Representation Theory of the Α-Determinant and Zonal Spherical Functions

Representation Theory of the Α-Determinant and Zonal Spherical Functions

REPRESENTATION THEORY OF THE ®-DETERMINANT AND ZONAL SPHERICAL FUNCTIONS KAZUFUMI KIMOTO Abstract. U ¢ (®) l We investigate the structure of the cyclic module Vn;l(®) = (gln) det (X) by embedding it to the tensor product space (Cn)­nl and utilizing the Schur-Weyl duality. We show that the entries of the ¸ transition matrices Fn;l(®) are given by a variation of the spherical Fourier transformation of a certain class n function on Snl with respect to the subgroup Sl (Theorem 1.4). This result also provides another proof of (2l¡s;s) Theorem ??. Further, we calculate the polynomial F2;l (®) by using an explicit formula of the values of zonal spherical functions for the Gelfand pair (S2l; Sl £ Sl) due to Bannai and Ito (Theorem 2.1). 1. Irreducible decomposition of Vn;l(®) and transition matrices Let us ¯x n; l 2 N. Consider the standard tableau T with shape (ln) such that the (i; j)-entry of T is (i ¡ 1)l + j. For instance, if n = 3 and l = 2, then 1 2 T = 3 4 : 5 6 We denote by K = R(T) and H = C(T) the row group and column group of the standard tableau T respectively. Namely, © ¯ ª (1.1) K = g 2 S ¯ dg(x)=le = dx=le ; x 2 [nl] ; © nl ¯ ª ¯ (1.2) H = g 2 Snl g(x) ´ x (mod l); x 2 [nl] : We put 1 X (1.3) e = k 2 C[S ]: jKj nl k2K This is clearly an idempotent element in C[S ]. Let ' be a class function on H. We put nl X © = '(h)h 2 C[Snl]: h2H Cn ­nl U C Consider the tensor product space V = ( ) . We introduce a ( (gln); [Snl])-module structure of V by Xnl ¢ ­ ¢ ¢ ¢ ­ ­ ¢ ¢ ¢ ­ s-th ­ ¢ ¢ ¢ ­ Eij ei1 einl = ±is;j ei1 ei einl ; s=1 ­ ¢ ¢ ¢ ­ ¢ ­ ¢ ¢ ¢ ­ 2 ei1 einl σ = eiσ(1) eiσ(nl) (σ Snl); f gn Cn where ei i=1 denotes the standard basis of . The main concern of this subsection is to describe the irreducible U ¢ decomposition of the left (gln)-module V e©e. We ¯rst show that Vn;l(®) is isomorphic to V ¢ e©e for a special choice of '. Consider the group isomorphism ! l θ : H Sn de¯ned by θ(h) = (θ(h)1; : : : ; θ(h)l); θ(h)i(x) = y () h((x ¡ 1)l + i) = (y ¡ 1)l + i: Date: October 30, 2008. 2000 Mathematics Subject Classi¯cation. Primary 22E47, 33C45; Secondary 43A90, 13A50. Key words and phrases. Alpha-determinant, cyclic modules, Jacobi polynomials, singly confluent Heun ODE, permanent, Kostka numbers, irreducible decomposition, spherical Fourier transformation, zonal spherical functions, Gelfand pair. 1 2 KAZUFUMI KIMOTO We also de¯ne an element D(X; ') 2 A(Matn) by X Yn Yl X Yn Yl D(X; ') = '(h) x = '(h) x ¡1 θ(h)p(q);q q,θ(h)p (q) h2H q=1 p=1 h2H q=1 p=1 X Yn Yl ¡1 = '(θ (σ1; : : : ; σl)) xσp(q);q: σ1,...,σl2Sn q=1 p=1 º(¢) (®) l ¡1 ¢ ¢ ¢ 2 n We note that D(X; ® ) = det (X) since ºθ (σ1; : : : ; σl) = ºσ1 + + ºσl for (σ1; : : : ; σl) Sl . Take a class function ± on H de¯ned by H ( 1 h = 1 ±H (h) = 0 h =6 1: l We see that D(X; ±H ) = (x11x22 : : : xnn) . We need the following lemma (The assertion (1) is just a rewrite of Lemma ??, and (2) is immediate to verify). Lemma 1.1. (1) It holds that U ¢ ­l ­ ¢ ¢ ¢ ­ ­l ¢ Sl Cn ­n (gln) e1 en = V e = ( ) ; M Yn Yl U ¢ C ¢ » Sl Cn ­n (gln) D(X; ±H ) = xipq q = ( ) : ipq 2f1;2;:::;ng q=1 p=1 (1·p·l; 1·q·n) (2) The map Yn Yl T U ¢ 3 : (gln) D(X; ±H ) xipq q q=1 p=1 7¡! ­ ¢ ¢ ¢ ­ ­ ¢ ¢ ¢ ­ ­ ¢ ¢ ¢ ­ ¢ 2 ¢ (ei11 eil1 ) (ei1n eiln ) e V e U ¤ is a bijective (gln)-intertwiner. We see that T (D(X; ')) à ! X Yn Yl T = '(h) xθ(h)p(q);q 2 hXH q=1 p=1 ­ ¢ ¢ ¢ ­ ­ ¢ ¢ ¢ ­ ­ ¢ ¢ ¢ ­ ¢ = '(h)(eθ(h)1(1) eθ(h)l(1)) (eθ(h)1(n) eθ(h)l(n)) e 2 h H X ­l ­ ¢ ¢ ¢ ­ ­l ¢ ¢ ­l ­ ¢ ¢ ¢ ­ ­l ¢ = e1 en '(h)h e = e1 en e©e h2H by (2) in Lemma 1.1. Using (1) in Lemma 1.1, we have the Lemma 1.2. It holds that U ¢ » ¢ (gln) D(X; ') = V e©e U ¢ » º(h) ¤ as a left (gln)-module. In particular, V e©e = Vn;l(®) if '(h) = ® . By the Schur-Weyl duality, we have M » M¸ £ S¸ V = n : ¸`nl ¸ Here S denotes the irreducible unitary right Snl-module corresponding to ¸. We see that ¡ ¢ D E S¸ ¢ G S¸ dim e = indK 1K ; = K¸(ln); Snl REPRESENTATION THEORY OF THE ®-DETERMINANT AND ZONAL SPHERICAL FUNCTIONS 3 where 1 is the trivial representation of K and h¼; ½i is the intertwining number of given representations ¼ K Snl and ½ of Snl. Since K¸(ln) = 0 unless `(¸) · n, it follows the Theorem 1.3. It holds that M ¡ ¢ ¢ » M¸ £ S¸ ¢ V e©e = n e©e : ¸`nl `(¸)·n In particular, as a left U(gl )-module, the multiplicity of M¸ in V ¢ e©e is given by n ¡ ¢ n ¸ dim S ¢ e©e = rkEnd(S¸¢e)(e©e): ¤ ` · f ¸ ¸ g Let ¸ nl be a partition such that `(¸) n and put d = K¸(ln). We ¯x an orthonormal basis e1 ;:::; ef ¸ S¸ ¸ ¸ S¸ K of such that the ¯rst d vectors e1 ;:::; ed form a subspace ( ) consisting of K-invariant vectors and left ¸ ¸ K f ¡d vectors form the orthocomplement of (S ) with respect to the Snl-invariant inner product. The matrix coe±cient of S¸ relative to this basis is ­ ® ¸ ¸ ¢ ¸ 2 · · ¸ (1.4) Ãij(g) = ei g; ej S¸ (g Snl; 1 i; j f ): M¸ ¢ We notice that this function is K-biinvariant. We see that the multiplicity of n in V e©e is given by the rank of the matrix à ! X ¸ '(h)Ãij(h) : h2H 1·i;j·d As a particular case, we obtain the M¸ U ¢ (®) l Theorem 1.4. The multiplicity of the irreducible representation n in the cyclic module (gln) det (X) is equal to the rank of à ! X ¸ º(h) ¸ (1.5) Fn;l(®) = ® Ãij(h) ; h2H 1·i;j·d f ¸ g n where Ãij i;j denotes a basis of the ¸-component of the space C(K Snl=K) of K-biinvariant functions on Snl given by (1.4). ¤ ¸ f ¸ g Remark 1.5. (1) We have Fn;l(0) = I by the de¯nition of the basis Ãij i;j in (1.4). º(g¡1) º(g) ¸ ¡1 ¸ 2 ¸ ¤ (2) Since ® = ® and Ãij(g ) = Ãji(g) for any g Snl, the transition matrices satisfy Fn;l(®) = ¸ Fn;l(®). (3) In Examples 1.6 and 1.8 below, the transition matrices are given by diagonal matrices. We expect that ¸ C any transition matrix Fn;l(®) is diagonalizable in MatK¸(ln) ( [®]). Example 1.6. If l = 1, then H = G = Sn and K = f1g. Therefore, for any ¸ ` n, we have ­ ® ¸ n! ¸ (1.6) Fn;1(') = ';  I f ¸ Sn ¸ by the orthogonality of the matrix coe±cients. Here  denotes the irreducible character of Sn corresponding to ¸. In particular, if ' = ®º(¢), then ¸ (1.7) Fn;1(®) = f¸(®)I º(¢) since the Fourier expansion of ® (as a class function on Sn) is X f ¸ (1.8) ®º(¢) = f (®)¸; n! ¸ ¸`n which is obtained by specializing the Frobenius character formula for Sn (see, e.g. [10]). 4 KAZUFUMI KIMOTO (nl) S(nl) Example 1.7. Let us calculate Fn;l (®) by using Theorem 1.4. Since is the trivial representation, it follows that (S(nl))K = S(nl) and X X (nl) º(h) h ¢ i º(σ1) º(σl) Fn;l (®) = ® e h; e = ® : : : ® h2H σ1,...,σl2Sn = ((1 + ®)(1 + 2®) ::: (1 + (n ¡ 1)®))l ; where e denotes a unit vector in S(nl). (nl¡1;1) Example 1.8. Let us calculate Fn;l (®) by using Theorem 1.4. As is well known, the irreducible (right) (nl¡1;1) nl Snl-module S can be realized in C as follows: ( ¯ ) ¯ ¯ Xnl S(nl¡1;1) nl 2 Cnl ¯ = (xj)j=1 ¯ xj = 0 : j=1 This is a unitary representation with respect to the ordinary hermitian inner product h¢; ¢i on Cnl. It is immediate to see that ¡ ¢ S(nl¡1;1) K n ¯ o ¯ nl 2 S(nl¡1;1) ¢ ¢ ¢ · = (xj)j=1 ¯ xpl+1 = xpl+2 = = x(p+1)l (0 p < n) : ¡ ¢ (nl¡1;1) K Take an orthonormal basis e1;:::; en¡1 of S by l l l ¡z }| { z }| { z }| {¢ 1 j j 2j 2j nj nj ej = p ! ;:::;! ; ! ;:::;! ;:::; ! ;:::;! (1 · j · n ¡ 1); nl (nl¡1;1) where ! is a primitive n-th root of unity. Then, the (i; j)-entry of the transition matrix Fn;l (®) is X X Xn Xl 1 ¡ ®º(h) he ¢ h; e i = ®º(σ1) : : : ®º(σl)!σq (p)i pj i j nl h2H σ1,...,σl2Sn p=1 q=1 à !l¡1 à ! X 1 X Xn = ®º(¿) ®º(σ)!σ(p)i¡pj : n ¿2Sn σ2Sn p=1 ¡ The ¯rst factor is ((1 + ®)(1 + 2®) ::: (1 + (n ¡ 1)®))l 1. We show that 1 X Xn ®º(σ)!σ(p)i¡pj = (1 ¡ ®)(1 + ®)(1 + 2®) ::: (1 + (n ¡ 2)®)± n ij σ2Sn p=1 (i; j = 1; 2; : : : ; n ¡ 1): For this purpose, by comparing the coe±cients of ®n¡m in both sides, it is enough to prove ½· ¸ · ¸¾ 1 X Xn n ¡ 1 n ¡ 1 !σ(p)i¡pj = ¡ ± n m ¡ 1 m ij σ2Sn p=1 º(σ)=n¡m (i; j; m = 1; 2; : : : ; n ¡ 1); £ ¤ n where m denotes the Stirling number of the ¯rst kind (see, e.g.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    8 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us