifice allows for normal thermal expansion/contraction. Arcing causing pressure waves in oil or gas space overwhelming the orifice and actuating the relay. • Thermal – Caused by overload, over excitation, harmonics and geo magnetically induced currents • Hot spot temperature • Top Oil • LTC Overheating Types of Protection Relay Protection • Internal Short Circuit – Phase: 87HS, 87T – Ground: 87HS, 87T, 87GD • System Short Circuit Back Up Protection – Phase and Ground Faults • Buses: 50, 50N, 51, 51N, 46 • Lines: 50, 50N, 51, 51N, 46 Types of Protection Relay Protection • Abnormal Operating Conditions – Open Circuits: 46 – Overexcitation: 24 – Undervoltage: 27 – Abnormal Frequency: 81U – Breaker Failure: 50BF, 50BF‐N Phase Differential Overview • What goes into a “unit” comes out of I + I + I = 0 a “unit” 1 2 3 • Kirchoff’s Law: The sum of the I I 1 UNIT 2 currents entering and leaving a junction is (should be) zero • Straight forward concept, but not that simple in practice with I transformers 3 Phase Differential Overview A host of issues presents itself to decrease security and reliability of transformer differential protection • CT ratio caused current mismatch • Transformation ratio caused current mismatch (fixed taps) • LTC induced current mismatch • Delta‐wye transformation of currents – Vector group and current derivation issues • Zero‐sequence current elimination for external ground faults on wye windings • Inrush phenomena and its resultant current mismatch • Harmonic content availability during inrush period due to point‐on‐wave switching (especially with newer transformers) • Over‐excitation phenomena and its resultant current mismatch • Internal ground fault sensitivity concerns • Switch onto fault concerns • CT saturation, remnance and tolerance Phase Differential Overview‐Transformer Basics Transformer Tap Calculation‐Per Unit Concept Compensation (2) Change in CT Ratio 1:1, Y-Y 4:1, 3Y 1:1, 3Y IA, IB, IC Ia, Ib, Ic IA', IB', IC' Ia', Ib', Ic' IA'*4 = Ia' IB' * 4 = Ib' IC' * 4 = Ic' Phase Differential Overview‐Transformer Basics Transformer Tap Calculation‐Per Unit Concept Compensation (3) Transformer Ratio 2:1, Y-Y 1:1, 3Y 1:1, 3Y IA, IB, IC Ia, Ib, Ic IA', IB', IC' Ia', Ib', Ic' IA' = Ia' / 2 IB' = Ib' / 2 IC' = Ic' / 2 Phase Differential Overview‐Transformer Basics Transformer Tap Calculation‐Per Unit Concept Compensation (2) Change in CT Ratio IA, IB, IC Ia, Ib, Ic IA', IB', IC' Ia', Ib', Ic' There must be an easier way….. Phase Differential Overview‐Transformer Basics Transformer Tap Calculation‐Per Unit Concept 100MVA 100MVA IN OUT Phase Differential Overview‐Transformer Basics Transformer Tap Calculation‐Per Unit Concept Tap Calculation with Wye CTs Tap Calculation with Delta CTs TransformerVA TransformerVA WindingTap = WindingTap = V ∗CTR ∗ 3 L−L VL−L ∗CTR Phase Differential Overview‐Transformer Basics Transformer Tap Calculation‐Per Unit Concept Each measured current is divided by the winding Tap. The result is a percent of rating. These percent of ratings can be compared directly. Phase Differential Overview‐Transformer Basics AB connected delta‐wye transformer Phase Differential Overview‐Transformer Basics • Subtracting Vectors: Subtract from reference phase vector the connected non-polarity vector…in our example Ia-Ib c -b a b • Can be repeated for B & C, or you can assume –120 and –240 displacement from A for B&C respectively •Ib –Ic and Ic –Ia would be the vectors Phase Differential Overview‐Transformer Basics AC connected delta‐wye transformer Ia-Ic Ia Ic-Ib Ia Ia Ic Ib-Ia Ib Ib Ib Ia Ic-Ib Ic Ib-Ia Ia-Ic Ic Ic Ib Phase Differential Overview‐Transformer Basics • Subtracting vectors: Subtract from reference phase vector the connected non- polarity vector…in our example Ia-Ic c a b -c • Can be repeated for B & C, or you can assume –120 and –240 displacement from A for B&C respectively •Ib –Ia and Ic –Ib would be the vectors Phase Differential Overview‐Transformer Basics Angular Displacement Conventions: • ANSI Y‐Y, Δ‐Δ @ 0°; Y‐Δ , Δ‐Y @ X1 lags H1 by 30° – ANSI makes life easy • Euro‐designations use 30° increments of LAG from the X1 bushing to the H1 bushings – Dy11=X1 lags H1 by 11*30°=330° or, H1 leads X1 by 30° – Think of a clock – each hour is 30 degrees 0 11 1 10 2 9 3 Dy1 = X1 lags H1 by 1*30 = 30, or H1 leads X1 by 30 (ANSI std.) 8 4 7 5 6 Phase Differential Overview‐Transformer Basics C c A a b B US Standard Dy Example: • H1 (A) leads X1 (a) by 30 • Currents on “H” bushings are delta quantities Assume 1:1 transformer Phase Differential Overview‐Transformer Basics US Standard Yd Example: •H1 (a) leads X1 (A) by 30 •Currents on “X” bushings are delta quantities C c a B b A Assume 1:1 transformer Phase Differential Overview • Applied with variable percentage slopes to accommodate CT saturation and CT ratio errors • Applied with inrush and over excitation restraints • Set with at least a 20% pick up to accommodate CT performance – Class “C” CT; +/‐ 10% at 20X rated • If unit is LTC, add another +/‐ 10% • May not be sensitive enough for all faults (low level, ground faults near neutral) Phase Differential E‐M Relay Application • CT ratios and tap settings are selected to account for: – Transformer ratios – If delta or wye connected CTs are applied – Delta increases ratio by 1.73 • Delta CTs must be used to filter zero‐ sequence current on all wye transformer windings • Dy transformer connections compensated by yd CT connections to make the currents “apples to apples”. Phase Differential E‐M Relay Application Zero‐sequence elimination: In E‐M relays with wye connected transformers, delta connected CTs are used to remove the ground current. Phase Differential Digital Relay Application Settings compensate for the following: • Transformer ratio • CT ratio • Vector quantities – Which vectors are used – Where the 1.73 factor (√3) is applied • When examining line to line quantities on delta connected transformer windings and CT windings • Zero‐sequence current filtering for wye windings so the differential quantities do not occur from external ground faults Phase Differential Digital Relay Application Angular displacement (IEC and SEL) • *1 IEC (Euro) practice does not have a standard like ANSI *1 • Most common connection is *2 Dy11 (low lead high by 30!) • Obviously observation of *2 angular displacement is extremely important when paralleling transformers! *1 = ANSI std. @ 0° *2 = ANSI std. @ X1 lag H1 by 30°, or “high lead low by 30 ° “ Digital Relay Application All wye CTs shown, most can retrofit legacy delta CT applications Benefits of Wye CTs • Phase segregated line currents – Individual line current oscillography – Currents may be easily used for overcurrent protection and metering – Easier to commission and troubleshoot – Zero sequence elimination performed by calculation Phase Differential Digital Relay Application Zero‐sequence elimination: In digital relays with wye connected transformers and wye connected CTs, ground current must be removed from the differential calculation. •3I0 = [Ia + Ib + Ic] I0 = 1/3 *[Ia + Ib + Ic] •Used where filtering is required, such as wye winding with wye CTs Phase Differential Digital Relay Application 2nd and 4th Harmonics During Inrush Typical Transformer Inrush Waveform Phase Differential Digital Relay Application Harmonically Restrained Differential Element • Inrush Detection and Restraint – Inrush occurs on transformer energizing as the core magnetizes – Sympathy inrush occurs from adjacent transformer(s) energizing, fault removal, allowing the transformer to undergo a low level inrush – Characterized by current into one winding of transformer, and not out of the other winding(s) – This causes the differential element to pickup – Use inrush restraint to block differential element during inrush period Phase Differential Digital Relay Application • Inrush Detection and Restraint – 2nd harmonic restraint has been employed for years – “Gap” detection has also been employed – As transformers are designed to closer tolerances, both 2nd harmonic and low current gaps in waveform have decreased – If 2nd harmonic restraint level is set too low, differential element may be blocked for internal faults with CT saturation (with associated harmonics generated) Phase Differential Digital Relay Application • Inrush Detection and Restraint – 4th harmonic is also generated during inrush – Odd harmonics are not as prevalent as Even harmonics during inrush – Odd harmonics more prevalent during CT saturation – Use 4th harmonic and 2nd harmonic together – M‐3310/M‐3311 relays use RMS sum of the 2nd and 4th harmonic as inrush restraint – Result: Improved security while not sacrificing reliability Phase Differential Digital Relay Application • Overexcitation Restraint – Overexcitation occurs when volts per hertz level rises (V/Hz) – This typically occurs from load rejection and malfunctioning generation AVRs – The
Recommended publications
  • Chapter – 3 Electrical Protection System
    CHAPTER – 3 ELECTRICAL PROTECTION SYSTEM 3.1 DESIGN CONSIDERATION Protection system adopted for securing protection and the protection scheme i.e. the coordinated arrangement of relays and accessories is discussed for the following elements of power system. i) Hydro Generators ii) Generator Transformers iii) H. V. Bus bars iv) Line Protection and Islanding Primary function of the protective system is to detect and isolate all failed or faulted components as quickly as possible, thereby minimizing the disruption to the remainder of the electric system. Accordingly the protection system should be dependable (operate when required), secure (not operate unnecessarily), selective (only the minimum number of devices should operate) and as fast as required. Without this primary requirement protection system would be largely ineffective and may even become liability. 3.1.1 Reliability of Protection Factors affecting reliability are as follows; i) Quality of relays ii) Component and circuits involved in fault clearance e.g. circuit breaker trip and control circuits, instrument transformers iii) Maintenance of protection equipment iv) Quality of maintenance operating staff Failure records indicate the following order of likelihood of relays failure, breaker, wiring, current transformers, voltage transformers and D C. battery. Accordingly local and remote back up arrangement are required to be provided. 3.1.2 Selectivity Selectivity is required to prevent unnecessary loss of plant and circuits. Protection should be provided in overlapping zones so that no part of the power system remains unprotected and faulty zone is disconnected and isolated. 3.1.3 Speed Factors affecting fault clearance time and speed of relay is as follows: i) Economic consideration ii) Selectivity iii) System stability iv) Equipment damage 3.1.4 Sensitivity Protection must be sufficiently sensitive to operate reliably under minimum fault conditions for a fault within its own zone while remaining stable under maximum load or through fault condition.
    [Show full text]
  • Application Guidelines for Ground Fault Protection
    Application Guidelines for Ground Fault Protection Joe Mooney and Jackie Peer Schweitzer Engineering Laboratories, Inc. Presented at the 1998 International Conference Modern Trends in the Protection Schemes of Electric Power Apparatus and Systems New Delhi, India October 28–30, 1998 Previously presented at the 52nd Annual Georgia Tech Protective Relaying Conference, May 1998 Originally presented at the 24th Annual Western Protective Relay Conference, October 1997 APPLICATION GUIDELINES FOR GROUND FAULT PROTECTION Joe Mooney, P.E., Jackie Peer Schweitzer Engineering Laboratories, Inc. INTRODUCTION Modern digital relays provide several outstanding methods for detecting ground faults. New directional elements and distance polarization methods make ground fault detection more sensitive, secure, and precise than ever. Advances in communications-aided protection further advance sensitivity, dependability, speed, and fault resistance coverage. The ground fault detection methods and the attributes of each method discussed in this paper are: • Directional Zero-Sequence Overcurrent • Directional Negative-Sequence Overcurrent • Quadrilateral Ground Distance • Mho Ground Distance Comparison of the ground fault detection methods is on the basis of sensitivity and security. The advantages and disadvantages for each method are presented and compared. Some problem areas of ground fault detection are discussed, including system nonhomogeneity, zero-sequence mutual coupling, remote infeed into high-resistance faults, and system unbalances due to in-line switching. Design and application considerations for each problem area are given to aid in setting the relay elements correctly. This paper offers a selection and setting guide for ground fault detection on noncompensated overhead power lines. The setting guide offers support in selecting the proper ground fault detection element based upon security, dependability, and sensitivity (high-resistance fault coverage).
    [Show full text]
  • Upgrading Power System Protection to Improve Safety, Monitoring, Protection, and Control
    Upgrading Power System Protection to Improve Safety, Monitoring, Protection, and Control Jeff Hill Georgia-Pacific Ken Behrendt Schweitzer Engineering Laboratories, Inc. Presented at the Pulp and Paper Industry Technical Conference Seattle, Washington June 22–27, 2008 Upgrading Power System Protection to Improve Safety, Monitoring, Protection, and Control Jeff Hill, Georgia-Pacific Ken Behrendt, Schweitzer Engineering Laboratories, Inc. Abstract—One large Midwestern paper mill is resolving an shown in Fig. 1 and Fig. 2, respectively. Each 5 kV bus in the arc-flash hazard (AFH) problem by installing microprocessor- power plant is supplied from two 15 kV buses. All paper mill based (μP) bus differential protection on medium-voltage and converting loads are supplied from either the 15 kV or switchgear and selectively replacing electromechanical (EM) overcurrent relays with μP relays. In addition to providing 5 kV power plant buses. Three of the power plant’s buses critical bus differential protection, the μP relays will provide utilized high-impedance bus differential relays installed during analog and digital communications for operator monitoring and switchgear upgrades within the last eight years. control via the power plant data and control system (DCS) and The generator neutral points are not grounded. Instead, a will ultimately be used as the backbone to replace an aging 15 kV zigzag grounding transformer had been installed on one hardwired load-shedding system. of the generator buses, establishing a low-impedance ground The low-impedance bus differential protection scheme was source that limits single-line-to-ground faults to 400 A. Each installed with existing current transformers (CTs), using a novel approach that only required monitoring current on two of the of the 5 kV bus source transformers is also low-impedance three phases.
    [Show full text]
  • MM2EMD L7.Pdf
    University of Nottingham Electromechanical devices MM2EMD Lecture 7 – Transistors - Switching high voltage things on with a low voltage Dr. Roderick MacKenzie [email protected] Summer 2015 @rcimackenzie Released under Outline of the lecture •No recap of last lecture :) •Transistor basics •Relays (Mechanical transistor) •NPN Bipolar Junction Transistors •PNP Bipolar Junction Transistors •MOSFETs •Push pull pairs to drive MOSFETs •One last thing •Summary 2 Roderick MacKenzie MM2EMD Electromechanical devices Outline of the lecture •No recap of last lecture :) •Transistor basics •Relays (Mechanical transistor) •NPN Bipolar Junction Transistors •PNP Bipolar Junction Transistors •MOSFETs •Push pull pairs to drive MOSFETs •One last thing •Summary 3 Roderick MacKenzie MM2EMD Electromechanical devices Roderick MacKenzie Roderick electrical devices suchas motors. high voltage control electronics • This lecture is making low voltageThis lecture Think back to lecture 1. lecture Think backto Dave Jones Smart Electronic Circuits (low voltage) Circuits voltage) (high S.J. de Waard Simple Simple Electrical MM2EMD Electromechanical devices 4 Think about an AND gate chip And gate Biro •Look at the tiny thin pins which are used to carry current in and out of the chip. •These pins can supply 25 mA @ 5V at the most. 5 Roderick MacKenzie MM2EMD Electromechanical devices But why is this? i •If we take the top off the chip h p o with acid. G ● Look how much small the actual chip is and look at the tiny bond wires (25 mA @ 5V max!!!) 6 Roderick MacKenzie MM2EMD Electromechanical devices Roderick MacKenzie Roderick 500 V • It needsIt Now think about this motor. this about Now think to run.to 10 Amps 10 at CMBJ the current.
    [Show full text]
  • Transformer Protection
    Power System Elements Relay Applications PJM State & Member Training Dept. PJM©2018 6/05/2018 Objectives • At the end of this presentation the Learner will be able to: • Describe the purpose of protective relays, their characteristics and components • Identify the characteristics of the various protection schemes used for transmission lines • Given a simulated fault on a transmission line, identify the expected relay actions • Identify the characteristics of the various protection schemes used for transformers and buses • Identify the characteristics of the various protection schemes used for generators • Describe the purpose and functionality of Special Protection/Remedial Action Schemes associated with the BES • Identify operator considerations and actions to be taken during relay testing and following a relay operation PJM©2018 2 6/05/2018 Basic Concepts in Protection PJM©2018 3 6/05/2018 Purpose of Protective Relaying • Detect and isolate equipment failures ‒ Transmission equipment and generator fault protection • Improve system stability • Protect against overloads • Protect against abnormal conditions ‒ Voltage, frequency, current, etc. • Protect public PJM©2018 4 6/05/2018 Purpose of Protective Relaying • Intelligence in a Protective Scheme ‒ Monitor system “inputs” ‒ Operate when the monitored quantity exceeds a predefined limit • Current exceeds preset value • Oil level below required spec • Temperature above required spec ‒ Will initiate a desirable system event that will aid in maintaining system reliability (i.e. trip a circuit
    [Show full text]
  • Protection, Control, Automation, and Integration for Off-Grid Solar-Powered Microgrids in Mexico
    Protection, Control, Automation, and Integration for Off-Grid Solar-Powered Microgrids in Mexico Carlos Eduardo Ortiz and José Francisco Álvarez Rada Greenergy Edson Hernández, Juan Lozada, Alejandro Carbajal, and Héctor J. Altuve Schweitzer Engineering Laboratories, Inc. Published in Wide-Area Protection and Control Systems: A Collection of Technical Papers Representing Modern Solutions, 2017 Previous revised edition released October 2013 Originally presented at the 40th Annual Western Protective Relay Conference, October 2013 1 Protection, Control, Automation, and Integration for Off-Grid Solar-Powered Microgrids in Mexico Carlos Eduardo Ortiz and José Francisco Álvarez Rada, Greenergy Edson Hernández, Juan Lozada, Alejandro Carbajal, and Héctor J. Altuve, Schweitzer Engineering Laboratories, Inc. Abstract—Comisión Federal de Electricidad (CFE), the distribution network. Each microgrid includes an integrated national Mexican electric utility, launched the White Flag protection, control, and monitoring (PCM) system. The Program (Programa Bandera Blanca) with the objective of system collects and processes data from the microgrid providing electricity to rural communities with more than 100 inhabitants. In 2012, CFE launched two projects to provide substations and sends the data to the supervisory control and electric service to two communities belonging to the Huichol data acquisition (SCADA) master of two remote CFE control indigenous group, Guásimas del Metate and Tierra Blanca del centers. The system includes local and remote controls to Picacho, which are both located in the mountains near Tepic, operate the microgrid breaker. Nayarit, Mexico. Each microgrid consists of a photovoltaic power CFE is studying the possibility of interconnecting plant, a step-up transformer bank, and a radial medium-voltage neighboring microgrids in the future to improve service distribution network.
    [Show full text]
  • What Are Electronic Timing Relays? a Relay Is an Electromagnetic Switch Which Operates on a Small Electric Current
    What Do You Know About Electronic Timing Relays? There are certain components that form the core of the modern control systems. One such important component used in many applications is an Electronic Timing Relay (ETR). Let us start by understanding some basics. What are Electronic Timing Relays? A relay is an electromagnetic switch which operates on a small electric current. These switches are used to turn on or off a circuit of higher amperage. When electricity is applied, the electromagnetic coil causes the armature to move, opening or closing the contacts, controlling the flow of electricity from a high current source connected to the load side of the relay. Relays act as bridges that activate larger currents using smaller ones. This allows you to use a relay to safely switch on and off different devices. An Electronic Timing Relay has circuitry integrated which controls the armature motion upon input voltage being applied. This addition gives the relay the property of time-delay actuation. Electronic Timing Relays are constructed to delay armature motion on coil energization, de-energization, or both. ETRs provide a wide range of selectable functions so that users can customize their specific machine operation. Relay Components and Operation What are the Best Features of Electronic Timing Relays? Electronic timing relays are used in a number of electronic applications, owing to the unending list of their features, which are as follows: • Multi-function timer, which allows the user to adjust between multiple timing functions. • High duty cycle applications. • DIN rail or panel mounting. • Resistant to mechanical shock and vibration.
    [Show full text]
  • Photovoltaic Couplers for MOSFET Drive for Relays
    Photocoupler Application Notes Basic Electrical Characteristics and Application Circuit Design of Photovoltaic Couplers for MOSFET Drive for Relays Outline: Photovoltaic-output photocouplers(photovoltaic couplers), which incorporate a photodiode array as an output device, are commonly used in combination with a discrete MOSFET(s) to form a semiconductor relay. This application note discusses the electrical characteristics and application circuits of photovoltaic-output photocouplers. ©2019 1 Rev. 1.0 2019-04-25 Toshiba Electronic Devices & Storage Corporation Photocoupler Application Notes Table of Contents 1. What is a photovoltaic-output photocoupler? ............................................................ 3 1.1 Structure of a photovoltaic-output photocoupler .................................................... 3 1.2 Principle of operation of a photovoltaic-output photocoupler .................................... 3 1.3 Basic usage of photovoltaic-output photocouplers .................................................. 4 1.4 Advantages of PV+MOSFET combinations ............................................................. 5 1.5 Types of photovoltaic-output photocouplers .......................................................... 7 2. Major electrical characteristics and behavior of photovoltaic-output photocouplers ........ 8 2.1 VOC-IF characteristics .......................................................................................... 9 2.2 VOC-Ta characteristic ........................................................................................
    [Show full text]
  • Power System Selectivity: the Basics of Protective Coordination by Gary H
    Power System Selectivity: The Basics Of Protective Coordination By Gary H. Fox, PE, GE Specification Engineer The intent of this article is to provide a brief primer about the essence of coordinating the basic protective components of the electrical power system, including circuit breakers, fuses and protective relays, and to enable the reader to review a plot of time current curves and evaluate several key concerns: • How well do the devices work with each other? • Will a minimal amount of the power system be lost by a fault? • How well are the power system components protected? • Could the chosen ratings and settings cause nuisance trips? The Objectives of Protection Determining the protective devices for a power system The Intended Result and their settings usually puts two competing goals against each other. On the one hand you want the system available for use 100% of the time. To this extreme end all power outages, whether due to maintenance or failures, are to be avoided. You would want the protective device ratings and settings to be Isc as high as possible, and these settings would be further desensitized by a considerable time delay, so Page 2 that extra time is allowed before the circuit is tripped. Fig. 1 An example of short circuit On the other hand there is a concern for the protection flow in a radial system of the load and system components. The degree of damage from a short circuit fault is proportional to the amount of time that fault persists and the square of the current that flows.
    [Show full text]
  • Power System Protective Relaying: Basic Concepts, Industrial-Grade Devices, and Communication Mechanisms Internal Report
    Power System Protective Relaying: basic concepts, industrial-grade devices, and communication mechanisms Internal Report Report # Smarts-Lab-2011-003 July 2011 Principal Investigators: Rujiroj Leelaruji Dr. Luigi Vanfretti Affiliation: KTH Royal Institute of Technology Electric Power Systems Department KTH • Electric Power Systems Division • School of Electrical Engineering • Teknikringen 33 • SE 100 44 Stockholm • Sweden Dr. Luigi Vanfretti • Tel.: +46-8 790 6625 • [email protected] • www.vanfretti.com DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES THIS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN ACCOUNT OF WORK SPONSORED OR COSPONSORED BY KUNGLIGA TEKNISKA HOGSKOLAN¨ (KTH) . NEITHER KTH, ANY MEMBER OF KTH, ANY COSPONSOR, THE ORGANIZATION(S) BELOW, NOR ANY PERSON ACTING ON BEHALF OF ANY OF THEM: (A) MAKES ANY WARRANTY OR REPRESENTATION WHATSOEVER, EXPRESS OR IMPLIED, (I) WITH RESPECT TO THE USE OF ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM DISCLOSED IN THIS DOCUMENT, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, OR (II) THAT SUCH USE DOES NOT INFRINGE ON OR INTERFERE WITH PRIVATELY OWNED RIGHTS, INCLUDING ANY PARTY’S INTELLECTUAL PROPERTY, OR (III) THAT THIS DOCUMENT IS SUITABLE TO ANY PARTICULAR USER’S CIRCUMSTANCE; OR (B) ASSUMES RESPONSIBILITY FOR ANY DAMAGES OR OTHER LIABILITY WHATSOEVER (INCLUDING ANY CONSEQUENTIAL DAMAGES, EVEN IF KTH OR ANY KTH REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES) RESULTING FROM YOUR SELECTION OR USE OF THIS DOCUMENT OR ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM DISCLOSED IN THIS DOCUMENT. ORGANIZATIONS THAT PREPARED THIS DOCUMENT: KUNGLIGA TEKNISKA HOGSKOLAN¨ CITING THIS DOCUMENT Leelaruji, R., and Vanfretti, L.
    [Show full text]
  • Experiment (1) Principles of Switching
    Experiment (1) Principles of Switching Introduction When you use microcontrollers, sometimes you need to control devices that requires more electrical current than a microcontroller can supply; for this, electrical relays and transistors are used. In this experiment, we will investigate two types of switching; electromechanical switching and solid state switching. Objectives This experiment aims to: 1- Understand the basic principles of switching devices. 2- Introduction to electromechanical switching as well as solid state switching. 3- Understand the advantages and disadvantages of each type. 4- Study the relative speed of different type of switches. Theory Electromechanically Relays Relays are electromechanical devices that use an electromagnet to operate a pair of movable contacts from an open position to a closed position. The relay is a switch that is controlled by a small electric current. It can be used to control motors, heaters or lamps circuits which themselves can draw a lot more electrical power. Figure 1 shows the circuit symbol for a relay. Figure 1: Circuit symbol for a relay In figure 2, the relay’s coil is energized by the low-voltage (12 VDC) source, while the single- pole, single-throw (SPST) contact interrupts the high-voltage (480 VAC) circuit. It is quite likely that the current required to energize the relay coil will be hundreds of times less than the current rating of the contact. Typical relay coil currents are well below 1 amp, while typical contact ratings for industrial relays are at least 10 amps. Mechatronics Systems Design Lab Figure 2: Relay drive an AC load One relay coil/armature assembly may be used to actuate more than one set of contacts.
    [Show full text]
  • IXYS Integrated Circuits Division Introduces High Current MOSFET Power Solid State Relay (SSR)
    PRESS RELEASE Contact: Catherine Austin Ph: 978 - 524 - 6823 Fax: 978 - 524 - 4900 IXYS Integrated Circuits Division Introduces High Current MOSFET Power Solid State Relay (SSR) The CPC1 7 0 5Y is a 60V, DC - Only Power Relay , I deal for Variety of High Performance Reliable Switching Applications Beverly, MA – October 1 2, 2017. IXYS Integrated Circuits Division (ICD), Inc., a wholly owned subsidia ry of IXYS Corporation (NASDAQ: IXYS), announced the imm edi ate availability of the CPC1705Y, a 60V, 3.25A , DC - Switching Power SSR. This is the industry’s highest load current rating for a single - pole normally closed ( 1 - Form B) solid state relay using an opti c ally coupled, single MOSFET output switch architecture in a p ower IC package . T he CPC1705Y SSR provides 2500Vrms of input to output isolation and has a very low 0.09 o hms maximum on - r esistance. The relay output is constructed with an efficient MOSFET switch that utilizes I CD’s patented O ptoMOS architecture. The input contro ls the optically cou pled output requiring only 5mA of input current to activate the isolated DC switch. The device is offered in IXYS ICD’s 4 - pin Power Single In - line Package (Power SIP) (10.2 height X 21 .1 length X 3.3 width in mm) which facilitates multiple channel switching in dense printed circuit board design s and has an operational temperature range from - 40 to +85 Celsius. Off state leakage current is 1 microampere maximum at 25 Celsius. The CPC17 05Y 1 - Form - B SSR is complementary to IXYS ICD’s popular CPC1706Y Normally Open ( 1 - Form - A ) SSR with similar specifications.
    [Show full text]