<<

OF THE α-DETERMINANT AND ZONAL SPHERICAL FUNCTIONS

KAZUFUMI KIMOTO

Abstract. U · (α) l We investigate the structure of the cyclic module Vn,l(α) = (gln) det (X) by embedding it to the tensor product space (Cn)⊗nl and utilizing the Schur-Weyl duality. We show that the entries of the λ transition matrices Fn,l(α) are given by a variation of the spherical Fourier transformation of a certain class n on Snl with respect to the subgroup Sl (Theorem 1.4). This result also provides another proof of (2l−s,s) Theorem ??. Further, we calculate the polynomial F2,l (α) by using an explicit formula of the values of zonal spherical functions for the Gelfand pair (S2l, Sl × Sl) due to Bannai and Ito (Theorem 2.1).

1. Irreducible decomposition of Vn,l(α) and transition matrices Let us fix n, l ∈ N. Consider the standard tableau T with shape (ln) such that the (i, j)-entry of T is (i − 1)l + j. For instance, if n = 3 and l = 2, then 1 2 T = 3 4 . 5 6 We denote by K = R(T) and H = C(T) the row and column group of the standard tableau T respectively. Namely, © ¯ ª (1.1) K = g ∈ S ¯ dg(x)/le = dx/le , x ∈ [nl] , © nl ¯ ª ¯ (1.2) H = g ∈ Snl g(x) ≡ x (mod l), x ∈ [nl] . We put 1 X (1.3) e = k ∈ C[S ]. |K| nl k∈K This is clearly an idempotent element in C[S ]. Let ϕ be a class function on H. We put nl X Φ = ϕ(h)h ∈ C[Snl]. h∈H Cn ⊗nl U C Consider the tensor product space V = ( ) . We introduce a ( (gln), [Snl])-module structure of V by Xnl · ⊗ · · · ⊗ ⊗ · · · ⊗ s-th ⊗ · · · ⊗ Eij ei1 einl = δis,j ei1 ei einl , s=1 ⊗ · · · ⊗ · ⊗ · · · ⊗ ∈ ei1 einl σ = eiσ(1) eiσ(nl) (σ Snl), { }n Cn where ei i=1 denotes the standard basis of . The main concern of this subsection is to describe the irreducible U · decomposition of the left (gln)-module V eΦe. We first show that Vn,l(α) is isomorphic to V · eΦe for a special choice of ϕ. Consider the group isomorphism → l θ : H Sn defined by

θ(h) = (θ(h)1, . . . , θ(h)l); θ(h)i(x) = y ⇐⇒ h((x − 1)l + i) = (y − 1)l + i.

Date: October 30, 2008. 2000 Mathematics Subject Classification. Primary 22E47, 33C45; Secondary 43A90, 13A50. Key words and phrases. Alpha-determinant, cyclic modules, Jacobi polynomials, singly confluent Heun ODE, permanent, Kostka numbers, irreducible decomposition, spherical Fourier transformation, zonal spherical functions, Gelfand pair. 1 2 KAZUFUMI KIMOTO

We also define an element D(X; ϕ) ∈ A(Matn) by X Yn Yl X Yn Yl D(X; ϕ) = ϕ(h) x = ϕ(h) x −1 θ(h)p(q),q q,θ(h)p (q) h∈H q=1 p=1 h∈H q=1 p=1 X Yn Yl −1 = ϕ(θ (σ1, . . . , σl)) xσp(q),q.

σ1,...,σl∈Sn q=1 p=1 ν(·) (α) l −1 ··· ∈ n We note that D(X; α ) = det (X) since νθ (σ1, . . . , σl) = νσ1 + + νσl for (σ1, . . . , σl) Sl . Take a class function δ on H defined by H ( 1 h = 1 δH (h) = 0 h =6 1.

l We see that D(X; δH ) = (x11x22 . . . xnn) . We need the following lemma (The assertion (1) is just a rewrite of Lemma ??, and (2) is immediate to verify). Lemma 1.1. (1) It holds that U · ⊗l ⊗ · · · ⊗ ⊗l · Sl Cn ⊗n (gln) e1 en = V e = ( ) , M Yn Yl U · C · ∼ Sl Cn ⊗n (gln) D(X; δH ) = xipq q = ( ) .

ipq ∈{1,2,...,n} q=1 p=1 (1≤p≤l, 1≤q≤n) (2) The map

Yn Yl T U · 3 : (gln) D(X; δH ) xipq q q=1 p=1 7−→ ⊗ · · · ⊗ ⊗ · · · ⊗ ⊗ · · · ⊗ · ∈ · (ei11 eil1 ) (ei1n eiln ) e V e U ¤ is a bijective (gln)-intertwiner. We see that T (D(X; ϕ)) Ã ! X Yn Yl T = ϕ(h) xθ(h)p(q),q ∈ hXH q=1 p=1 ⊗ · · · ⊗ ⊗ · · · ⊗ ⊗ · · · ⊗ · = ϕ(h)(eθ(h)1(1) eθ(h)l(1)) (eθ(h)1(n) eθ(h)l(n)) e ∈ h H X ⊗l ⊗ · · · ⊗ ⊗l · · ⊗l ⊗ · · · ⊗ ⊗l · = e1 en ϕ(h)h e = e1 en eΦe h∈H by (2) in Lemma 1.1. Using (1) in Lemma 1.1, we have the Lemma 1.2. It holds that U · ∼ · (gln) D(X; ϕ) = V eΦe U · ∼ ν(h) ¤ as a left (gln)-module. In particular, V eΦe = Vn,l(α) if ϕ(h) = α . By the Schur-Weyl duality, we have M ∼ Mλ £ Sλ V = n . λ`nl λ Here S denotes the irreducible unitary right Snl-module corresponding to λ. We see that ¡ ¢ D E Sλ · G Sλ dim e = indK 1K , = Kλ(ln), Snl REPRESENTATION THEORY OF THE α-DETERMINANT AND ZONAL SPHERICAL FUNCTIONS 3

where 1 is the trivial representation of K and hπ, ρi is the intertwining number of given representations π K Snl and ρ of Snl. Since Kλ(ln) = 0 unless `(λ) ≤ n, it follows the Theorem 1.3. It holds that M ¡ ¢ · ∼ Mλ £ Sλ · V eΦe = n eΦe . λ`nl `(λ)≤n In particular, as a left U(gl )-module, the multiplicity of Mλ in V · eΦe is given by n ¡ ¢ n λ dim S · eΦe = rkEnd(Sλ·e)(eΦe). ¤

` ≤ { λ λ } Let λ nl be a partition such that `(λ) n and put d = Kλ(ln). We fix an orthonormal basis e1 ,..., ef λ Sλ λ λ Sλ K of such that the first d vectors e1 ,..., ed form a subspace ( ) consisting of K-invariant vectors and left λ λ K f −d vectors form the orthocomplement of (S ) with respect to the Snl-invariant inner product. The matrix coefficient of Sλ relative to this basis is ­ ® λ λ · λ ∈ ≤ ≤ λ (1.4) ψij(g) = ei g, ej Sλ (g Snl, 1 i, j f ). Mλ · We notice that this function is K-biinvariant. We see that the multiplicity of n in V eΦe is given by the rank of the matrix à ! X λ ϕ(h)ψij(h) . h∈H 1≤i,j≤d As a particular case, we obtain the Mλ U · (α) l Theorem 1.4. The multiplicity of the irreducible representation n in the cyclic module (gln) det (X) is equal to the rank of à ! X λ ν(h) λ (1.5) Fn,l(α) = α ψij(h) , h∈H 1≤i,j≤d { λ } \ where ψij i,j denotes a basis of the λ-component of the space C(K Snl/K) of K-biinvariant functions on Snl given by (1.4). ¤ λ { λ } Remark 1.5. (1) We have Fn,l(0) = I by the definition of the basis ψij i,j in (1.4). ν(g−1) ν(g) λ −1 λ ∈ λ ∗ (2) Since α = α and ψij(g ) = ψji(g) for any g Snl, the transition matrices satisfy Fn,l(α) = λ Fn,l(α). (3) In Examples 1.6 and 1.8 below, the transition matrices are given by diagonal matrices. We expect that λ C any transition matrix Fn,l(α) is diagonalizable in MatKλ(ln) ( [α]).

Example 1.6. If l = 1, then H = G = Sn and K = {1}. Therefore, for any λ ` n, we have ­ ® λ n! λ (1.6) Fn,1(ϕ) = ϕ, χ I f λ Sn λ by the orthogonality of the matrix coefficients. Here χ denotes the irreducible of Sn corresponding to λ. In particular, if ϕ = αν(·), then λ (1.7) Fn,1(α) = fλ(α)I ν(·) since the Fourier expansion of α (as a class function on Sn) is X f λ (1.8) αν(·) = f (α)χλ, n! λ λ`n

which is obtained by specializing the Frobenius character formula for Sn (see, e.g. [10]). 4 KAZUFUMI KIMOTO

(nl) S(nl) Example 1.7. Let us calculate Fn,l (α) by using Theorem 1.4. Since is the trivial representation, it follows that (S(nl))K = S(nl) and X X (nl) ν(h) h · i ν(σ1) ν(σl) Fn,l (α) = α e h, e = α . . . α h∈H σ1,...,σl∈Sn = ((1 + α)(1 + 2α) ... (1 + (n − 1)α))l ,

where e denotes a unit vector in S(nl). (nl−1,1) Example 1.8. Let us calculate Fn,l (α) by using Theorem 1.4. As is well known, the irreducible (right) (nl−1,1) nl Snl-module S can be realized in C as follows: ( ¯ ) ¯ ¯ Xnl S(nl−1,1) nl ∈ Cnl ¯ = (xj)j=1 ¯ xj = 0 . j=1 This is a unitary representation with respect to the ordinary hermitian inner product h·, ·i on Cnl. It is immediate to see that ¡ ¢ S(nl−1,1) K n ¯ o ¯ nl ∈ S(nl−1,1) ··· ≤ = (xj)j=1 ¯ xpl+1 = xpl+2 = = x(p+1)l (0 p < n) . ¡ ¢ (nl−1,1) K Take an orthonormal basis e1,..., en−1 of S by

l l l ¡z }| { z }| { z }| {¢ 1 j j 2j 2j nj nj ej = √ ω , . . . , ω , ω , . . . , ω ,..., ω , . . . , ω (1 ≤ j ≤ n − 1), nl (nl−1,1) where ω is a primitive n-th root of unity. Then, the (i, j)-entry of the transition matrix Fn,l (α) is X X Xn Xl 1 − αν(h) he · h, e i = αν(σ1) . . . αν(σl)ωσq (p)i pj i j nl h∈H σ1,...,σl∈Sn p=1 q=1 Ã !l−1 Ã ! X 1 X Xn = αν(τ) αν(σ)ωσ(p)i−pj . n τ∈Sn σ∈Sn p=1 − The first factor is ((1 + α)(1 + 2α) ... (1 + (n − 1)α))l 1. We show that

1 X Xn αν(σ)ωσ(p)i−pj = (1 − α)(1 + α)(1 + 2α) ... (1 + (n − 2)α)δ n ij σ∈Sn p=1 (i, j = 1, 2, . . . , n − 1). For this purpose, by comparing the coefficients of αn−m in both sides, it is enough to prove ½· ¸ · ¸¾ 1 X Xn n − 1 n − 1 ωσ(p)i−pj = − δ n m − 1 m ij σ∈Sn p=1 ν(σ)=n−m (i, j, m = 1, 2, . . . , n − 1), £ ¤ n where m denotes the Stirling number of the first kind (see, e.g. [5] for the definition). Since (£ ¤ n−1 x = p, |{σ ∈ S ; ν(σ) = n − m, σ(p) = x}| = £ m−1¤ n n−1 6 m x = p REPRESENTATION THEORY OF THE α-DETERMINANT AND ZONAL SPHERICAL FUNCTIONS 5

for each p, x ∈ [n], it follows that   · ¸ · ¸  1 X Xn 1 Xn n − 1 X n − 1 αν(σ)ωσ(p)i−pj = ω−pj ωpi + ωxi n n  m − 1 m  σ∈Sn p=1 p=1 x=6 p ½· ¸ · ¸¾ ½· ¸ · ¸¾ n − 1 n − 1 1 Xn n − 1 n − 1 = − ωp(i−j) = − δ , m − 1 m n m − 1 m ij p=1 P xi − pi ≤ which is the required conclusion. Here we notice that x=6 p ω = ω since 1 i < n. Consequently, we obtain − F (nl 1,1)(α) n,l ³ ´ l l−1 = (1 − α) ((1 + α)(1 + 2α) ... (1 + (n − 2)α)) (1 + (n − 1)α) δij , 1≤i,j≤n−1 (nl−1,1) so that the multiplicity of Mn in Vn,l(α) is zero if α = −1/k (k = 1, 2, . . . , n − 1) and n − 1 otherwise. The trace of the transition matrix F λ (α) is n,l X λ λ ν(h) λ (1.9) fn,l(α) = tr Fn,l(α) = α ω (h), h∈H where ωλ is the zonal spherical function for λ with respect to K defined by 1 X ωλ(g) = χλ(kg)(g ∈ S ). |K| nl k∈K λ λ This polynomial is regarded as a generalization of the modified content polynomial since fn,1(α) = f fλ(α) as we see above. It is much easier to handle these polynomials than the transition matrices. If we could prove that λ λ −1 λ Sλ K a transition matrix Fn,l(α) is a scalar matrix, then we would have Fn,l(α) = d fn,l(α)I (d = dim( ) ) and Mλ λ hence we see that the multiplicity of n in Vn,l(α) is completely controlled by the single polynomial fn,l(α). In this sense, it is desirable to obtain a characterization of the irreducible representations whose corresponding λ transition matrices are scalar as well as to get an explicit expression for the polynomials fn,l(α). Here we give ` λ a sufficient condition for λ nl such that Fn,l(α) is a scalar matrix. λ Proposition 1.9. (1) Denote by NH (K) the normalizer of K in H. The transition matrix Fn,l(α) is scalar λ K if (S ) is irreducible as a NH (K)-module. − r λ (2) If λ is of hook-type (i.e. λ = (nl r, 1 ) for some r < n), then Fn,l(α) is scalar. ∼ Proof. Notice that N (K) = S . Consider a linear map T ∈ End((Sλ)K ) given by H n à ! Xd X ­ ® ν(h) · λ λ ∈ Sλ K T (x) = α x h, ej Sλ ej (x ( ) ), j=1 h∈H λ K λ K where d = dim(S ) . It is direct to check that T gives an intertwiner of (S ) as a NH (K)-module. Hence, λ Sλ K by Schur’s lemma, T is a scalar map (and Fn,l(α) is a scalar matrix) if ( ) is an irreducible NH (K)-module. − r ∼ − r When λ = (nl − r, 1r) for some r < n, it is proved in [2, Proposition 5.3] that (S(nl r,1 ))K = S(n r,1 ) as NH (K)-modules. Thus we have the proposition. ¤ (nl−1,1) (nl−1,1) − Example 1.10. Let us calculate fn,l (α). Notice that χ (g) = fixnl(g) 1 where fixnl denotes the number of fixed points in the natural action Snl y [nl]. Hence we see that X X − 1 f (nl 1,1)(α) = αν(h) (fix (kh) − 1) n,l |K| nl h∈H k∈K X 1 X X X = αν(h) δ − αν(h). |K| khx,x h∈H k∈K x∈[nl] h∈H 6 KAZUFUMI KIMOTO

It is easily seen that khx =6 x for any k ∈ K if hx =6 x (x ∈ [nl]). Thus it follows that 1 X X X 1 X 1 δ = δ δ = fix (h)(h ∈ H). |K| khx,x hx,x |K| kx,x l nl k∈K x∈[nl] x∈[nl] k∈K Therefore we have X X − 1 − f (nl 1,1)(α) = αν(h) fix (h) − αν(h) = f (n)(α)l−1f (n 1,1)(α) n,l l nl n,1 n,1 h∈H h∈H nY−2 = (n − 1)(1 − α)(1 − (n − 1)α)l−1 (1 + iα)l. i=1 − − Since the transition matrix F (nl 1,1) is a scalar one and its size is dim S(n−1,1) = n − 1, we get F (nl 1,1)(α) = Q n,l n,l − − − l−1 n−2 l (1 α)(1 (n 1)α) i=1 (1 + iα) In−1 again. λ We will investigate these polynomials fn,l(α) and their generalizations in [?].

2. Irreducible decomposition of V2,l(α) and Jacobi polynomials In this subsection, as a particular example, we consider the case where n = 2 and calculate the transition λ matrix F2,l(α) explicitly. Since the pair (S2l,K) is a Gelfand pair (see, e.g. [10]), it follows that D E S2l Sλ Kλ(l2) = indK 1K , = 1 S2l for each λ ` 2n with `(λ) ≤ 2. Thus, in this case, the transition matrix is just a polynomial and is given by µ ¶ X Xl l (2.1) F λ (α) = tr F λ (α) = αν(h)ωλ(h) = ωλ(g )αs. 2,l 2,l s s h∈H s=0

Here we put gs = (1, l + 1)(2, l + 2) ... (s, l + s) ∈ S2n. Now we write λ = (2l − p, p) for some p (0 ≤ p ≤ l). (2l−p,p) The value ω (gs) of the zonal spherical function is calculated by Bannai and Ito [3, p.218] as p µ ¶µ ¶µ ¶− µ ¶ X p 2l − p + 1 l 2 s ω(2l−p,p)(g ) = Q (s; −l − 1, −l − 1, l) = (−1)j , s p j j j j j=0 where µ ¶ −n, n + α + β + 1, −x Q (x; α, β, N) = F˜ ; 1 n 3 2 α + 1, −N µ ¶µ ¶µ ¶− µ ¶− µ ¶ XN n −n − α − β − 1 −α − 1 1 N 1 x = (−1)j j j j j j j=0 ³ ´ a1,...,ap is the Hahn polynomial (see also [10, p.399]), and n+1F˜n ; x is the hypergeometric polynomial b1,...,bq−1,−N µ ¶ XN j a1, . . . , ap (a1)j ... (ap)j x pF˜q ; x = b , . . . , b − , −N (b1)j ... (bq−1)j(−N)j j! 1 q 1 j=0 for p, q, N ∈ N in general (see [1]). We now re-prove Theorem ?? as follows: Theorem 2.1. Let l be a positive integer. It holds that µ ¶ Xl − l F (2l p,p)(α) = Q (s; l − 1, l − 1, l)αs = (1 + α)l−pGl (α) 2,l s p p s=0 for p = 0, 1, . . . , l. REPRESENTATION THEORY OF THE α-DETERMINANT AND ZONAL SPHERICAL FUNCTIONS 7

Proof. Let us put x = −1/α. Then we have µ ¶ Xl l Q (s; l − 1, l − 1, l)αs s p s=0 p µ ¶µ ¶µ ¶− X p 2l − p + 1 l 1 = (−1)j αj(1 + α)l−j j j j j=0 p µ ¶µ ¶µ ¶− X p 2l − p + 1 l 1 = x−l(x − 1)l−p (x − 1)p−j j j j j=0 and p µ ¶µ ¶µ ¶− X p l − p + j l 1 (1 + α)l−pGl (α) = x−l(x − 1)l−p (−1)j (−x)p−j. p j j j j=0 Here we use the elementary identity µ ¶µ ¶ µ ¶ Xl l s l αs = αj(1 + α)l−j. s j j s=0 Hence, to prove the theorem, it is enough to verify p µ ¶µ ¶µ ¶− p µ ¶µ ¶µ ¶− X p l − p + i l 1 X p 2l − p + 1 l 1 (2.2) xp−i = (x − 1)p−j. i i i j j j i=0 j=0 Comparing the coefficients of Taylor expansion of these polynomials at x = 1, we notice that the proof is reduced to the equality µ ¶µ ¶ µ ¶ Xr l − i l − p + i 2l − p + 1 (2.3) = l − r l − p r i=0 for 0 ≤ r ≤ p, which is well known (see, e.g. (5.26) in [5]). Hence we have the conclusion. ¤ Thus we obtain the irreducible decomposition M − ∼ M(l,l) ∼ M(2l−p,p) 6 − (2.4) V2,l( 1) = 2 , V2,l(α) = 2 (α = 1) 0≤p≤l l 6 Gp(α)=0 of V2,l(α) again. n Remark 2.2. (1) The calculation above uses the advantage for the fact that the pair (Snl, Sl ) is the Gelfand pair only when n = 2. (2) We have used the result in [3, p.218] for the theorem. It is worth mentioning that one may prove conversely the result in [3, p.218] from Theorem ??. Acknowledgement The author would thank Professor Itaru Terada for noticing that his work [2] is useful for the discussion in Section 6.2. References

1. G. E. Andrews, R. Askey and R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications 71, Cambridge University Press, Cambridge, 1999. MR1688958 (2000g:33001) 2. S. Ariki, J. Matsuzawa and I. Terada, Representation of Weyl groups on zero weight spaces of g-modules, Algebraic and topological theories (Kinosaki, 1984), 546–568, Kinokuniya, Tokyo, 1986. MR1102274 3. E. Bannai and T. Ito, Algebraic Combinatorics I, Association Schemes, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984. MR0882540 (87m:05001) 4. W. Fulton and J. Harris, Representation theory. A first course, Graduate Texts in Mathematics 129, Readings in Mathematics. Springer-Verlag, New York, 1991. MR1153249 (93a:20069) 8 KAZUFUMI KIMOTO

5. R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. A foundation for computer science, Second edition, Addison-Wesley Publishing Company, Reading, MA, 1994. MR1397498 (97d:68003) 6. I. M. Gel’fand and M. A. Na˘ımark, Unitary representations of the Lorentz group, Acad. Sci. USSR. J. Phys. 10 (1946), 93–94; Izvestiya Akad. Nauk SSSR. Ser. Mat. 11 (1947), 411–504. MR0017282 (8,132b) 7. K. Kimoto, S. Matsumoto and M. Wakayama, Alpha-determinant cyclic modules and Jacobi polynomials, to appear in Trans. Amer. Math. Soc. 8. K. Kimoto and M. Wakayama, Invariant theory for singular α-determinants, J. Combin. Theory Ser. A 115 (2008), no. 1, 1–31. MR2378855 U 9. , Quantum α-determinant cyclic modules of q(gln), J. Algebra 313 (2007), 922–956. MR2329577 (2008d:17021) 10. I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edn., Oxford University Press, 1995. MR1354144 (96h:05207) 11. S. Matsumoto, Alpha-pfaffian, pfaffian point process and shifted Schur measure, Linear Algebra Appl. 403 (2005), 369–398. MR2140292 (2006d:15014) C 12. S. Matsumoto and M. Wakayama, Alpha-determinant cyclic modules of gln( ), J. Lie Theory 16 (2006), 393–405. MR2197599 (2007a:17011) 13. G. Szeg¨o, Orthogonal Polynomials, 4th edn., American Mathematical Society, 1975. MR0372517 (51 #8724) 14. S. Yu Slavyanov and W. Lay, Special Functions – A Unified Theory Based on Singularities, Oxford: Oxford Univ. Press, 2000. MR1858237 (2004e:33003) 15. T. Shirai and Y. Takahashi, Random point fields associated with certain Fredholm determinants I: fermion, Poisson and boson point processes, J. Funct. Anal. 205 (2003), 414–463. MR2018415 (2004m:60104) 16. D. Vere-Jones, A generalization of permanents and determinants, Linear Algebra Appl. 111 (1988), 119–124. MR0974048 (89j:15014) 17. H. Weyl, The Classical Groups. Their invariants and representations, Fifteenth printing, Princeton Landmarks in Mathematics, Princeton University Press, 1997. MR1488158 (98k:01049)

Department of Mathematical Sciences, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan E-mail address: [email protected]