198 9Apj. . .344. .613F the Astrophysical Journal, 344:613-636

Total Page:16

File Type:pdf, Size:1020Kb

198 9Apj. . .344. .613F the Astrophysical Journal, 344:613-636 .613F The Astrophysical Journal, 344:613-636,1989 September 15 © 1989. The American Astronomical Society. All rights reserved. Printed in U.S.A. .344. 9ApJ. MAJOR AND MINOR AXIS KINEMATICS OF 22 ELLIPTICALS1 198 Marijn Franx,2, 3’4 Garth Illingworth,3, 4'5 and Timothy Heckman4, 6 Received 1988 Decembers; accepted 1989 February 24 ABSTRACT Rotation curves and velocity dispersion profiles have been determined for the major and the minor axes of 22 elliptical galaxies. The uncertainty in the mean rotational velocity is typically only 5 km s-1 for either axis. Rotation (<1^> >20 km s-1) was detected in all but one galaxy (NGC 5846), even though the sample was biased toward round ellipticals. Minor axis rotation larger than the major axis rotation was measured in two galaxies, NGC 4406 and NGC 7507. While the sample of such galaxies is still small (now three in total), it appears plausible that « 10% of ellipticals may show large minor axis velocities relative to those on the major axis. Two more ellipticals, NGC 1549 and NGC 7145, show yminor « rmajor. In total six galaxies, or 27% of the sample, show significant minor axis rotation. A simple model is used to derive a rotational axis from the observed minor and major axis velocities to a typical accuracy of 6°. The rotational and photometric minor axes align to better than 10° for 60% of the sample. This implies that the direction of the angular momentum is related to the orientation of the figure of the galaxy. This is surprising, since ellipticals are not supported by rotation, and considerable freedom in the direction of the angular momentum is allowed if galaxies are triaxial and have insignificant figure rotation. This suggests that figure rotation could play an important role in ellip- tical galaxies, or that these galaxies are near to oblate, and/or that events during the formation of elliptical galaxies conspire to orient the figure such that the angular momentum vector aligns approximately with the shortest of the principal axes. The galaxies with large photometric twists generally show significant kinematic misalignment. In addition, the centers of these galaxies are better aligned photometrically with their kinematic axes than are the outer parts. At least two galaxies have rapidly rotating, kinematically skew components in their cores. IC 1459 has a kinematically distinct core with its angular momentum opposite to the angular momentum of the outer parts, and NGC 4406 (a minor-axis rotator) has a core with its angular momentum perpendicular to that of the outer parts. The outer part of the latter galaxy may well rotate around the long axis. An additional four galaxies show weaker effects that need confirmation. The minor axis rotation and the misaligned cores support the view that ellipticals as a class are triaxial. Subject headings: galaxies: evolution — galaxies: formation — galaxies: internal motions — galaxies: nuclei — galaxies: structure I. INTRODUCTION 1989) indicate that these galaxies are triaxial. The fraction of Our present-day understanding of bright ellipticals is that ellipticals with regular disks of ionized gas is too low, however, they have a triaxial shape and are supported by anisotropies in to use this method for the determination of the general dis- their velocity dispersion. The observational evidence for this is tribution of the shapes of ellipticals. the slow rotation of bright ellipticals, too slow to account for Binney (1985) has shown how the stellar kinematics of ellip- their flattening (see e.g., Davies et al. 1983). Theoretical studies ticals can be used to constrain their intrinsic shapes sta- have shown that triaxial galaxies can exist in equilibrium (for a tistically. The rotation along the major and minor axis of review, see de Zeeuw 1987), and that they form easily in ellipticals provides valuable information about their intrinsic iV-body experiments (e.g., Wilkinson and James 1982). shapes. In the first place, detection of minor axis rotation rules Unfortunately, not very much more is known about their out the possibility (1) that ellipticals are oblate spheroids rotat- intrinsic shapes. The deprojection of the two-dimensional ing about their short axis (“ oblate rotators”). The assumption surface brightness distribution into the three-dimensional that they are (2) strongly prolate tumbling bars can also be luminosity distribution is highly degenerate. This prohibits the tested, as can the view (3) that ellipticals rotate about their long determination of the intrinsic shapes of galaxies from surface axes. The limited data available to Binney were inconsistent photometry alone. For a few individual galaxies, the shapes are with hypotheses (1), (2), and (3). Binney also showed how better constrained by the kinematics of the stars and gas. various hypotheses concerning the “ triaxiality ” of ellipticals Studies of NGC 5128 (e.g., Wilkinson et al 1986), NGC 1052 could be tested against the observed ratios of minor axis-to- (Davies and Illingworth 1986), and NGC 5077 (Bertola et al major axis rotation. He noted that the available data suggested that ellipticals were “ optimally triaxial,” i.e., that they could be 1 Partly based on observations made at the European Southern Observa- characterized as triaxial figures whose intermediate axis was tory, La Silla, Chile. truly intermediate between the longest and shortest axes. This 2 Sterrewacht Leiden, Leiden University. result, however, is very uncertain, either because the rotation 3 Space Telescope Science Institute, which is operated by AURA, Inc., for curves are poorly determined or because the galaxies them- the National Aeronautics and Space Administration. selves are unusual in their photometric and kinematical 4 Visiting Astronomer at the Kitt Peak National Observatory and the Cerro Tololo Inter-American Observatory, operated by AURA, Inc., under properties. Examples of such galaxies with multiaxis velocity contract to the National Science Foundation. profiles would be NGC 596 (Schechter and Gunn 1979; Wil- 5 liams 1981) and NGC 4125 (Bertola et al 1984). 6 Lick Observatory. Astronomy Program, University of Maryland. We have started a program to measure the major and minor 613 © American Astronomical Society • Provided by the NASA Astrophysics Data System .613F 614 FRANX, ILLINGWORTH, AND HECKMAN Vol. 344 .344. highest priority. We assume here, and in the following, a value . axis rotation curves of a large sample of ellipticals. This paper -1 -1 is the second in a series of papers. Paper I (Franx, Illingworth, of H0 of 50 km s Mpc . Round galaxies were given high and Heckman 1989) described two-dimensional multicolor priority because Binney’s (1985) models predict that appar- 9ApJ. surface photometry on a sample of galaxies. Here we present ently round galaxies have the highest chance of showing minor 198 kinematical observations on 22 elliptical galaxies in the north- axis rotation that is a measurable fraction of the major axis ern and southern hemisphere. The results will be analyzed in a rotation. Furthermore, there is a scarcity of kinematical obser- third paper (Franx, Illingworth and de Zeeuw 1989, hereafter vations of round galaxies. FIZ). A preliminary discussion of the results is given by Franx The observed galaxies are listed in Table 1, with classi- (1988). fications, total magnitudes, length scales, mean ellipticities, The paper is organized as follows. The sample is discussed in position angles, group velocities, central velocity dispersions, § II. The observations are described in § III. Section IV deals visible luminosities, and IRAS 100 /mi, X-ray, and radio fluxes. with the data reduction, and the derivation of the rotational The sample is by no means complete in any parameter, partly velocities and velocity dispersions. The resulting rotation because there is no complete all-sky sample of ellipticals with curves and velocity dispersion profiles are given in § V. The accurate two-dimensional surface photometry, and partly implications of these results are discussed in § VI. because of the bias toward round galaxies noted above. The Those readers interested in the results would be advised to galaxies were selected irrespective of their radio fluxes, X-ray skip initially to § V from § II or § III. Section IV is lengthy, properties and of their 100 /mi IRAS fluxes, and thus should because of the variety of detectors and spectrographs used and have radio, X-ray, and far-IR properties characteristic of the difficulties encountered in reducing some of the data. nearby elliptical galaxies, except for those ellipticals that were known to be very dusty or quite unusual. These were excluded II. SAMPLE SELECTION from our sample because of the difficulty of deriving photo- A sample of galaxies with accurately known position angles metric and kinematic properties. Some of the galaxies were and ellipticities was required for the spectroscopic observa- subsequently found to have (weak) shells or dust features. tions. We compiled a list of galaxies from Paper I and the photometric studies of Davis et al. (1985), Djorgovski (1985), III. OBSERVATIONS Lauer (1985), Jedrzejewski (1987), and Peletier et al (1989). Our long-slit spectroscopic observations were taken with the Using these data and galaxy classifications taken from the RC2 4 m KPNO and CTIO telescopes, and the 2.2 m and 3.6 m (de Vaucouleurs, de Vaucouleurs, and Corwin 1976), a set of ESO telescopes on nine usable nights between 1984 and 1987. elliptical galaxies was selected based on apparent size, absolute A wide
Recommended publications
  • Arxiv:1601.00329V3 [Astro-Ph.CO] 19 Aug 2016 Early Data
    DES 2015-0085 FERMILAB-PUB-16-003-AE Mon. Not. R. Astron. Soc. 000, 1–?? (2002) Printed 22 August 2016 (MN LATEX style file v2.2) The Dark Energy Survey: more than dark energy - an overview Dark Energy Survey Collaboration: T. Abbott1, F. B. Abdalla2, J. Aleksic´47, S. Allam3, A. Amara4, D. Bacon6, E. Balbinot46, M. Banerji7;8, K. Bechtol56;57, A. Benoit-Levy´ 13;2;12, G. M. Bernstein10, E. Bertin12;13, J. Blazek14, C. Bonnett15, S. Bridle16, D. Brooks2, R. J. Brunner41;20, E. Buckley- Geer3, D. L. Burke11;17, G. B. Caminha51;52, D. Capozzi6, J. Carlsen6, A. Carnero-Rosell18;19, M. Carollo54, M. Carrasco-Kind20;21, J. Carretero9;47, F. J. Castander9, L. Clerkin2, T. Collett6, C. Conselice55, M. Crocce9, C. E. Cunha11, C. B. D’Andrea6, L. N. da Costa19;18, T. M. Davis49, S. Desai25;24, H. T. Diehl3, J. P. Dietrich25;24, S. Dodelson3;27;58, P. Doel2, A. Drlica-Wagner3, J. Estrada3, J. Etherington6, A. E. Evrard22;29, J. Fabbri2, D. A. Finley3, B. Flaugher3, R. J. Foley21;41, P. Fosalba9, J. Frieman27;3, J. Garc´ıa-Bellido43, E. Gaztanaga9, D. W. Gerdes22, T. Giannantonio8;7, D. A. Goldstein44;37, D. Gruen17;11, R. A. Gruendl20;21, P. Guarnieri6, G. Gutierrez3, W. Hartley4, K. Honscheid14;32, B. Jain10, D. J. James1, T. Jeltema53, S. Jouvel2, R. Kessler27;58, A. King49, D. Kirk2, R. Kron27, K. Kuehn33, N. Kuropatkin3, O. Lahav2;?, T. S. Li23, M. Lima19;35, H. Lin3, M. A. G. Maia19;18, M. Makler51, M. Manera2, C. Maraston6, J. L.
    [Show full text]
  • 198 7Apj. . .312L. .11J the Astrophysical Journal, 312:L11-L15
    .11J The Astrophysical Journal, 312:L11-L15,1987 January 1 .312L. © 1987. The American Astronomical Society. All rights reserved. Printed in U.S.A. 7ApJ. 198 INTERSTELLAR DUST IN SHAPLEY-AMES ELLIPTICAL GALAXIES M. Jura and D. W. Kim Department of Astronomy, University of California, Los Angeles AND G. R. Knapp and P. Guhathakurta Princeton University Observatory Received 1986 August 11; accepted 1986 September 30 ABSTRACT We have co-added the IRAS survey data at the positions of the brightest elliptical galaxies in the Revised Shapley-Ames Catalog to increase the sensitivity over that of the IRAS Point Source Catalog. More than half of 7 8 the galaxies (with Bj< \\ mag) are detected at 100 /xm with flux levels indicating, typically, 10 or 10 M0 of cold interstellar matter. The presence of cold gas in ellipticals thus appears to be the rule rather than the exception. Subject headings: galaxies: general — infrared: sources I. INTRODUCTION infrared emission from the elliptical galaxy in the line of sight. The traditional view of early-type galaxies is that they are Our criteria for a real detection are as follows: essentially free of interstellar matter. However, with advances 1. The optical position of the galaxy and the position of the in instrumental sensitivity, it has become possible to observe IRAS source agree to better than V. (The agreement is usually 21 cm emission (Knapp, Turner, and Cunniffe 1985; Wardle much better than T.) and Knapp 1986), optical dust patches (Sadler and Gerhard 2. The flux is at least 3 times the r.m.s. noise.
    [Show full text]
  • Globular Clusters and Galactic Nuclei
    Scuola di Dottorato “Vito Volterra” Dottorato di Ricerca in Astronomia– XXIV ciclo Globular Clusters and Galactic Nuclei Thesis submitted to obtain the degree of Doctor of Philosophy (“Dottore di Ricerca”) in Astronomy by Alessandra Mastrobuono Battisti Program Coordinator Thesis Advisor Prof. Roberto Capuzzo Dolcetta Prof. Roberto Capuzzo Dolcetta Anno Accademico 2010-2011 ii Abstract Dynamical evolution plays a key role in shaping the current properties of star clus- ters and star cluster systems. We present the study of stellar dynamics both from a theoretical and numerical point of view. In particular we investigate this topic on different astrophysical scales, from the study of the orbital evolution and the mutual interaction of GCs in the Galactic central region to the evolution of GCs in the larger scale galactic potential. Globular Clusters (GCs), very old and massive star clusters, are ideal objects to explore many aspects of stellar dynamics and to investigate the dynamical and evolutionary mechanisms of their host galaxy. Almost every surveyed galaxy of sufficiently large mass has an associated group of GCs, i.e. a Globular Cluster System (GCS). The first part of this Thesis is devoted to the study of the evolution of GCSs in elliptical galaxies. Basing on the hypothesis that the GCS and stellar halo in a galaxy were born at the same time and, so, with the same density distribution, a logical consequence is that the presently observed difference may be due to evolution of the GCS. Actually, in this scenario, GCSs evolve due to various mechanisms, among which dynamical friction and tidal interaction with the galactic field are the most important.
    [Show full text]
  • WALLABY Pre-Pilot Survey: Two Dark Clouds in the Vicinity of NGC 1395
    University of Texas Rio Grande Valley ScholarWorks @ UTRGV Physics and Astronomy Faculty Publications and Presentations College of Sciences 2021 WALLABY pre-pilot survey: Two dark clouds in the vicinity of NGC 1395 O. I. Wong University of Western Australia A. R. H. Stevens B. Q. For University of Western Australia Tobias Westmeier M. Dixon See next page for additional authors Follow this and additional works at: https://scholarworks.utrgv.edu/pa_fac Part of the Astrophysics and Astronomy Commons, and the Physics Commons Recommended Citation O I Wong, A R H Stevens, B-Q For, T Westmeier, M Dixon, S-H Oh, G I G Józsa, T N Reynolds, K Lee-Waddell, J Román, L Verdes-Montenegro, H M Courtois, D Pomarède, C Murugeshan, M T Whiting, K Bekki, F Bigiel, A Bosma, B Catinella, H Dénes, A Elagali, B W Holwerda, P Kamphuis, V A Kilborn, D Kleiner, B S Koribalski, F Lelli, J P Madrid, K B W McQuinn, A Popping, J Rhee, S Roychowdhury, T C Scott, C Sengupta, K Spekkens, L Staveley-Smith, B P Wakker, WALLABY pre-pilot survey: Two dark clouds in the vicinity of NGC 1395, Monthly Notices of the Royal Astronomical Society, 2021;, stab2262, https://doi.org/10.1093/ mnras/stab2262 This Article is brought to you for free and open access by the College of Sciences at ScholarWorks @ UTRGV. It has been accepted for inclusion in Physics and Astronomy Faculty Publications and Presentations by an authorized administrator of ScholarWorks @ UTRGV. For more information, please contact [email protected], [email protected].
    [Show full text]
  • III. Characteristics of Group Central Radio Galaxies in the Local Universe
    MNRAS 489, 2488–2504 (2019) doi:10.1093/mnras/stz2082 Advance Access publication 2019 July 30 The complete local volume groups sample – III. Characteristics of group central radio galaxies in the Local Universe Konstantinos Kolokythas,1‹ Ewan O’Sullivan ,2 Huib Intema ,3,4 Somak Raychaudhury ,1,5,6 Arif Babul,7,8 Simona Giacintucci9 and Myriam Gitti10,11 1Inter-University Centre for Astronomy and Astrophysics, Pune University Campus, Ganeshkhind, Pune, Maharashtra 411007, India 2Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 3International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102, Australia 4 Leiden Observatory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, the Netherlands Downloaded from https://academic.oup.com/mnras/article/489/2/2488/5541074 by guest on 23 September 2021 5School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, UK 6Department of Physics, Presidency University, 86/1 College Street, Kolkata 700073, India 7Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 1A1, Canada 8Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland 9Naval Research Laboratory, 4555 Overlook Avenue SW, Code 7213, Washington, DC 20375, USA 10Dipartimento di Fisica e Astronomia, Universita´ di Bologna, via Gobetti 93/2, 40129 Bologna, Italy 11INAF, Istituto di Radioastronomia di Bologna, via Gobetti 101, 40129 Bologna, Italy Accepted 2019 July 22. Received 2019 July 17; in original form 2019 May 31 ABSTRACT Using new 610 and 235 MHz observations from the giant metrewave radio telescope (GMRT) in combination with archival GMRT and very large array (VLA) survey data, we present the radio properties of the dominant early-type galaxies in the low-richness subsample of the complete local-volume groups sample (CLoGS; 27 galaxy groups) and provide results for the radio properties of the full CLoGS sample for the first time.
    [Show full text]
  • Gravitational Potential and X-Ray Luminosities of Early-Type Galaxies Observed with XMM-Newton and Chandra
    A&A 501, 157–169 (2009) Astronomy DOI: 10.1051/0004-6361/200810978 & c ESO 2009 Astrophysics Gravitational potential and X-ray luminosities of early-type galaxies observed with XMM-Newton and Chandra R. Nagino and K. Matsushita Tokyo University of Science, 1-3 Kagurazaka, Shinjyuku-ku, 162-8601 Tokyo, Japan e-mail: [email protected]; [email protected] Received 17 September 2008 / Accepted 25 March 2009 ABSTRACT Aims. We study the dark matter content in early-type galaxies and investigate whether X-ray luminosities of early-type galaxies are determined by the surrounding gravitational potential. Methods. We derived gravitational mass profiles of 22 early-type galaxies observed with XMM-Newton and Chandra. Results. Sixteen galaxies show constant or decreasing radial temperature profiles, and their X-ray luminosities are consistent with kinematical energy input from stellar mass loss. The temperature profiles of the other 6 galaxies increase with radius, and their X-ray luminosities are significantly higher. The integrated mass-to-light ratio of each galaxy is constant at that of stars within 0.5–1 re,and increases with radius, where re is the effective radius of a galaxy. The scatter of the central mass-to-light ratio of galaxies was less in K-band light. At 3 re, the integrated mass-to-light ratios of galaxies with flat or decreasing temperature profiles are twice the value at 0.5 re, where the stellar mass dominates, and at 6 re, these increase to three times the value at 0.5 re. Conclusions. This feature should reflect common dark and stellar mass distributions in early-type galaxies: within 3 re, the mass of dark matter is similar to the stellar mass, while within 6 re, the former is larger than the latter by a factor of two.
    [Show full text]
  • ALABAMA University Libraries
    THE UNIVERSITY OF ALABAMA University Libraries O VI In Elliptical Galaxies: Indicators of Cooling Flows Joel N. Bregman – University of Michigan Eric D. Miller – MIT Alex E. Athey – Carnegie Institution of Washington Jimmy A. Irwin – University of Michigan Deposited 09/13/2018 Citation of published version: Bregman, J., Miller, E., Athey, A., Irwin, J. (2005): O VI In Elliptical Galaxies: Indicators of Cooling Flows The Astrophysical Journal, 635(2). DOI: 10.1086/497421 © 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. The Astrophysical Journal, 635:1031–1043, 2005 December 20 # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. O vi IN ELLIPTICAL GALAXIES: INDICATORS OF COOLING FLOWS Joel N. Bregman Department of Astronomy, University of Michigan, Ann Arbor, MI 48109; [email protected] Eric D. Miller Kavli Institute for Astrophysics and Space Science, MIT, Cambridge, MA 02139; [email protected] Alex E. Athey The Observatories, Carnegie Institution of Washington, Pasadena, CA 91101; [email protected] and Jimmy A. Irwin Department of Astronomy, University of Michigan, Ann Arbor, MI 48109; [email protected] Received 2005 April 25; accepted 2005 August 23 ABSTRACT Early-type galaxies often contain a hot X-ray–emitting interstellar medium [(3 8) ; 106 K] with an apparent radiative cooling time much less than a Hubble time. If unopposed by a heating mechanism, the gas will radiatively 4 À1 cool to temperatures P10 K at a rate proportional to LX /TX , typically 0.03–1 M yr . We can test whether gas is cooling through the 3 ; 105 K range by observing the O vi doublet, whose luminosity is proportional to the cooling rate.
    [Show full text]
  • X-Ray Luminosities for a Magnitude-Limited Sample of Early-Type Galaxies from the ROSAT All-Sky Survey
    Mon. Not. R. Astron. Soc. 302, 209±221 (1999) X-ray luminosities for a magnitude-limited sample of early-type galaxies from the ROSAT All-Sky Survey J. Beuing,1* S. DoÈbereiner,2 H. BoÈhringer2 and R. Bender1 1UniversitaÈts-Sternwarte MuÈnchen, Scheinerstrasse 1, D-81679 MuÈnchen, Germany 2Max-Planck-Institut fuÈr Extraterrestrische Physik, D-85740 Garching bei MuÈnchen, Germany Accepted 1998 August 3. Received 1998 June 1; in original form 1997 December 30 Downloaded from https://academic.oup.com/mnras/article/302/2/209/968033 by guest on 30 September 2021 ABSTRACT For a magnitude-limited optical sample (BT # 13:5 mag) of early-type galaxies, we have derived X-ray luminosities from the ROSATAll-Sky Survey. The results are 101 detections and 192 useful upper limits in the range from 1036 to 1044 erg s1. For most of the galaxies no X-ray data have been available until now. On the basis of this sample with its full sky coverage, we ®nd no galaxy with an unusually low ¯ux from discrete emitters. Below log LB < 9:2L( the X-ray emission is compatible with being entirely due to discrete sources. Above log LB < 11:2L( no galaxy with only discrete emission is found. We further con®rm earlier ®ndings that Lx is strongly correlated with LB. Over the entire data range the slope is found to be 2:23 60:12. We also ®nd a luminosity dependence of this correlation. Below 1 log Lx 40:5 erg s it is consistent with a slope of 1, as expected from discrete emission.
    [Show full text]
  • The I Band Tully-Fisher Relation for Cluster Galaxies: Data Presentation
    Dartmouth College Dartmouth Digital Commons Open Dartmouth: Peer-reviewed articles by Dartmouth faculty Faculty Work 10-13-1997 The I Band Tully-Fisher Relation for Cluster Galaxies: Data Presentation. Riccardo Giovanelli Cornell University Martha P. Haynes Cornell University Terry Herter Cornell University Nicole P. Vogt Cornell University Gary Wegner Dartmouth College See next page for additional authors Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa Part of the Astrophysics and Astronomy Commons Dartmouth Digital Commons Citation Giovanelli, Riccardo; Haynes, Martha P.; Herter, Terry; Vogt, Nicole P.; Wegner, Gary; Salzer, John J.; da Costa, Luiz N.; and Freudling, Wolfram, "The I Band Tully-Fisher Relation for Cluster Galaxies: Data Presentation." (1997). Open Dartmouth: Peer-reviewed articles by Dartmouth faculty. 3427. https://digitalcommons.dartmouth.edu/facoa/3427 This Article is brought to you for free and open access by the Faculty Work at Dartmouth Digital Commons. It has been accepted for inclusion in Open Dartmouth: Peer-reviewed articles by Dartmouth faculty by an authorized administrator of Dartmouth Digital Commons. For more information, please contact [email protected]. Authors Riccardo Giovanelli, Martha P. Haynes, Terry Herter, Nicole P. Vogt, Gary Wegner, John J. Salzer, Luiz N. da Costa, and Wolfram Freudling This article is available at Dartmouth Digital Commons: https://digitalcommons.dartmouth.edu/facoa/3427 Version 1.1 13 October 1996 To appear in Astronomical Journal The I–Band Tully–Fisher Relation for Cluster Galaxies: Data Presentation Riccardo Giovanelli, Martha P. Haynes, Terry Herter and Nicole P. Vogt Center for Radiophysics and Space Research and National Astronomy and Ionosphere Center1, Cornell University, Ithaca, NY 14853 Gary Wegner Dept.
    [Show full text]
  • Globular Cluster System Erosion in Elliptical Galaxies
    A&A 507, 183–193 (2009) Astronomy DOI: 10.1051/0004-6361/200912255 & c ESO 2009 Astrophysics Globular cluster system erosion in elliptical galaxies R. Capuzzo-Dolcetta and A. Mastrobuono-Battisti Dep. of Physics, Sapienza, University of Roma, P.le A. Moro 5, 00185, Roma, Italy e-mail: [roberto.capuzzodolcetta;alessandra.mastrobuonobattisti]@uniroma1.it Received 2 April 2009 / Accepted 5 August 2009 ABSTRACT Context. We analyse data of 8 elliptical galaxies to study the difference between the radial distributions of their globular cluster systems (GCSs) and their galactic stellar component. In all galaxies studied, the GCS density profile is significantly flatter towards the galactic centre than that of the stars. Aims. A flatter profile of the radial distribution of the GCS with respect to that of the galactic stellar component is a difference with astrophysical relevance. A quantitative comparative analysis of the profiles may provide insight into both galaxy and globular cluster formation and evolution. If the difference is caused by erosion of the GCS, the missing GCs in the galactic central region may have merged around the galactic centre and formed, or at least increased in mass, the galactic nucleus. Observational support to this are the correlations between the galaxy integrated absolute magnitude and the number of globular clusters lost and that between the central massive black hole mass and the total mass of globular clusters lost. Methods. We fitted both the stellar and globular cluster system radial profiles of a set of galaxies observed at high resolution. We found that the GCS profile is less sharply peaked at the galactic centre than the stellar one.
    [Show full text]
  • GALEX UV COLOR RELATIONS for NEARBY EARLY-TYPE GALAXIES Jose´ Donas,1 Jean-Michel Deharveng,1 R
    The Astrophysical Journal Supplement Series, 173:597Y606, 2007 December # 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A. GALEX UV COLOR RELATIONS FOR NEARBY EARLY-TYPE GALAXIES Jose´ Donas,1 Jean-Michel Deharveng,1 R. Michael Rich,2 Sukyoung K. Yi,3 Young-Wook Lee,3 Alessandro Boselli,1 Armando Gil de Paz,4 Samuel Boissier,1 Ste´phane Charlot,5 Samir Salim,2 Luciana Bianchi,6 Tom A. Barlow,7 Karl Forster,7 Peter G. Friedman,7 Timothy M. Heckman,8 Barry F. Madore,9 D. Christopher Martin,7 Bruno Milliard,1 Patrick Morrissey,7 Susan G. Neff,10 David Schiminovich,11 Mark Seibert,7 Todd Small,7 Alex S. Szalay,8 Barry Y. Welsh,12 and Ted K. Wyder7 Received 2006 May 4; accepted 2006 July 20 ABSTRACT We use GALEX/optical photometry to construct color-color relationships for early-type galaxies sorted by mor- phological type. We have matched objects in the GALEX GR1 public release and the first IR1.1 internal release, with the RC3 early-type galaxies having a morphological type À5:5 T < À1:5, with mean error on T < 1:5 and mean error on (B À V )T < 0:05. After visual inspection of each match, we are left with 130 galaxies with reliable GALEX pipeline photometry in the far-UVand near-UV bands. This sample is divided into ellipticals (À5:5 T < À3:5) and lenticulars (À3:5 T < À1:5). After correction for Galactic extinction, the color-color diagrams FUV À NUV versus (B À V )Tc are plotted for the two subsamples.
    [Show full text]
  • Making a Sky Atlas
    Appendix A Making a Sky Atlas Although a number of very advanced sky atlases are now available in print, none is likely to be ideal for any given task. Published atlases will probably have too few or too many guide stars, too few or too many deep-sky objects plotted in them, wrong- size charts, etc. I found that with MegaStar I could design and make, specifically for my survey, a “just right” personalized atlas. My atlas consists of 108 charts, each about twenty square degrees in size, with guide stars down to magnitude 8.9. I used only the northernmost 78 charts, since I observed the sky only down to –35°. On the charts I plotted only the objects I wanted to observe. In addition I made enlargements of small, overcrowded areas (“quad charts”) as well as separate large-scale charts for the Virgo Galaxy Cluster, the latter with guide stars down to magnitude 11.4. I put the charts in plastic sheet protectors in a three-ring binder, taking them out and plac- ing them on my telescope mount’s clipboard as needed. To find an object I would use the 35 mm finder (except in the Virgo Cluster, where I used the 60 mm as the finder) to point the ensemble of telescopes at the indicated spot among the guide stars. If the object was not seen in the 35 mm, as it usually was not, I would then look in the larger telescopes. If the object was not immediately visible even in the primary telescope – a not uncommon occur- rence due to inexact initial pointing – I would then scan around for it.
    [Show full text]