(Light) Dark Matter Detection
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Overview of Dark Matter Searches with Liquid Nobles
Overview of Dark Matter searches with liquid nobles Marcin Kuźniak [email protected] 29-08-2019 Marcin Kuźniak – LIDINE2019, Manchester 1 Outline ● Dark matter detection ● Noble liquid technology ● Physics landscape – High mass WIMPs ● Spin-independent ● Spin-dependent – Low mass WIMPs ● Status of experimental Ar and Xe programs ● Target complementarity ● Main challenges moving forward ● (Biased) selection of new ideas ● Summary 29-08-2019 Marcin Kuźniak – LIDINE2019, Manchester 2 DM direct detection signature Direct detection ● Only through rare interactions with ordinary matter ● After the interaction, recoiling nucleus deposits energy (heat, 100 GeV WIMP light, electric charge, ...) in the detector Nuclear recoil spectrum ● featureless, ~exponential ● lower threshold =>more sensitivity ● natural radioactivity is a background astrophysics detector response particle/nuclear physics 29-08-2019 Marcin Kuźniak – LIDINE2019, Manchester 3 Backgrounds 29-08-2019 Marcin Kuźniak – LIDINE2019, Manchester 4 Liquid noble detectors Excitation Heat Nuclear recoils (NR) Ar and Xe are used for WIMP detection. ● Ar inexpensive and advantageous for purification and background rejection Why noble elements? ● High light yield, transparent to their own scintillation ● Easy to purify and scalable to very high masses ● (At least) two available detection channels: scintillation and ionization 29-08-2019 Marcin Kuźniak – LIDINE2019, Manchester 5 Single or dual phase DEAP gas DarkSide approach approach Detect primary scintillation light (S1) from the original -
Dark Matter and the Early Universe: a Review Arxiv:2104.11488V1 [Hep-Ph
Dark matter and the early Universe: a review A. Arbey and F. Mahmoudi Univ Lyon, Univ Claude Bernard Lyon 1, CNRS/IN2P3, Institut de Physique des 2 Infinis de Lyon, UMR 5822, 69622 Villeurbanne, France Theoretical Physics Department, CERN, CH-1211 Geneva 23, Switzerland Institut Universitaire de France, 103 boulevard Saint-Michel, 75005 Paris, France Abstract Dark matter represents currently an outstanding problem in both cosmology and particle physics. In this review we discuss the possible explanations for dark matter and the experimental observables which can eventually lead to the discovery of dark matter and its nature, and demonstrate the close interplay between the cosmological properties of the early Universe and the observables used to constrain dark matter models in the context of new physics beyond the Standard Model. arXiv:2104.11488v1 [hep-ph] 23 Apr 2021 1 Contents 1 Introduction 3 2 Standard Cosmological Model 3 2.1 Friedmann-Lema^ıtre-Robertson-Walker model . 4 2.2 A quick story of the Universe . 5 2.3 Big-Bang nucleosynthesis . 8 3 Dark matter(s) 9 3.1 Observational evidences . 9 3.1.1 Galaxies . 9 3.1.2 Galaxy clusters . 10 3.1.3 Large and cosmological scales . 12 3.2 Generic types of dark matter . 14 4 Beyond the standard cosmological model 16 4.1 Dark energy . 17 4.2 Inflation and reheating . 19 4.3 Other models . 20 4.4 Phase transitions . 21 5 Dark matter in particle physics 21 5.1 Dark matter and new physics . 22 5.1.1 Thermal relics . 22 5.1.2 Non-thermal relics . -
Direct Dark Matter Searches: the Experimental Context
Conseil Scientifique de l’IN2P3, 25-26 octobre 2018 Direct Dark Matter searches: the experimental context Alessandra Tonazzo (APC, Université Paris-Diderot) Direct search for WIMPs : current status ���������� ��������� -�� -� �� ����-� �� - ] ��� ] � ����� -�� -� �� �� �� [ �� [ ������ ������ �� �� σ σ -�� -��� -� �� ����� �� - -�� �� �������� � �� -���� ��� ���� -�� - �������� ������� -�� � -� ������� �� �� - - ��� ��-�� ������� ��-�� ���� ������ ���� ������ ��-�� ��-�� ���� ����� ������� ������� �� ����� ����� ���������� �� ������� ��� �������� ��������� ������������ ���������� ������� ��������� �� ��������� coherent ν scattering on Xe ��-�� � �� ��� ���� A personal selection ���� ������ ���� [���/��] CS IN2P3, 25/10/2018 A. Tonazzo - World context for direct dark matter searches 2 Direct detection of WIMPs WIMP <v>˜220 km/s Nuclear Recoil detectable signal ER < 100 keV Rate: ~1 evt/(ton*year) for σ~10-47cm2 in noble liquids CS IN2P3, 25/10/2018 A. Tonazzo - World context for direct dark matter searches 3 Backgrounds WIMP • Cosmic rays and cosmogenic neutron neutrons/isotopes neutrino • Radioactivity, natural (238U,232Th,235U,222Rn,...) or anthropogenic Nuclear Recoil (85Kr,137Cs,...), from detector elements e, γ • Neutrinos (solar, atmospheric, diffuse SN) scattering coherently off nuclei (”neutrino floor”) Electron Recoil Possibility for background discrimination CS IN2P3, 25/10/2018 A. Tonazzo - World context for direct dark matter searches 4 Direct detection of WIMPs : signatures • Anomalous rate of low-energy nuclear recoils • -
Letter of Interest Cosmic Probes of Ultra-Light Axion Dark Matter
Snowmass2021 - Letter of Interest Cosmic probes of ultra-light axion dark matter Thematic Areas: (check all that apply /) (CF1) Dark Matter: Particle Like (CF2) Dark Matter: Wavelike (CF3) Dark Matter: Cosmic Probes (CF4) Dark Energy and Cosmic Acceleration: The Modern Universe (CF5) Dark Energy and Cosmic Acceleration: Cosmic Dawn and Before (CF6) Dark Energy and Cosmic Acceleration: Complementarity of Probes and New Facilities (CF7) Cosmic Probes of Fundamental Physics (TF09) Astro-particle physics and cosmology Contact Information: Name (Institution) [email]: Keir K. Rogers (Oskar Klein Centre for Cosmoparticle Physics, Stockholm University; Dunlap Institute, University of Toronto) [ [email protected]] Authors: Simeon Bird (UC Riverside), Simon Birrer (Stanford University), Djuna Croon (TRIUMF), Alex Drlica-Wagner (Fermilab, University of Chicago), Jeff A. Dror (UC Berkeley, Lawrence Berkeley National Laboratory), Daniel Grin (Haverford College), David J. E. Marsh (Georg-August University Goettingen), Philip Mocz (Princeton), Ethan Nadler (Stanford), Chanda Prescod-Weinstein (University of New Hamp- shire), Keir K. Rogers (Oskar Klein Centre for Cosmoparticle Physics, Stockholm University; Dunlap Insti- tute, University of Toronto), Katelin Schutz (MIT), Neelima Sehgal (Stony Brook University), Yu-Dai Tsai (Fermilab), Tien-Tien Yu (University of Oregon), Yimin Zhong (University of Chicago). Abstract: Ultra-light axions are a compelling dark matter candidate, motivated by the string axiverse, the strong CP problem in QCD, and possible tensions in the CDM model. They are hard to probe experimentally, and so cosmological/astrophysical observations are very sensitive to the distinctive gravitational phenomena of ULA dark matter. There is the prospect of probing fifteen orders of magnitude in mass, often down to sub-percent contributions to the DM in the next ten to twenty years. -
1.1 the XMASS Project 1.2 XMASS-I
STATUS OF XMASS Y. KISIMOTO forXMASS collaboration Kamioka Observatory, Institute for Cosmic Ray Research, the University of To kyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205, JAPAN, Kavli Institute for Physics and Mathematics of the Universe (WPI) , the University of Tokyo, Kashiwa, Chiba 217-8582, JA PAN The XMASS experiment is a multi-purpose detector for rare events, such as direct detection of dark matter, using single-phase liquid xenon. The current phase of the XMASS(XMASS I) is focused on direct dark-matter detection with the largest target mass (835kg). In this paper, we report results of searches carried out with commissioning runs of the XMASS-I and current status of XMASS-I after hardware modification to reduce background followed by the commissioning runs. 1 The XMASS experiment 1.1 The XMASS project The XMASS project was proposed to observe rare events such as elastic scattering of electron by pp solar neutrinos, neutrinoless double beta decay, and elastic scattering of nuclei by dark matter particles with a large liquid-Xe detector 1. In the XMASS detector, scintillation lights from liquid xenon are observed by photo-multiplier tubes PMTs arranged around the liquid xenon volume. This simple configuration is very much suitable( for) observing the rare events because liquid xenon is an efficient scintillator and attenuation of scintillation light is quite small and also because liquid xenon has hight atomic number and high density and so it is worked as shield material against radiation from outside. We can, therefor, search for the rate events by extracting events in a low-background volume. -
Pandax-II ! 2015.4.9 Sino-French PPL, Hefei Pandax Dark Matter Search Program
Jinping Mountain WIMPs PandaX Dark Matter Search with Liquid Xenon at Jinping Kaixuan Ni! (on behalf of the PandaX Collaboration)! Shanghai Jiao Tong University! from PandaX-I to PandaX-II ! 2015.4.9 Sino-French PPL, Hefei PandaX dark matter search program ❖ 2009.3 SJTU group visited Jinping for the first time! ❖ 2009.4 Proposals submitted for dark matter search with liquid xenon at Jinping! ❖ 2010.1 PandaX collaboration formed, funding supported by SJTU/MOST/NSFC, started to develop the PandaX-I detector at SJTU! ❖ 2012.8 PandaX-I detector moved to CJPL! ❖ 2012.9-2013.9 Two engineering runs carried out for system integration! ❖ 2014.3 Detector fully functional for data taking! ❖ 2014.8 PandaX-I first results (17 days) published! ❖ 2014.11 Another 63 days dark matter data were collected! ❖ 2015 Upgrading from PandaX-I (125-kg) to PandaX-II (500-kg) PandaX Collaboration for Dark Matter Search Shanghai Jiao Tong University! Shanghai Institute of Applied Physics, CAS! Shandong University! University of Maryland! University of Michigan! Peking University! http://pandax.org/ Yalong River Hydropower Development Co.! China Institute of Atomic Energy (new group joined 2015) Why Liquid Xenon? • Ultra-low background: using self-shielding with 3D fiducialization and ER/NR discrimination • Sensitive to both heavy and light dark matter • Sensitive to both Spin-independent and Spin-dependent (129Xe,131Xe) • Ultra-pure Xe target: xenon gas can be purified with sub-ppb (O2 etc.) and sub-ppt (Kr) impurities • Multi-ton target achievable: with reasonable cost ($1.5M/ton) and relative simple cryogenics (165K) Two-phase xenon for dark matter searches WIMPs/Neutrons. -
The XMASS 800Kg Experiment
The XMASS 800kg Experiment XMASS collaboration: Kamioka Observatory, ICRR, Univ. of Tokyo: K. Abe, K. Hieda, K. Hiraide, Y. Kishimoto, K. Kobayashi, Y. Koshio, S. Moriyama, M. Nakahata, H. Ogawa, H. Sekiya, A. Shinozaki, Y. Suzuki, O. Takachio, A. Takeda, D. Umemoto, M. Yamashita, B. Yang IPMU, University of Tokyo: K. Martens, J.Liu Jing LIU Kobe University: K. Hosokawa, K. Miuchi, A. Murata, Y. Ohnishi, Y. Takeuchi Tokai University: F. Kusaba, K. Nishijima Gifu University: S. Tasaka Kavli IPMU, Univ. of Tokyo Yokohama National University: S. Nakamura, I. Murayama, K. Fujii Miyagi University of Education: Y. Fukuda NPB2012, Shenzhen STEL, Nagoya University: Y. Itow, K. Masuda, H. Uchida, H. Takiya Sejong University: Y.D. Kim Seoul National University: S. B. Kim KRISS: Y.H. Kim, M.K. Lee, K. B. Lee, J.S. Lee Xenon MASSive detector for Solar neutrino (pp/7Be) Xenon neutrino MASS detector (double beta decay) The XMASS Experiment Xenon detector for weakly interacting MASSive Particles PMT LXe inside ~100 kg LXe ~800 kg LXe multi ton scale prototype direct dark matter search Multi-purpose LXe (Liquid Xenon) surrounded by PMTs (Photomultiplier Tubes) recording scintillation lights generated by nuclear or electronic recoils in LXe XMASS 800kg Jing LIU @ NPB 2012 2 Xenon MASSive detector for Solar neutrino (pp/7Be) Xenon neutrino MASS detector (double beta decay) The XMASS Experiment Xenon detector for weakly interacting MASSive Particles PMT γ, n, α,… or χ? LXe LXe inside scintillation PMT ~100 kg LXe ~800 kg LXe ~26 ton LXe prototype direct -
Habilitationsschrift Zur Erlangung Der Venia Legendi Für Das
Habilitationsschrift zur Erlangung der Venia legendi f¨urdas Fach Physik der Ruprecht{Karls{Universit¨at Heidelberg vorgelegt von Teresa Marrod´anUndagoitia aus Eibar (Spanien) 2014 Revealing the nature of dark matter with XENON Habilitation summary by Teresa Marrod´anUndagoitia March 2014 Contents 1 Introduction 1 1.1 Indications for dark matter from Astronomy and Cosmology . 1 1.2 The nature of dark matter: possible candidates . 3 1.3 Searches for dark matter particles . 4 1.4 Principles of direct detection . 5 1.5 Current experimental results and possible interpretations . 7 2 The XENON experiment 9 2.1 Liquid xenon as detector material . 9 2.2 The XENON100 instrument . 10 2.3 Detector performance . 11 3 Searches for WIMPs in XENON100 13 3.1 Data selection and efficiency . 13 3.2 Nuclear recoil energy scale . 14 3.3 Background sources and experimental results . 15 3.4 Spin independent and dependent interpretations . 17 3.5 Other interpretations of the XENON100 data . 18 4 Light dark matter particles inducing electronic recoils 19 4.1 Motivation . 19 4.2 Low energy calibration sources . 20 4.3 Measurement of the electronic recoil scale using a Compton experiment . 22 4.4 Energy threshold of XENON100 . 22 5 Summary and outlook 25 Appendices 37 I Contents A Own contributions 39 B Main publications summarised in this work 41 C Complete list of publications 43 II Chapter 1 Introduction The existence of a new form of non-luminous matter is indicated by a variety of cosmo- logical and astronomical observations. It is commonly assumed that elementary particles could be the constituents of this 'dark' matter. -
Supersymmetric Dark Matter Candidates in Light of Constraints from Collider and Astroparticle Observables
THESE` Pour obtenir le grade de DOCTEUR DE L’UNIVERSITE´ DE GRENOBLE Specialit´ e´ : Physique Theorique´ Arretˆ e´ ministeriel´ : 7 aoutˆ 2006 Present´ ee´ par Jonathan DA SILVA These` dirigee´ par Genevieve` BELANGER´ prepar´ ee´ au sein du Laboratoire d’Annecy-le-Vieux de Physique Theorique´ (LAPTh) et de l’Ecole´ Doctorale de Physique de Grenoble Supersymmetric Dark Matter candidates in light of constraints from collider and astroparticle observables These` soutenue publiquement le 3 juillet 2013, devant le jury compose´ de : arXiv:1312.0257v1 [hep-ph] 1 Dec 2013 Dr. Rohini GODBOLE Professeur, CHEP Bangalore, Inde, Presidente´ Dr. Farvah Nazila MAHMOUDI Maˆıtre de Conferences,´ LPC Clermont, Rapporteur Dr. Ulrich ELLWANGER Professeur, LPT Orsay, Rapporteur Dr. Celine´ BŒHM Charge´ de recherche, Durham University, Royaume-Uni, Examinatrice Dr. Anupam MAZUMDAR Professeur, Lancaster University, Royaume-Uni, Examinateur Dr. Genevieve` BELANGER´ Directeur de Recherche, LAPTh, Directeur de these` A meus av´os. Contents Acknowledgements - Remerciements vii List of Figures xi List of Tables xvii List of Abbreviations xix List of Publications xxiii Introduction1 I Status of particle physics and cosmology ... and beyond5 1 From the infinitely small : the Standard Model of particle physics ...7 1.1 Building of the model : gauge sector . .8 1.2 Matter sector . 10 1.2.1 Leptons . 10 1.2.2 Quarks . 12 1.3 The Higgs mechanism . 13 1.4 Full standard picture . 16 1.5 Successes of the SM . 18 1.6 SM issues . 19 1.6.1 Theoretical problems . 19 1.6.2 Experimental discrepancies . 20 1.6.3 Cosmological connexion . 22 2 ... To the infinitely large : the Lambda Cold Dark Matter model 23 2.1 Theoretical framework . -
Jianglai Liu Shanghai Jiao Tong University
Jianglai Liu Shanghai Jiao Tong University Jianglai Liu Pheno 2017 1 If DM particles have non-gravitational interaction with normal matter, can be detected in “laboratories”. DM DM Collider Search Indirect Search ? SM SM Direct Search Pheno 2017 Jianglai Liu Pheno 2017 2 Galactic halo . The solar system is cycling the center of galaxy with on average 220 km/s speed (annual modulation in earth movement) . DM local density around us: 0.3(0.1) GeV/cm3 Astrophys. J. 756:89 Inclusion of new LAMOST survey data: 0.32(0.02), arXiv:1604.01216 Jianglai Liu Pheno 2017 3 1973: discovery of neutral current Gargamelle detector in CERN neutrino beam Dieter Haidt, CERN Courier Oct 2004: “The searches for neutral currents in previous neutrino experiments resulted in discouragingly low limits (@1968), and it was somehow commonly concluded that no weak neutral currents existed.” leptonic NC hadronic NC v beam Jianglai Liu Pheno 2017 4 Direct detection A = m2/m1 . DM: velocity ~1/1500 c, mass ~100 GeV, KE ~ 20 keV . Nuclear recoil (NR, “hadronic”): recoiling energy ~10 keV . Electron recoil (ER, “leptonic”): 10-4 suppression in energy, very difficult to detect New ideas exist, e.g. Hochberg, Zhao, and Zurek, PRL 116, 011301 Jianglai Liu Pheno 2017 5 Elastic recoil spectrum . Energy threshold mass DM . SI: coherent scattering on all nucleons (A2 Ge Xe enhancement) . Note, spin-dependent Si effect can be viewed as scattering with outer unpaired nucleon. No luxury of A2 enhancement Gaitskell, Annu. Rev. Nucl. Part. Sci. 2004 Jianglai Liu Pheno 2017 6 Neutrino “floor” Goodman & Witten Ideas do exist Phys. -
Distillation Purification of Xenon for Krypton and Measurement of Radon Contamination in Liquid Xenon
DISTILLATION PURIFICATION OF XENON FOR KRYPTON AND MEASUREMENT OF RADON CONTAMINATION IN LIQUID XENON Y. Takeuchi for the XMASS collaboration Kamioka Observatory, ICRR, Univ. of Tokyo, Higashi-Mozumi, Gifu506-1205, Japan ABSTRACT: We succeeded to reduce the Kr contamination in liquid xenon by a factor of 1/1000 with a distillation system in Kamioka mine. Then, the remaining radioactivities in purified liquid xenon were measured with the XMASS prototype detector. In this report, the distillation system and the remaining internal radioactivity levels are described. 1. INTRODUCTION Liquid xenon is a good scintillator. It has a good photon yield (about 42photon/keV). Therefore, sensitivity against low energy events is good. The wave length (~175nm) is rather short, but it still can be observed by PMTs directly without a wave length shifter. The large atomic number provides a short radiation length for the low energy gamma rays. So, the external low-energy gamma rays would be absorbed in the outer region of the liquid xenon detector, and then the central region would become clean. The boiling point of liquid xenon is higher than other rare gas, like argon or neon, so it is relatively easy to handle. We can use liquid nitrogen to liquefy xenon. Because of rare gas and liquid, various purify methods can be applied. Xenon doesn't have long life radioactive isotopes. A possible problem of liquid xenon for the low background experiments is that there is a contamination of 85Kr during manufacture and refinement. Usual commercial “krypton-free” xenon still has ppb level krypton. It could become a serious background for the low background experiments. -
The Why and How of Catching Wimps
F EATURE Kavli IPMU Associate Professor Kai Martens Research Area: Experimental Physics The Why and How of Catching WIMPs catalogue of astronomical observations. This is the Introduction rst time in the history of humankind that such a The Kamioka Observatory is located under mount narrative is purely based on science. Ikeno between the cities of Toyama and Takayama Our narrative successfully tracks astronomical here in Japan. It is not the kind of observatory that observations through this history of the visible Dark Matter was discovered at, but it may be the Universe. We can watch this history unfold as our kind of observatory that the nature of Dark Matter telescopes zoom out from ever older objects at ever is revealed at. And XMASS is one of the experiments higher redshifts. Our narrative even reaches beyond that try to accomplish this. The why and the how the earliest moment of which electromagnetic are what we will be discussing over the next few radiation keeps a record when it explains the relative pages. You will have to forgive me though: It is a abundance of the chemical elements as well as the vast subject and I will take the liberty to cherry pick rich structure we see in the distribution of galaxies examples and feature choices that are designed to across the sky. motivate the path we took with XMASS. That is not to say that there are no more problems We are the Kavli Institute for the Physics and to be solved. There are mists: The abundance of Mathematics of the Universe.