Reassembleable Disassembling

Total Page:16

File Type:pdf, Size:1020Kb

Reassembleable Disassembling Reassembleable Disassembling Shuai Wang, Pei Wang, and Dinghao Wu College of Information Sciences and Technology The Pennsylvania State University fszw175, pxw172, [email protected] Abstract struction level to enforce certain security policies. To ensure program control-flow integrity (CFI, meaning that Reverse engineering has many important applications in program execution is dictated to a predetermined control- computer security, one of which is retrofitting software flow graph) [1,4, 43, 17, 29, 37] without source code, the for safety and security hardening when source code is not original control-flow graph must be recovered from a bi- available. By surveying available commercial and aca- nary executable and the binary must be retrofitted with demic reverse engineering tools, we surprisingly found the CFI enforcement facility embedded [50, 49]. Sym- that no existing tool is able to disassemble executable bolic taint analysis [34] on binaries must recover assem- binaries into assembly code that can be correctly assem- bly code and data faithfully. The defending techniques bled back in a fully automated manner, even for simple against return-oriented programming (ROP) attacks also programs. Actually in many cases, the resulted disas- rely on binary analysis and reconstruction to identify and sembled code is far from a state that an assembler ac- eliminate ROP gadgets [44,9, 47, 22, 39]. cepts, which is hard to fix even by manual effort. This Despite the fact that many security hardening tech- has become a severe obstacle. People have tried to over- niques are highly dependent on reverse engineering, flex- come it by patching or duplicating new code sections for ible and easy-to-use binary manipulation itself remains retrofitting of executables, which is not only inefficient an unsolved problem. Current binary decompilation, but also cumbersome and restrictive on what retrofitting analysis, and reconstruction techniques still cannot fully techniques can be applied to. fulfill many of the requirements from downstream. To In this paper, we present UROBOROS, a tool that can the best of our knowledge, there is no reverse engineer- disassemble executables to the extent that the gener- ing tool that can disassemble an executable into assem- ated code can be assembled back to working binaries bly code which can be reassembled back in a fully au- without manual effort. By empirically studying 244 tomated manner, especially when the processed objects binaries, we summarize a set of rules that can make are commercial-off-the-shelf (COTS) binaries with most the disassembled code relocatable, which is the key to symbol and relocation information stripped. reassembleable disassembling. With UROBOROS, the We have investigated many existing tools from both disassembly-reassembly process can be repeated thou- the industry and academia, including IDA Pro [24], sands of times. We have implemented a prototype of Phoenix [42], Dagger [12], MC-Semantics [32], Second- UROBOROS and tested over the whole set of GNU Core- Write [3], BitBlaze [45], and BAP [8]. Unfortunately, utils, SPEC2006, and a set of other real-world applica- these tools focus more on recovering as much informa- tion and server programs. The experiment results show tion, such as data and control structures, as possible for that our tool is effective with a very modest cost. analysis purpose mainly, but less on producing assembly code that can be readily assembled back without manual 1 Introduction effort. Hence, none of them provide the desired disas- sembly and reassembly functionality that we consider, In computer security, many techniques and applications even if the processed binary is small and simple. depend on binary reverse engineering, i.e., analyzing and Due to lack of support from reverse engineering tools, retrofitting software binaries with the source code un- people build high-level security hardening applications available. For example, software fault isolation (SFI) based on partial binary retrofitting techniques, including [33, 46,2, 19, 18] rewrites untrusted programs at the in- binary rewriting tools such as Alto [35], Vulcan [16], Diablo [13], and binary reuse tools such as BCR [11] support from existing tools. We have confirmed that the and TOP [48]. We consider binary rewriting as a par- key to reassembility is making the assembly code relo- tial retrofitting technique because it can only instrument catable. Relocation is a linker concept, which is basi- or patch binaries, thus not suitable for program-wide cally for ensuring program elements defined in different transformations and reconstructions. As for binary reuse source files can correctly refer to each other after linked tools, they work by dynamically recording execution together. Being relocatable is also a premise for support- traces and combining the traces back to an executable, ing program-wide assembly transformations. In COTS meaning the new binary is only an incomplete part of binaries, however, the information necessary for mak- the original binary due to the incomplete coverage of dy- ing disassembly results relocatable is mostly unavailable. namic program analysis. There has been research trying to address the relocation Partial retrofitting has notable drawbacks and limita- issue [11, 48, 26], but existing work mostly relies on dy- tions: namic analysis which is unlikely to cover the whole pro- gram. • Patch-based rewriting could introduce non- In this paper, we present UROBOROS, a disassembler negligible runtime overhead. Since the patch that does reassembleable disassembling. In UROBOROS, usually lives in an area different from the original we develop a set of methods to precisely recover each code of the binary, interactions between the patch part of a binary executable. In particular, we are the and the original code usually require a large amount first to be capable of not only recovering code, but also of control-flow transfers. data and meta-information from COTS binaries with- • Patch-based rewriting usually relocates instructions out manual effort. We have implemented a prototype at the patch point to somewhere else to make space of UROBOROS and tested it on 244 binaries, including for the inserted code. As a result, it requires the the whole set of GNU Coreutils and the C programs in affected instructions to be relocatable by default. SPEC2006 (including both 32-bit and 64-bit versions). In our experiments, most programs reassembled from • Instrumentation-based rewriting expands binary UROBOROS’s output can pass functionality tests with sizes significantly, sometimes generating nearly negligible execution overhead, even after repeated dis- double-sized products. assembly and reassembly. Our preliminary study shows that UROBOROS can provide support for program-wide • Binary reuse often requires a binary component to transformations on COTS binaries. be small enough for dynamic analysis to cover; oth- In summary, we make the following contributions: erwise the correctness cannot be guaranteed. • We initiate a new focus on reverse engineering. Having investigated previous research on binary ma- Complementary to historical work which mostly fo- nipulation and reconstruction, we believe that it could be cuses on recovering high-level semantic informa- a remarkable improvement if we are able to automati- tion from binary executables or providing support cally recover the assembly from binaries and make the for binary analysis, our work seeks to deliver re- assembly code ready for reassembly. When a binary assembility, meaning we disassembles binaries in a can be reconstructed from assembly code, many high- way that the disassembly results could be directly level and program-wide transformations become feasi- assembled back into working executables, without ble, leading to new opportunities for research based on manual edits. binary retrofitting such as CFI, diversification, and ROP defense. • We identify the key challenge is to make the disas- Our goal is quite different from previous reverse engi- sembled program relocatable, and propose our key neering research. Instead of trying to recover high-level technique to recover references among immediate data and control structures from program binaries which values in the disassembled code, namely “symbol- helps binary code analysis, we aim at a more basic objec- ization”. tive, i.e., producing assembly code that can be readily re- • With reassembility, our research enables direct assembled back without manual effort, which we call the binary-based transformation without resort to the reassembility of disassembling. Although the research previously used patching method, and can poten- community has made notable progress on binary reverse tially become the foundation of binary-based soft- engineering, reassembility is still somewhat a blank due ware retrofitting. to lack of attention. In this sense, our contribution is complementary to existing work. • We implement a prototype of UROBOROS and eval- With that said, we believe that the technical challenge uate its strength on binary reassembly. We applied is also a cause for the deficiency in binary reassembly our technique to 244 binaries, including the whole set of GNU Coreutils and SPEC2006 C binaries. We tried to use it to decompile a simple binary (com- The experiment results show that our tool does cor- piled from a C program with only empty main function). rect disassembly and introduces only modest cost. The decompiler reported several errors and generated an LLVM IR file which cannot be compiled back
Recommended publications
  • Fill Your Boots: Enhanced Embedded Bootloader Exploits Via Fault Injection and Binary Analysis
    IACR Transactions on Cryptographic Hardware and Embedded Systems ISSN 2569-2925, Vol. 2021, No. 1, pp. 56–81. DOI:10.46586/tches.v2021.i1.56-81 Fill your Boots: Enhanced Embedded Bootloader Exploits via Fault Injection and Binary Analysis Jan Van den Herrewegen1, David Oswald1, Flavio D. Garcia1 and Qais Temeiza2 1 School of Computer Science, University of Birmingham, UK, {jxv572,d.f.oswald,f.garcia}@cs.bham.ac.uk 2 Independent Researcher, [email protected] Abstract. The bootloader of an embedded microcontroller is responsible for guarding the device’s internal (flash) memory, enforcing read/write protection mechanisms. Fault injection techniques such as voltage or clock glitching have been proven successful in bypassing such protection for specific microcontrollers, but this often requires expensive equipment and/or exhaustive search of the fault parameters. When multiple glitches are required (e.g., when countermeasures are in place) this search becomes of exponential complexity and thus infeasible. Another challenge which makes embedded bootloaders notoriously hard to analyse is their lack of debugging capabilities. This paper proposes a grey-box approach that leverages binary analysis and advanced software exploitation techniques combined with voltage glitching to develop a powerful attack methodology against embedded bootloaders. We showcase our techniques with three real-world microcontrollers as case studies: 1) we combine static and on-chip dynamic analysis to enable a Return-Oriented Programming exploit on the bootloader of the NXP LPC microcontrollers; 2) we leverage on-chip dynamic analysis on the bootloader of the popular STM8 microcontrollers to constrain the glitch parameter search, achieving the first fully-documented multi-glitch attack on a real-world target; 3) we apply symbolic execution to precisely aim voltage glitches at target instructions based on the execution path in the bootloader of the Renesas 78K0 automotive microcontroller.
    [Show full text]
  • Radare2 Book
    Table of Contents introduction 1.1 Introduction 1.2 History 1.2.1 Overview 1.2.2 Getting radare2 1.2.3 Compilation and Portability 1.2.4 Compilation on Windows 1.2.5 Command-line Flags 1.2.6 Basic Usage 1.2.7 Command Format 1.2.8 Expressions 1.2.9 Rax2 1.2.10 Basic Debugger Session 1.2.11 Contributing to radare2 1.2.12 Configuration 1.3 Colors 1.3.1 Common Configuration Variables 1.3.2 Basic Commands 1.4 Seeking 1.4.1 Block Size 1.4.2 Sections 1.4.3 Mapping Files 1.4.4 Print Modes 1.4.5 Flags 1.4.6 Write 1.4.7 Zoom 1.4.8 Yank/Paste 1.4.9 Comparing Bytes 1.4.10 Visual mode 1.5 Visual Disassembly 1.5.1 2 Searching bytes 1.6 Basic Searches 1.6.1 Configurating the Search 1.6.2 Pattern Search 1.6.3 Automation 1.6.4 Backward Search 1.6.5 Search in Assembly 1.6.6 Searching for AES Keys 1.6.7 Disassembling 1.7 Adding Metadata 1.7.1 ESIL 1.7.2 Scripting 1.8 Loops 1.8.1 Macros 1.8.2 R2pipe 1.8.3 Rabin2 1.9 File Identification 1.9.1 Entrypoint 1.9.2 Imports 1.9.3 Symbols (exports) 1.9.4 Libraries 1.9.5 Strings 1.9.6 Program Sections 1.9.7 Radiff2 1.10 Binary Diffing 1.10.1 Rasm2 1.11 Assemble 1.11.1 Disassemble 1.11.2 Ragg2 1.12 Analysis 1.13 Code Analysis 1.13.1 Rahash2 1.14 Rahash Tool 1.14.1 Debugger 1.15 3 Getting Started 1.15.1 Registers 1.15.2 Remote Access Capabilities 1.16 Remoting Capabilities 1.16.1 Plugins 1.17 Plugins 1.17.1 Crackmes 1.18 IOLI 1.18.1 IOLI 0x00 1.18.1.1 IOLI 0x01 1.18.1.2 Avatao 1.18.2 R3v3rs3 4 1.18.2.1 .intro 1.18.2.1.1 .radare2 1.18.2.1.2 .first_steps 1.18.2.1.3 .main 1.18.2.1.4 .vmloop 1.18.2.1.5 .instructionset 1.18.2.1.6
    [Show full text]
  • Reverse Software Engineering As a Project-Based Learning Tool
    Paper ID #33764 Reverse Software Engineering as a Project-Based Learning Tool Ms. Cynthia C. Fry, Baylor University CYNTHIA C. FRY is currently a Senior Lecturer of Computer Science at Baylor University. She worked at NASA’s Marshall Space Flight Center as a Senior Project Engineer, a Crew Training Manager, and the Science Operations Director for STS-46. She was an Engineering Duty Officer in the U.S. Navy (IRR), and worked with the Naval Maritime Intelligence Center as a Scientific/Technical Intelligence Analyst. She was the owner and chief systems engineer for Systems Engineering Services (SES), a computer systems design, development, and consultation firm. She joined the faculty of the School of Engineering and Computer Science at Baylor University in 1997, where she teaches a variety of engineering and computer science classes, she is the Faculty Advisor for the Women in Computer Science (WiCS), the Director of the Computer Science Fellows program, and is a KEEN Fellow. She has authored and co- authored over fifty peer-reviewed papers. Mr. Zachary Michael Steudel Zachary Steudel is a 2021 graduate of Baylor University’s computer science department. In his time at Baylor, he worked as a Teaching Assistant under Ms. Cynthia C. Fry. As part of the Teaching Assistant role, Zachary designed and created the group project for the Computer Systems course. Zachary Steudel worked as a Software Developer Intern at Amazon in the Summer of 2019, a Software Engineer Intern at Microsoft in the Summer of 2020, and begins his full-time career with Amazon in the summer of 2021 as a software engineer.
    [Show full text]
  • A Survey of Reverse Engineering Tools for the 32-Bit Microsoft Windows Environment
    A Survey of Reverse Engineering Tools for the 32-Bit Microsoft Windows Environment RAYMOND J. CANZANESE, JR., MATTHEW OYER, SPIROS MANCORIDIS, and MOSHE KAM College of Engineering Drexel University, Philadelphia, PA, USA Reverse engineering is defined by Chikosfky and Cross as the process of analyzing a subject system to identify the system's components and their relationships, and to create representations of the system in another form or at a higher level of abstraction. The process of reverse engineering is accomplished using specific tools that, for the 32-bit Microsoft Windows environment, are categorized as hex editors, disassemblers/debuggers, decompilers, or related technologies such as code obfuscators, unpackers, and PE editors. An evaluation of each tool is provided that identifies its domain of applicability and usability. Categories and Subject Descriptors: A.1 [General]: Introductory and Survey; D.2.5 [Software Engineering]: Testing and Debugging General Terms: Security, Documentation Additional Key Words and Phrases: Reverse Engineering, Disassemblers, Debuggers, Decompilers, Code Obfuscators, PE Editors Unpackers, Hex Editors 1. INTRODUCTION 1.1 The Reverse Engineering Process Software engineers are sometimes asked to understand the behavior of a program given that program's binary executable file. If they have access to the appropriate reverse engineering tools, they might choose to adhere to the following process. First, a general disassembler/debugger is used to determine the basic functionality of the program. If disassembly and debugging shows that the binary code has been obfuscated, the next step would be to determine whether the obfuscator used is a common commercial obfuscator or a custom protection scheme. A PE editor would be used to make this determination.
    [Show full text]
  • Implementing the UCSD PASCAL System on the MODCOMP Computer
    TDA Progress Report 42-60 September and October 1960 Implementing the UCSD PASCAL System on the MODCOMP Computer T. Wolfe DSN Data Systems Section This article describes the UCSD PASCAL system developed by the University of California, San Diego, now available on the MODCOMP computer. The system includes a Pascal compiler and many useful utility programs. A BASIC compiler and a FORTRAN 77 compiler are also avatkble. There is currently a large amount of software availabie written in UCSD PASCAL, including a data base system, word processing systems and a MODULA compiler. I. Introduction Assembly language subroutines thus produced may also be called from either Pascal or FORTRAN. Currently the assem- The UCSD PASCAL* System is a complete interactive bler has not been modified to produce MODCOMP machine software development system consisting of an operating sys- code. A system library program may be used to build libraries tem, compilers (Pascal, BASIC, FORTRAN 77) two text of useful subroutines and the system linker used to link them editors (screen editor and line-oriented editor), a linker and to user programs. many useful utility programs. The system is written and main- tained in Pascal. The compiler generates code for an idealized processor known as the “pseudo-machine.” The “pseudo- Interpreters currently exist for Z80/8080, PDP 11 /LSI-1 1, code” (p-code) generated by the compiler is interpreted at 6800, 9900 and 6502 computers and are being developed for runtime by a program (known as the interpreter) which emu- other computers. Thus, software could be developed on an lates the pseudo-machine.
    [Show full text]
  • V850 Series Development Environment Pamphlet
    To our customers, Old Company Name in Catalogs and Other Documents On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding. Renesas Electronics website: http://www.renesas.com April 1st, 2010 Renesas Electronics Corporation Issued by: Renesas Electronics Corporation (http://www.renesas.com) Send any inquiries to http://www.renesas.com/inquiry. Notice 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website. 2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples.
    [Show full text]
  • X86 Disassembly Exploring the Relationship Between C, X86 Assembly, and Machine Code
    x86 Disassembly Exploring the relationship between C, x86 Assembly, and Machine Code PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 07 Sep 2013 05:04:59 UTC Contents Articles Wikibooks:Collections Preface 1 X86 Disassembly/Cover 3 X86 Disassembly/Introduction 3 Tools 5 X86 Disassembly/Assemblers and Compilers 5 X86 Disassembly/Disassemblers and Decompilers 10 X86 Disassembly/Disassembly Examples 18 X86 Disassembly/Analysis Tools 19 Platforms 28 X86 Disassembly/Microsoft Windows 28 X86 Disassembly/Windows Executable Files 33 X86 Disassembly/Linux 48 X86 Disassembly/Linux Executable Files 50 Code Patterns 51 X86 Disassembly/The Stack 51 X86 Disassembly/Functions and Stack Frames 53 X86 Disassembly/Functions and Stack Frame Examples 57 X86 Disassembly/Calling Conventions 58 X86 Disassembly/Calling Convention Examples 64 X86 Disassembly/Branches 74 X86 Disassembly/Branch Examples 83 X86 Disassembly/Loops 87 X86 Disassembly/Loop Examples 92 Data Patterns 95 X86 Disassembly/Variables 95 X86 Disassembly/Variable Examples 101 X86 Disassembly/Data Structures 103 X86 Disassembly/Objects and Classes 108 X86 Disassembly/Floating Point Numbers 112 X86 Disassembly/Floating Point Examples 119 Difficulties 121 X86 Disassembly/Code Optimization 121 X86 Disassembly/Optimization Examples 124 X86 Disassembly/Code Obfuscation 132 X86 Disassembly/Debugger Detectors 137 Resources and Licensing 139 X86 Disassembly/Resources 139 X86 Disassembly/Licensing 141 X86 Disassembly/Manual of Style 141 References Article Sources and Contributors 142 Image Sources, Licenses and Contributors 143 Article Licenses License 144 Wikibooks:Collections Preface 1 Wikibooks:Collections Preface This book was created by volunteers at Wikibooks (http:/ / en.
    [Show full text]
  • Cubesuite+ V1.00.00 Integrated Development Environment User's Manual: V850 Build
    User’s Manual User’s CubeSuite+ V1.00.00 Integrated Development Environment User’s Manual: V850 Build Target Device V850 Microcontroller All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Electronics Corp. without notice. Please review the latest information published by Renesas Electronics Corp. through various means, including the Renesas Electronics Corp. website (http://www.renesas.com). www.renesas.com Rev.1.00 Apr 2011 Notice 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website. 2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples.
    [Show full text]
  • GPU-Disasm: a GPU-Based X86 Disassembler
    GPU-Disasm: A GPU-based x86 Disassembler Evangelos Ladakis1, Giorgos Vasiliadis1, Michalis Polychronakis2, Sotiris Ioannidis1, and Georgios Portokalidis3 1 FORTH-ICS, Greece fladakis, gvasil, [email protected] 2 Stony Brook University, USA [email protected] 3 Stevens Institute of Technology, USA [email protected] Abstract. Static binary code analysis and reverse engineering are cru- cial operations for malware analysis, binary-level software protections, debugging, and patching, among many other tasks. Faster binary code analysis tools are necessary for tasks such as analyzing the multitude of new malware samples gathered every day. Binary code disassembly is a core functionality of such tools which has not received enough atten- tion from a performance perspective. In this paper we introduce GPU- Disasm, a GPU-based disassembly framework for x86 code that takes advantage of graphics processors to achieve efficient large-scale analy- sis of binary executables. We describe in detail various optimizations and design decisions for achieving both inter-parallelism, to disassem- ble multiple binaries in parallel, as well as intra-parallelism, to decode multiple instructions of the same binary in parallel. The results of our experimental evaluation in terms of performance and power consumption demonstrate that GPU-Disasm is twice as fast than a CPU disassembler for linear disassembly and 4.4 times faster for exhaustive disassembly, with power consumption comparable to CPU-only implementations. 1 Introduction Code disassemblers are typically used to translate byte code to assembly lan- guage, as a first step in understanding the functionality of binaries when source code is not available. Besides software debugging and reverse engineering, dis- assemblers are widely used by security experts to analyze and understand the behaviour of malicious programs [8,12], or to find software bugs and vulnerabili- ties in closed-source applications.
    [Show full text]
  • Disassembler Using High Level Processor Models
    Disassembler using High Level Pro cessor Mo dels A T h e s i s S u b m i t t e d in P a r t i a l Fu l l l m e n t o f th e Requirem ents fo r t h e D e g r e e o f M a s t e r o f Te c h n o l o g y by Nihal Chand Jain t o t h e Department of Computer Science Engineering Indian Institute of Technology Kanpur Jan Certicate Certied that the work contained in the thesis entitled D i s a s s e m b l e r u s i n g H i g h L e v e l P r o c e s s o r M o d e l s by MrN i h a l C h a n d J a i n has b een carried out under my sup ervision and that this work has not b een submitted elsewhere for a degree Dr Ra jat Mo ona Asso ciate Professor Department of Computer Science Engineering Indian Institute of Technology Kanpur Jan ii Abstract The design of a high p erformance system requires an integrated environment to sim ulate and analyze the p erformance of various design alternatives In this thesis we have develop ed a g e n e r i c disassem b ler for an integrated environment where SimnML acts as the sp ecication language for pro cessor p erformance mo del The SimnML an extension of nML machine description formalism is a simple elegant and p owerful language to mo del machine b ehavior at instruction level As part of the thesis work we have designed an in t e r m e d i a t e re p r e s e n t a t i o n I R for pro cessor sp ecication written in SimnML language The IR is simple and facilitates the development of various to ols such as assembler compiler backend generator instruction set simulator trace generator etc based on the pro
    [Show full text]
  • Differentiating Code from Data in X86 Binaries
    Differentiating Code from Data in x86 Binaries Richard Wartell, Yan Zhou, Kevin W. Hamlen, Murat Kantarcioglu, and Bhavani Thuraisingham Computer Science Department, University of Texas at Dallas, Richardson, TX 75080 {rhw072000,yan.zhou2,hamlen,muratk,bhavani.thuraisingham}@utdallas.edu Abstract. Robust, static disassembly is an important part of achieving high coverage for many binary code analyses, such as reverse engineering, malware analysis, reference monitor in-lining, and software fault isola- tion. However, one of the major difficulties current disassemblers face is differentiating code from data when they are interleaved. This paper presents a machine learning-based disassembly algorithm that segments an x86 binary into subsequences of bytes and then classifies each subse- quence as code or data. The algorithm builds a language model from a set of pre-tagged binaries using a statistical data compression technique. It sequentially scans a new binary executable and sets a breaking point at each potential code-to-code and code-to-data/data-to-code transition. The classification of each segment as code or data is based on the min- imum cross-entropy. Experimental results are presented to demonstrate the effectiveness of the algorithm. Keywords: statistical data compression, segmentation, classification, x86 binary disassembly. 1 Introduction Disassemblers transform machine code into human-readable assembly code. For some x86 executables, this can be a daunting task in practice. Unlike Java byte- code and RISC binary formats, which separate code and data into separate sections or use fixed-length instruction encodings, x86 permits interleaving of code and static data within a section and uses variable-length, unaligned in- struction encodings.
    [Show full text]
  • Ghidra Vs Radare2
    Ghidra Vs Radare2 Radare2 – is a framework built for reverse engineering and analyzing binaries. js File size differs 2462470 vs 2461765 Buffer truncated to 2461765 byte(s) (705 not compared) 86611 So… the WebAssembly is essentially generating JavaScript on-the-fly. With the addition, the latest UFC 257 lineup includes: Conor McGregor vs. Plugin manager for x64dbg. radare2 tools. Я открываю программу в Cutter — GUI для radare2 со встроенным декомпилятором ghidra, имеющим возможность эмуляции, а с недавних пор и отладки. Plugin manager for x64dbg. 7 місяців тому. Watch the UFC 257 "McGregor vs. With radare2 you can analyze, disassemble. The podcast is published every weekday and designed to get you ready for the day with a brief, usually 5 minute long, summary of current network security related events. radare2 was added by Tim_B in Sep 2016 and the latest update was made in Apr 2018. Free and Open Source RE Platform powered by Rizin. Ve srovnání s komerčním IDA je pomalejší a má víc chyb. Even if you know how to disassemble a Brown iron, this will not help. IDA Pro is a programmable, interactive, and multi-processor disassembler combined with a local and remote debugger and augmented by a complete plugin programming environment. 0 has been released!. We are using radare2 together with avr-gdb and simavr to reverse engineer the challenge "Jumpy" which implemets a password checking algorithm В видео речь пойдет про Ida Pro (free) x64dbg (плагины snowmen, x64dbg2ghidra) Ghidra Radare2 Затрону поверхностно windbg, binary ninja. pdf - Free ebook download as PDF File (. Patching Binaries (with vim, Binary Ninja, Ghidra and radare2) - bin 0x2F.
    [Show full text]