Tables for the Thermophysical Properties of Ethane

Total Page:16

File Type:pdf, Size:1020Kb

Tables for the Thermophysical Properties of Ethane UNITED STATES DEPARTMENT OF COMMERCE TECHNOLOGY ADMINISTRATION NATIONAL INSTITUTE OF STANDARDS nist AND TECHNOLOGY NAT l INST. OF STAND » TECH R.I.C NIST PUBLICATIONS A111D3 T2flT3D NIST Technical Note 1346 /VaZL i Tables for the Thermophysical Properties of Ethane Daniel G. Friend James F. Ely Hepburn Ingham Thermophysics Division Chemical Science and Technology Laboratory National Institute of Standards and Technology Boulder, Colorado 80303-3328 January 1993 * *^TE8 Of U.S. DEPARTMENT OF COMMERCE, Barbara Hackman Franklin, Secretary TECHNOLOGY ADMINISTRATION, Robert M. White, Under Secretary for Technology NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, John W. Lyons, Director National Institute of Standards and Technology Technical Note Natl. Inst. Stand. Technol., Tech. Note 1346, 316 pages (January 1993) CODEN:NTNOEF U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 1992 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402-9325 CONTENTS LIST OF TABLES iv LIST OF FIGURES iv LIST OF SYMBOLS AND UNITS v ABSTRACT viii 1 . INTRODUCTION 1 2. THERMODYNAMIC PROPERTIES AND THEIR ALGEBRAIC REPRESENTATION 2 2 . 1 Fixed Point Constants 2 2 . 2 Liquid- Vapor Saturation Boundary 4 2 . 3 Ideal Gas Equation 5 2.4 Residual Helmholtz Energy 6 2 . 5 Derived Property Equations 6 3. TRANSPORT PROPERTIES AND THEIR ALGEBRAIC REPRESENTATION 11 3 . 1 Dilute Gas Correlations 11 3 . 2 Excess Property Correlations 12 3 . 3 Critical Enhancement Correlation 14 4. SUMMARY OF UNCERTAINTIES ASSOCIATED WITH THE CORRELATIONS 15 4.1 Two -Phase Boundary 15 4 . 2 Ideal Gas Properties 16 4 . 3 Thermodynamic Properties 16 4.4 Transport Properties 20 4.4.1 Viscosity 20 4.4.2 Thermal Conductivity 21 5 . ACKNOWLEDGMENTS 22 6 . REFERENCES 22 7 . APPENDICES 28 Appendix A: Comparisons between experimental data and the correlations 28 Appendix B: Tables for the thermophysical properties of ethane 112 Appendix C: Listing of a FORTRAN 77 program to calculate the thermophysical properties of ethane 283 in .. LIST OF TABLES 1. Fixed point constants and other parameters used in the correlations. 3 2. Coefficients for liquid-vapor boundary correlations 5 3. Coefficients needed for ideal gas Helmholtz energy, eq (5) 6 4. Exponents and coefficients for the residual Helmholtz energy 4> , eq (6) 7 5 Ideal gas Helmholtz energy and its derivatives 8 6 Residual Helmholtz energy and its derivatives 9 7 Thermodynamic property equations 10 8 Coefficients for dilute gas transport properties 12 9 Coefficients for excess transport properties 13 Bl. Properties of ideal gas at 0.1 MPa and dilute gas transport properties 112 B2 . Properties along saturation boundary 121 B3. Properties in the single-phase region along isobars 127 B4 Properties in the single-phase region along isotherms 239 LIST OF FIGURES Al Saturated vapor pressure 30 A2 . Saturated liquid density 36 A3 . Saturated vapor density 42 A4A. Ideal gas entropy 45 A4B. Ideal gas isobaric heat capacity 47 A4C Ideal gas enthalpy 49 A5 . Second virial coefficient 51 A6A PVT data- -pressure deviations 54 A6B. PVT data- -density deviations 59 A7 Isochoric molar heat capacity 67 A8 Isobaric molar heat capacity 70 A9 Molar heat capacity of the saturated liquid 72 A10. Sound speed in the single-phase fluid 74 All Sound speed in the saturated liquid 76 A12 Viscosity at zero density 78 A13 Thermal conductivity at zero density 81 A14 Viscosity at elevated pressures 84 A15 Thermal conductivity at elevated pressures 97 IV 7 , LIST OF SYMBOLS AND UNITS Symbol Description SI Units REFERENCE (used in text) Roman 1 a A Molar Helmholtz energy J»mol eq (4) B Second virial coefficient dm «mol table 7 * (2 2 ) C Coefficients in Q ' eq (10) .table 8 Molar isobaric heat capacity J«mol »K table 7 Molar isochoric heat capacity J«mol *K table 7 Crossover function in A eqs (15,17) c r f Contribution from internal modes eqs (11,12) i n t table 8 G Molar Gibbs energy J«mol table 7 G Coefficients in p eq (2) , table 2 i ctL 9 S Coefficients in r/ eq (13) .table i e H Molar enthalpy J«mol tables 1 , H Coefficients in P eq (1) .table 2 i a J Coefficients in p eq (3) .table 2 i ctV j Coefficients in A eq (14) .table 9 i e x k Boltzmann constant J-K table 1 M Relative molecular mass table 1 r N Avogadro constant mol table 1 A n Coefficients in 4> eq (6) .table 4 i P Pressure MPa id , table 3 Q. Coefficients in <f>* eq (5) i Wavenumber cutoff nm eq (17) Gas constant J«mol «K table 1 Exponent of 5 eqs (6,13,14), tables 2, 9 Molar entropy J»mol »K table 7 , LIST OF SYMBOLS AND UNITS (CONT'D) Symbol Description SI Units REFERENCE (used in text) s. Exponent of r - eqs (6,13 14) tables 2 9 t Reduced temperature, kT/e - eqs (9,10 12) T Temperature, IPTS-68 K - T Reduced temperature, (T -T)/T - eqs (1-3) 1 U Molar internal energy J»molT I' table 7 u Unified atomic mass unit kg table 1 -1 w Speed of sound m»s table 7 Z Compressibility factor, P/RTp - eq (3) Greek - B Scaling° exponent in p T ,p eqs (2,3), ctL CTV table(2) 7 Potential parameter - Ref. [13] 5 Reduced density, p/p - e 2 , Scaling exponent in P , -a eq (1) table 2) e Energy parameter J See e/k e/k Energy parameter K table(l) r\ Shear viscosity /xPa»s eq (7) A Thermal conductivity iW • m • K eq (8) | Correlation length run eqs (15,16) p Molar density mol'dm a Distance parameter nm table 1 r Reduced inverse temperature, T /T - <f> Reduced Helmholtz energy, A/RT eqs (4-6) (2 2)* - CI ' Reduced collision integral eqs (9,10) Superscripts id Ideal gas contribution eq (4) , table 1 r Residual contribution eq (4) VI LIST OF SYMBOLS AND UNITS (CONT'D) Symbol Description SI Units REFERENCE (used in text) Subscripts c Value at critical point table 1 cr Critical contribution eqs (8,15) ex Excess contribution eqs (7,8,13,14) t Value at triple point table 1 tL.tV Value at triple point in liquid, vapor table 1 o Value at saturation boundary eq (1) ctL.ctV Value in saturated liquid, vapor eqs (2,3) 5 Partial derivative with respect to 8 tables 5-7 t Partial derivative with respect to r tables 5-7 Value at zero density eqs (7-9,11) Throughout this paper, extensive physical quantities are given on a molar basis. The elementary entities are the ethane (C„H,) molecules. Vll : TABLES FOR THE THERMOPHYSICAL PROPERTIES OF ETHANE Daniel G. Friend, James F. Ely, and Hepburn Ingham Thermophysics Division National Institute of Standards and Technology Boulder, Colorado 80303 The thermophysical properties of ethane are tabulated for a large range of the fluid state based on recently formulated correlations. For the thermodynamic properties, temperatures from 90 to 625 K at pressures less than 70 MPa are included; for the viscosity, the corresponding range is 90- 500 K with pressures to 60 MPa; for the thermal conductivity the range is 90-600 K with pressures to 70 MPa. In addition to the tables of properties, algebraic expressions and associated tables of coefficients are given to allow additional property calculations. Graphical comparisons between experimental property determinations and the correlation are also given both for primary data used in the formulation of the correlations and for additional data. A listing of a FORTRAN program for the evaluation of ethane thermophysical properties is included. Key words correlation; density; equation of state; heat capacity; ethane; phase boundary; pressure; speed of sound; thermal conductivity; thermophysical properties; transport properties; virial coefficients; viscosity. 1. INTRODUCTION We have recently developed correlations for several of the thermophysical properties of ethane [1], including an equation of state analogous to that proposed by Schmidt and Wagner [2], equations for the liquid-vapor phase boundary, and correlations for the fluid viscosity and thermal conductivity. Details of the development and error analysis of the formulations have been presented elsewhere [1] ; in this paper, we summarize our equations and present extensive graphical comparisons of the correlations with experimental data and tables of properties based on these correlations. We have also included the listing for a FORTRAN program which can be used interactively to calculate properties of ethane. The correlations are similar in form to those published previously for methane [3], and this report is analogous to the earlier Technical Note on the properties of methane [4]. A separate Internal Report [5] gives a full tabular listing of experimental data considered in the development of the ethane correlations. The rationale for these new correlations and the present set of tables was discussed in Ref . [1] . Briefly summarized, earlier extensive works include those of Goodwin et al. [6], Sychev et al. [7], and Younglove and Ely [8]. Our correlations account for some new experimental measurements, and more important, the form of the residual Helmholtz free energy correlation, first proposed by Schmidt and Wagner [2], gives an excellent description of the thermodynamic surface and describes the critical region extremely well for a classical equation of state. The new ancillary equations for the phase boundary incorporate the results of lowest order scaling theory, and both viscosity and thermal conductivity correlations improve the description of the fluid properties when compared to previous correlations. Our current description of the enhancement of the thermal conductivity is based on the very recent mode-coupling work of Olchowy and Sengers [9] . The economic importance of ethane, as a major constituent of natural gas, makes the use of improved thermophysical properties correlations especially desireable.
Recommended publications
  • Oxidation of Ethane to Ethylene and Acetic Acid by Movnbo Catalysts Martial Roussel, Michel Bouchard, Elisabeth Bordes-Richard, Khalid Karim, Saleh Al-Sayari
    Oxidation of ethane to ethylene and acetic acid by MoVNbO catalysts Martial Roussel, Michel Bouchard, Elisabeth Bordes-Richard, Khalid Karim, Saleh Al-Sayari To cite this version: Martial Roussel, Michel Bouchard, Elisabeth Bordes-Richard, Khalid Karim, Saleh Al-Sayari. Oxida- tion of ethane to ethylene and acetic acid by MoVNbO catalysts. Catalysis Today, Elsevier, 2005, 99, pp.77-87. 10.1016/j.cattod.2004.09.026. hal-00103604 HAL Id: hal-00103604 https://hal.archives-ouvertes.fr/hal-00103604 Submitted on 4 Oct 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Oxidation of ethane to ethylene and acetic acid by MoVNbO catalysts M. Roussel 1, M. Bouchard 1, E. Bordes-Richard 1*, K. Karim 2, S. Al-Sayari 2 1: Laboratoire de Catalyse de Lille, UMR CNRS 8010, USTL-ENSCL, 59655 Villeneuve d'Ascq Cedex, France 2: SABIC R&T, P.O. Box 42503, Riyadh, Saoudi Arabia ABSTRACT The influence of niobium on the physicochemical properties of the Mo-V-O system and on its catalytic properties in the oxidation of ethane to ethylene and acetic acid is examined. Solids based on MoV 0.4 Ox and MoV 0.4 Nb 0.12 Oy composition and calcined at 350 or 400°C were studied by X-ray diffraction, and by laser Raman and X-ray photoelectron spectroscopies.
    [Show full text]
  • Chapter 2: Alkanes Alkanes from Carbon and Hydrogen
    Chapter 2: Alkanes Alkanes from Carbon and Hydrogen •Alkanes are carbon compounds that contain only single bonds. •The simplest alkanes are hydrocarbons – compounds that contain only carbon and hydrogen. •Hydrocarbons are used mainly as fuels, solvents and lubricants: H H H H H H H H H H H H C H C C H C C C C H H C C C C C H H H C C H H H H H H CH2 H CH3 H H H H CH3 # of carbons boiling point range Use 1-4 <20 °C fuel (gasses such as methane, propane, butane) 5-6 30-60 solvents (petroleum ether) 6-7 60-90 solvents (ligroin) 6-12 85-200 fuel (gasoline) 12-15 200-300 fuel (kerosene) 15-18 300-400 fuel (heating oil) 16-24 >400 lubricating oil, asphalt Hydrocarbons Formula Prefix Suffix Name Structure H CH4 meth- -ane methane H C H H C H eth- -ane ethane 2 6 H3C CH3 C3H8 prop- -ane propane C4H10 but- -ane butane C5H12 pent- -ane pentane C6H14 hex- -ane hexane C7H16 hept- -ane heptane C8H18 oct- -ane octane C9H20 non- -ane nonane C10H22 dec- -ane decane Hydrocarbons Formula Prefix Suffix Name Structure H CH4 meth- -ane methane H C H H H H C2H6 eth- -ane ethane H C C H H H H C H prop- -ane propane 3 8 H3C C CH3 or H H H C H 4 10 but- -ane butane H3C C C CH3 or H H H C H 4 10 but- -ane butane? H3C C CH3 or CH3 HydHrydorcocaarrbobnos ns Formula Prefix Suffix Name Structure H CH4 meth- -ane methane H C H H H H C2H6 eth- -ane ethane H C C H H H H C3H8 prop- -ane propane H3C C CH3 or H H H C H 4 10 but- -ane butane H3C C C CH3 or H H H C H 4 10 but- -ane iso-butane H3C C CH3 or CH3 HydHrydoroccarbrobnsons Formula Prefix Suffix Name Structure H H
    [Show full text]
  • Enabling Ethane As a Primary Gas Turbine Fuel: an Economic Benefit from the Growth of Shale Gas
    GE Power GEA32198 November 2015 Enabling ethane as a primary gas turbine fuel: an economic benefit from the growth of shale gas Dr. Jeffrey Goldmeer GE Power, Gas Power Systems Schenectady, NY, USA John Bartle GE Power, Power Services Atlanta, GA, USA Scott Peever GE Power Toronto, ON, CAN © 2015 General Electric Company. All Rights Reserved. This material may not be copied or distributed in whole or in part, without prior permission of the copyright owner. GEA32198 Enabling ethane as a primary gas turbine fuel: an economic benefit from the growth of shale gas Contents Abstract ............................................................................3 Introduction ........................................................................3 Fuel Supply Dynamics ...............................................................3 Hydrocarbon Sources and Characteristics ...........................................5 Combustion System Considerations .................................................6 Evaluating Fuels .....................................................................6 GE’s Gas Turbine Combustion Systems ..............................................8 Non-Methane Hydrocarbon Capability ...............................................9 Economic Value of Alternative Fuels .................................................9 Conclusions ........................................................................10 References ........................................................................11 2 © 2015 General Electric Company. All Rights
    [Show full text]
  • Chlorine and Hydrogen Chloride
    This report contains the collective views of an nternational group of experts and does not xcessarily represent the decisions or the stated 1 icy of the United Nations Environment Pro- '€mme, the International Labour Organisation, or the World Health Organization. Environmental Health Criteria 21 CHLORINE AND HYDROGEN CHLORIDE 'ublished under the joint sponsorship of Ic United Nations Environment Programme. the International Labour Organisation, and the World Health Organization / \r4 ( o 4 UI o 1 o 'T F- World Health Organization kz Geneva, 1982 The International Programme on Chemical Safety (IPCS) is a joint ven- ture of the United Nations Environment Programme. the International Labour Organisation, and the World Health Organization. The main objective of the IPCS is to carry out and disseminate evaluations of the environment. Supporting activities include the development of epidemiological, experi- mental laboratory, and risk assessment methods that could produce interna- tionally comparable results, and the development of manpower in the field of toxicology. Other relevant activities carried out by the IPCS include the development of know-how for coping with chemical accidents, coordination of laboratory testing and epidemiological studies, and promotion of research on the mechanisms of the biological action of chemicals. ISBN 92 4 154081 8 World Health Organization 1982 Publications of the World Health Organization enjoy copyright protec- tion in accordance with the provisions of Protocol 2 of the Universal Copy- right Convention. For rights of reproduction or translation of WHO publica- tions, in part or in loto, application should be made to the Office of Publica- tions, World Health Organization, Geneva. Switzerland. The World Health Organization welcomes such applications.
    [Show full text]
  • Organic Chemistry Name Formula Isomers Methane CH 1 Ethane C H
    Organic Chemistry Organic chemistry is the chemistry of carbon. The simplest carbon molecules are compounds of just carbon and hydrogen, hydrocarbons. We name the compounds based on the length of the longest carbon chain. We then add prefixes and suffixes to describe the types of bonds and any add-ons the molecule has. When the molecule has just single bonds we use the -ane suffix. Name Formula Isomers Methane CH4 1 Ethane C2H6 1 Propane C3H8 1 Butane C4H10 2 Pentane C5H12 3 Hexane C6H14 5 Heptane C7H16 9 Octane C8H18 18 Nonane C9H20 35 Decane C10H22 75 Isomers are compounds that have the same formula but different bonding. isobutane n-butane 1 Naming Alkanes Hydrocarbons are always named based on the longest carbon chain. When an alkane is a substituent group they are named using the -yl ending instead of the -ane ending. So, -CH3 would be a methyl group. The substituent groups are named by numbering the carbons on the longest chain so that the first branching gets the lowest number possible. The substituents are listed alphabetically with out regard to the number prefixes that might be used. 3-methylhexane 1 2 3 4 5 6 6 5 4 3 2 1 Alkenes and Alkynes When a hydrocarbon has a double bond we replace the -ane ending with -ene. When the hydrocarbon has more than three carbon the position of the double bond must be specified with a number. 1-butene 2-butene Hydrocarbons with triple bonds are named basically the same, we replace the -ane ending with -yne.
    [Show full text]
  • ETHANE PROPANE MIXTURE Version 1.2 Revision Date 2017-12-18
    SAFETY DATA SHEET ETHANE PROPANE MIXTURE Version 1.2 Revision Date 2017-12-18 SECTION 1: Identification of the substance/mixture and of the company/undertaking Product information Product Name : ETHANE PROPANE MIXTURE Material : 1012531, 1012527 Company : Chevron Phillips Chemical Company LP 10001 Six Pines Drive The Woodlands, TX 77380 Emergency telephone: Health: 866.442.9628 (North America) 1.832.813.4984 (International) Transport: CHEMTREC 800.424.9300 or 703.527.3887(int'l) Asia: CHEMWATCH (+612 9186 1132) China: 0532 8388 9090 EUROPE: BIG +32.14.584545 (phone) or +32.14583516 (telefax) Mexico CHEMTREC 01-800-681-9531 (24 hours) South America SOS-Cotec Inside Brazil: 0800.111.767 Outside Brazil: +55.19.3467.1600 Argentina: +(54)-1159839431 Responsible Department : Product Safety and Toxicology Group E-mail address : [email protected] Website : www.CPChem.com SECTION 2: Hazards identification Classification of the substance or mixture This product has been classified in accordance with the hazard communication standard 29 CFR 1910.1200; the SDS and labels contain all the information as required by the standard. Classification : Flammable gases, Category 1 Gases under pressure, Liquefied gas Labeling Symbol(s) : SDS Number:100000002557 1/12 SAFETY DATA SHEET ETHANE PROPANE MIXTURE Version 1.2 Revision Date 2017-12-18 Signal Word : Danger Hazard Statements : H220: Extremely flammable gas. H280: Contains gas under pressure; may explode if heated. Precautionary Statements : Prevention: P210 Keep away from heat/sparks/open flames/hot surfaces. No smoking. Response: P377 Leaking gas fire: Do not extinguish, unless leak can be stopped safely. P381 Eliminate all ignition sources if safe to do so.
    [Show full text]
  • INVESTIGATION of POLYCYCLIC AROMATIC HYDROCARBONS (Pahs) on DRY FLUE GAS DESULFURIZATION (FGD) BY-PRODUCTS
    INVESTIGATION OF POLYCYCLIC AROMATIC HYDROCARBONS (PAHs) ON DRY FLUE GAS DESULFURIZATION (FGD) BY-PRODUCTS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Ping Sun, M.S. ***** The Ohio State University 2004 Dissertation Committee: Approved by Professor Linda Weavers, Adviser Professor Harold Walker Professor Patrick Hatcher Adviser Professor Yu-Ping Chin Civil Engineering Graduate Program ABSTRACT The primary goal of this research was to examine polycyclic aromatic hydrocarbons (PAHs) on dry FGD by-products to determine environmentally safe reuse options of this material. Due to the lack of information on the analytical procedures for measuring PAHs on FGD by-products, our initial work focused on analytical method development. Comparison of the traditional Soxhlet extraction, automatic Soxhlet extraction, and ultrasonic extraction was conducted to optimize the extraction of PAHs from lime spray dryer (LSD) ash (a common dry FGD by-product). Due to the short extraction time, ultrasonic extraction was further optimized by testing different organic solvents. Ultrasonic extraction with toluene as the solvent turned out to be a fast and efficient method to extract PAHs from LSD ash. The possible reactions of PAHs under standard ultrasonic extraction conditions were then studied to address concern over the possible degradation of PAHs by ultrasound. By sonicating model PAHs including naphthalene, phenanthrene and pyrene in organic solutions, extraction parameters including solvent type, solute concentration, and sonication time on reactions of PAHs were examined. A hexane: acetone (1:1 V/V) ii mixture resulted in less PAH degradation than a dichloromethane (DCM): acetone (1:1 V/V) mixture.
    [Show full text]
  • Atomic and Molecular Data for State-Resolved Modelling of Hydrogen and Helium and Their Isotopes in Fusion Plasma
    INDC(NDS)- 0605 Distr. LP, NE,SK INDC International Nuclear Data Committee Atomic and Molecular Data for State-Resolved Modelling of Hydrogen and Helium and Their Isotopes in Fusion Plasma Summary Report of the First Research Coordination Meeting IAEA Headquarters, Vienna, Austria 10–12 August 2011 Report prepared by B. J. Braams IAEA Nuclear Data Section December 2013 IAEA Nuclear Data Section Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria Selected INDC documents may be downloaded in electronic form from http://www-nds.iaea.org/publications or sent as an e-mail attachment. Requests for hardcopy or e-mail transmittal should be directed to [email protected] or to: Nuclear Data Section International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna Austria Printed by the IAEA in Austria December 2013 INDC(NDS)- 0605 Distr. LP, NE,SK Atomic and Molecular Data for State-Resolved Modelling of Hydrogen and Helium and Their Isotopes in Fusion Plasma Summary Report of the First Research Coordination Meeting IAEA Headquarters, Vienna, Austria 10–12 August 2011 Report prepared by B. J. Braams IAEA Nuclear Data Section Abstract The First Research Coordination Meeting of the IAEA Coordinated Research Project (CRP) on “Atomic and Molecular Data for State-Resolved Modelling of Hydrogen and Helium and Their Isotopes in Fusion Plasma” was held 10-12 August 2011 at IAEA Headquarters in Vienna. Participants reviewed the status of the database on molecular processes of H and He, identified data needs and made plans for development of new data in connection with the CRP.
    [Show full text]
  • 1 Chapter 3: Organic Compounds: Alkanes and Cycloalkanes
    Chapter 3: Organic Compounds: Alkanes and Cycloalkanes >11 million organic compounds which are classified into families according to structure and reactivity Functional Group (FG): group of atoms which are part of a large molecule that have characteristic chemical behavior. FG’s behave similarly in every molecule they are part of. The chemistry of the organic molecule is defined by the function groups it contains 1 C C Alkanes Carbon - Carbon Multiple Bonds Carbon-heteroatom single bonds basic C N C C C X X= F, Cl, Br, I amines Alkenes Alkyl Halide H C C C O C C O Alkynes alcohols ethers acidic H H H C S C C C C S C C H sulfides C C thiols (disulfides) H H Arenes Carbonyl-oxygen double bonds (carbonyls) Carbon-nitrogen multiple bonds acidic basic O O O N H C H C O C Cl imine (Schiff base) aldehyde carboxylic acid acid chloride O O O O C C N C C C C O O C C nitrile (cyano group) ketones ester anhydrides O C N amide opsin Lys-NH2 + Lys- opsin H O H N rhodopsin H 2 Alkanes and Alkane Isomers Alkanes: organic compounds with only C-C and C-H single (s) bonds. general formula for alkanes: CnH(2n+2) Saturated hydrocarbons Hydrocarbons: contains only carbon and hydrogen Saturated" contains only single bonds Isomers: compounds with the same chemical formula, but different arrangement of atoms Constitutional isomer: have different connectivities (not limited to alkanes) C H O C4H10 C5H12 2 6 O OH butanol diethyl ether straight-chain or normal hydrocarbons branched hydrocarbons n-butane n-pentane Systematic Nomenclature (IUPAC System) Prefix-Parent-Suffix
    [Show full text]
  • UNITED STATES PATENT Office 2,344,061 PREPARATION of 1-CHLORO-1-FLUORO ETHYLENE Mary W
    Patented Mar. 14, 1944 2,344,061 UNITED STATES PATENT office 2,344,061 PREPARATION OF 1-CHLORO-1-FLUORO ETHYLENE Mary W. Renoll, Dayton, Ohio, assignor to Mon Santo Chemical Company, St. Louis, Mo., a cor poration of Delaware No Drawing. Application July 19, 1940, Serial No. 346,345 3 Claims. (CI. 260-653) This invention relates to an improved method forth by van de Walle in the Bulletin de l'academie for the preparation of 1-chloro-1-fluoro-ethylene. royale de mediecine de Belgique, pages 94-104. 1-chloro-1-fluoro-ethylene has the formula, (1924). The 1,2-dibromo-2,2-dichloro-ethane, so prepared, Was then treated with hydrogen fluoride in the presence of red mercuric oxide, by a process similar to that described by Henne in the Journal H & of the American Chemical Society, vol. 60, pages and is a colorless gas at room temperature and 1569-1571 (1938). In carrying out this reaction, atmospheric pressure. Its point of liquefaction 217 parts (one molecular proportion) of mercuric is -25.5 C. at a pressure of 741 mm. of mercury 0. Oxide Were added, preferably in successive Small and its freezing point is below -80° C. The poly portions, to Substantially 770 parts (three molecu merization and co-polymerization of this unsatu lar proportions) of 1,2-dibromo-2,2-dichloro rated polymerizable organic compound has been ethane contained in a suitable reaction vessel and described in co-pending application, Serial Num provided with means for agitation. Following the ber 346,346, filed July 19, 1940.
    [Show full text]
  • (Pahs) Coming from Pyrolysis in Low-Pressure Gas Carburizing Conditions Tsilla Bensabath, Hubert Monnier, Pierre-Alexandre Glaude
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archive Ouverte en Sciences de l'Information et de la Communication Detailed kinetic modeling of the formation of toxic polycyclic aromatic hydrocarbons (PAHs) coming from pyrolysis in low-pressure gas carburizing conditions Tsilla Bensabath, Hubert Monnier, Pierre-Alexandre Glaude To cite this version: Tsilla Bensabath, Hubert Monnier, Pierre-Alexandre Glaude. Detailed kinetic modeling of the for- mation of toxic polycyclic aromatic hydrocarbons (PAHs) coming from pyrolysis in low-pressure gas carburizing conditions. Journal of Analytical and Applied Pyrolysis, Elsevier, 2016, 122, pp.342-354. 10.1016/j.jaap.2016.09.007. hal-01510237 HAL Id: hal-01510237 https://hal.archives-ouvertes.fr/hal-01510237 Submitted on 19 Apr 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Title: Detailed kinetic modeling of the formation of toxic polycyclic aromatic hydrocarbons (PAHs) coming from pyrolysis in low-pressure gas carburizing conditions Authors: Tsilla Bensabatha,b
    [Show full text]
  • Mechanisms of Auger-Induced Chemistry Derived from Wave Packet
    Mechanisms of Auger-induced chemistry derived from wave packet dynamics Julius T. Su and William A. Goddard III1 Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125b; Contributed by William A. Goddard III, December 1, 2008 (sent for review September 19, 2008) To understand how core ionization and subsequent Auger decay Substituting the above expression into the time-dependent lead to bond breaking in large systems, we simulate the wave Schrodinger equation and assuming a locally harmonic potential V packet dynamics of electrons in the hydrogenated diamond leads to particularly simple equations of motion (6): nanoparticle C197H112. We find that surface core ionizations cause =−∇ = ˙ emission of carbon fragments and protons through a direct Auger dpx/dt xV , px melecx mechanism, whereas deeper core ionizations cause hydrides to dps/dt =−∂V /∂s, ps = (3melec/4)s˙ be emitted from the surface via remote heating, consistent with i.e., nuclei and electrons move classically, but with a “breath- results from photon-stimulated desorption experiments [Hoffman ing” motion as electrons shrink and expand in size over time. A, Laikhtman A, (2006) J Phys Condens Mater 18:S1517–S1546]. We take m to be an effective mass, as in the semiclassical the- This demonstrates that it is feasible to study the chemistry of elec ory of electron transport in semiconductors. In harmonic poten- highly excited large-scale systems using simulation and analysis tials, the effective mass reduces to the true electron mass, but in tools comparable in simplicity to those used for classical molecular anharmonic potentials, particularly near singularities, m may dynamics.
    [Show full text]