Methods in Microbiome Research Namrata Iyer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gut Microbiota Beyond Bacteria—Mycobiome, Virome, Archaeome, and Eukaryotic Parasites in IBD
International Journal of Molecular Sciences Review Gut Microbiota beyond Bacteria—Mycobiome, Virome, Archaeome, and Eukaryotic Parasites in IBD Mario Matijaši´c 1,* , Tomislav Meštrovi´c 2, Hana Cipˇci´cPaljetakˇ 1, Mihaela Peri´c 1, Anja Bareši´c 3 and Donatella Verbanac 4 1 Center for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; [email protected] (H.C.P.);ˇ [email protected] (M.P.) 2 University Centre Varaždin, University North, 42000 Varaždin, Croatia; [email protected] 3 Division of Electronics, Ruđer Boškovi´cInstitute, 10000 Zagreb, Croatia; [email protected] 4 Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; [email protected] * Correspondence: [email protected]; Tel.: +385-01-4590-070 Received: 30 January 2020; Accepted: 7 April 2020; Published: 11 April 2020 Abstract: The human microbiota is a diverse microbial ecosystem associated with many beneficial physiological functions as well as numerous disease etiologies. Dominated by bacteria, the microbiota also includes commensal populations of fungi, viruses, archaea, and protists. Unlike bacterial microbiota, which was extensively studied in the past two decades, these non-bacterial microorganisms, their functional roles, and their interaction with one another or with host immune system have not been as widely explored. This review covers the recent findings on the non-bacterial communities of the human gastrointestinal microbiota and their involvement in health and disease, with particular focus on the pathophysiology of inflammatory bowel disease. Keywords: gut microbiota; inflammatory bowel disease (IBD); mycobiome; virome; archaeome; eukaryotic parasites 1. Introduction Trillions of microbes colonize the human body, forming the microbial community collectively referred to as the human microbiota. -
The Gut Microbiota and Inflammation
International Journal of Environmental Research and Public Health Review The Gut Microbiota and Inflammation: An Overview 1, 2 1, 1, , Zahraa Al Bander *, Marloes Dekker Nitert , Aya Mousa y and Negar Naderpoor * y 1 Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne 3168, Australia; [email protected] 2 School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia; [email protected] * Correspondence: [email protected] (Z.A.B.); [email protected] (N.N.); Tel.: +61-38-572-2896 (N.N.) These authors contributed equally to this work. y Received: 10 September 2020; Accepted: 15 October 2020; Published: 19 October 2020 Abstract: The gut microbiota encompasses a diverse community of bacteria that carry out various functions influencing the overall health of the host. These comprise nutrient metabolism, immune system regulation and natural defence against infection. The presence of certain bacteria is associated with inflammatory molecules that may bring about inflammation in various body tissues. Inflammation underlies many chronic multisystem conditions including obesity, atherosclerosis, type 2 diabetes mellitus and inflammatory bowel disease. Inflammation may be triggered by structural components of the bacteria which can result in a cascade of inflammatory pathways involving interleukins and other cytokines. Similarly, by-products of metabolic processes in bacteria, including some short-chain fatty acids, can play a role in inhibiting inflammatory processes. In this review, we aimed to provide an overview of the relationship between the gut microbiota and inflammatory molecules and to highlight relevant knowledge gaps in this field. -
Gut Microbiota: Its Role in Diabetes and Obesity
ARTICLE Gut microbiota: Its role in diabetes and obesity Neil Munro Citation: Munro N (2016) Gut The gut microbiota is a community of microogranisms that live in the gut and intestinal microbiota: Its role in diabetes tract. The microbiota consists of bacteria, archaea and eukarya, as well as viruses, but is and obesity. Diabetes & Primary Care 18: 168–73 predominantly populated by anaerobic bacteria. Relationships between gut microbiota constituents and a wide range of human conditions such as enterocolitis, rheumatoid Article points arthritis, some cancers, type 1 and type 2 diabetes, and obesity have been postulated. 1. The role of the gut microbiota This article covers the essentials of the gut microbiota as well as the evidence for its role in certain disease progressions in diabetes and obesity. has been postulated, particularly its role in diabetes and obesity. he human gut microbiota is “an ecological Identifying microbiota constituents 2. There is much greater community of commensal, symbiotic and Until relatively recently, bacteria could only be genetic diversity between pathogenic micro-organisms that literally identified by direct microscopy and culture. people’s gut microbiota than T share our body space” (Lederberg and McCray, This proved particularly problematic with most between their genomes. 2001). It is made up of between 10 and 100 trillion anaerobic commensal gut flora (Ursell et al, 3. Improved understanding of the mechanisms by which the micro-organisms (with a mass weight of 1.5 kg) 2012). It has only been in recent years that human microbiota contributes and is found in the distal intestine (Allin et al, advances in gene sequencing and analytical to the development of 2015). -
Association of Fungi and Archaea of the Gut Microbiota with Crohn's
pathogens Article Association of Fungi and Archaea of the Gut Microbiota with Crohn’s Disease in Pediatric Patients—Pilot Study Agnieszka Krawczyk 1, Dominika Salamon 1,* , Kinga Kowalska-Duplaga 2 , Tomasz Bogiel 3,4 and Tomasz Gosiewski 1,* 1 Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland; [email protected] 2 Department of Pediatrics, Gastroenterology and Nutrition, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland; [email protected] 3 Microbiology Department, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland; [email protected] 4 Clinical Microbiology Laboratory, University Hospital No. 1 in Bydgoszcz, 85-094 Bydgoszcz, Poland * Correspondence: [email protected] (D.S.); [email protected] (T.G.); Tel.: +48-(12)-633-25-67 (D.S.); +48-(12)-633-25-67 (T.G.) Abstract: The composition of bacteria is often altered in Crohn’s disease (CD), but its connection to the disease is not fully understood. Gut archaea and fungi have recently been suggested to play a role as well. In our study, the presence and number of selected species of fungi and archaea in pediatric patients with CD and healthy controls were evaluated. Stool samples were collected from children with active CD (n = 54), non-active CD (n = 37) and control subjects (n = 33). The prevalence and the number of selected microorganisms were assessed by real-time PCR. The prevalence of Candida Citation: Krawczyk, A.; Salamon, D.; tropicalis was significantly increased in active CD compared to non-active CD and the control group Kowalska-Duplaga, K.; Bogiel, T.; (p = 0.011 and p = 0.036, respectively). -
Human Microbiome: Your Body Is an Ecosystem
Human Microbiome: Your Body Is an Ecosystem This StepRead is based on an article provided by the American Museum of Natural History. What Is an Ecosystem? An ecosystem is a community of living things. The living things in an ecosystem interact with each other and with the non-living things around them. One example of an ecosystem is a forest. Every forest has a mix of living things, like plants and animals, and non-living things, like air, sunlight, rocks, and water. The mix of living and non-living things in each forest is unique. It is different from the mix of living and non-living things in any other ecosystem. You Are an Ecosystem The human body is also an ecosystem. There are trillions tiny organisms living in and on it. These organisms are known as microbes and include bacteria, viruses, and fungi. There are more of them living on just your skin right now than there are people on Earth. And there are a thousand times more than that in your gut! All the microbes in and on the human body form communities. The human body is an ecosystem. It is home to trillions of microbes. These communities are part of the ecosystem of the human Photo Credit: Gaby D’Alessandro/AMNH body. Together, all of these communities are known as the human microbiome. No two human microbiomes are the same. Because of this, you are a unique ecosystem. There is no other ecosystem like your body. Humans & Microbes Microbes have been around for more than 3.5 billion years. -
Targeting the Microbiota-Gut-Brain Axis
Author’s Accepted Manuscript Targeting the Microbiota-Gut-Brain Axis: Prebiotics Have Anxiolytic and Antidepressant-like Effects and Reverse the Impact of Chronic Stress in Mice“Prebiotics for Stress-Related Disorders” Aurelijus Burokas, Silvia Arboleya, Rachel D. Moloney, Veronica L. Peterson, Kiera Murphy, Gerard Clarke, Catherine Stanton, Timothy G. www.elsevier.com/locate/journal Dinan, John F. Cryan PII: S0006-3223(17)30042-2 DOI: http://dx.doi.org/10.1016/j.biopsych.2016.12.031 Reference: BPS13098 To appear in: Biological Psychiatry Cite this article as: Aurelijus Burokas, Silvia Arboleya, Rachel D. Moloney, Veronica L. Peterson, Kiera Murphy, Gerard Clarke, Catherine Stanton, Timothy G. Dinan and John F. Cryan, Targeting the Microbiota-Gut-Brain Axis: Prebiotics Have Anxiolytic and Antidepressant-like Effects and Reverse the Impact of Chronic Stress in Mice“Prebiotics for Stress-Related Disorders”, Biological Psychiatry, http://dx.doi.org/10.1016/j.biopsych.2016.12.031 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Targeting the Microbiota-Gut-Brain Axis: Prebiotics Have Anxiolytic and Antidepressant-like Effects and Reverse the Impact of Chronic Stress in Mice Aurelijus Burokas1, Silvia Arboleya1,2*, Rachel D. Moloney1*, Veronica L. -
Root Microbiota Assembly and Adaptive Differentiation Among European
bioRxiv preprint doi: https://doi.org/10.1101/640623; this version posted May 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Root microbiota assembly and adaptive differentiation among European 2 Arabidopsis populations 3 4 Thorsten Thiergart1,7, Paloma Durán1,7, Thomas Ellis2, Ruben Garrido-Oter1,3, Eric Kemen4, Fabrice 5 Roux5, Carlos Alonso-Blanco6, Jon Ågren2,*, Paul Schulze-Lefert1,3,*, Stéphane Hacquard1,*. 6 7 1Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany 8 2Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, SE‐752 36 9 Uppsala, Sweden 10 3Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, 11 50829 Cologne, Germany 12 4Department of Microbial Interactions, IMIT/ZMBP, University of Tübingen, 72076 Tübingen, 13 Germany 14 5LIPM, INRA, CNRS, Université de Toulouse, 31326 Castanet-Tolosan, France 15 6Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo 16 Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain 17 7These authors contributed equally: Thorsten Thiergart, Paloma Durán 18 *e-mail: [email protected], [email protected], [email protected] 19 20 Summary 21 Factors that drive continental-scale variation in root microbiota and plant adaptation are poorly 22 understood. We monitored root-associated microbial communities in Arabidopsis thaliana and co- 23 occurring grasses at 17 European sites across three years. -
Porphyromonas Gingivalis Infection on Gut Dysbiosis and Arthritis Exacerbation in 1 Mouse Model
Preprint: Please note that this article has not completed peer review. Effect of Porphyromonas gingivalis infection on gut dysbiosis and arthritis exacerbation in 1 mouse model CURRENT STATUS: UNDER REVISION Yuta Hamamoto Hiroshima University Kazuhisa Ouhara Hiroshima University [email protected] Author ORCiD: https://orcid.org/0000-0001-6796-884X Syuichi Munenaga HIroshima University Mikio Shoji Nagasaki University Tatsuhiko Ozawa University of Toyama Jyunzo Hisatsune National Institute of Infectious Diseases Isamu Kado Hiroshima University Mikihito Kajiya Hiroshima University Shinji Matsuda Hiroshima University Toshihisa Kawai Nova Southeastern University Noriyoshi Mizuno Hiroshima University 1 Tsuyoshi Fujita Hiroshima University Shintaro Hirata Hiroshima University Kotaro Tanimoto Hiroshima University Koji Nakayama Nagasaki University Hiroyuki Kishi University of Toyama Eiji Sugiyama Hiroshima University Hidemi Kurihara Hiroshima University DOI: 10.21203/rs.2.20521/v1 SUBJECT AREAS Rheumatology KEYWORDS Porphyromonas gingivalis, Rheumatoid Arthritis, Periodontitis, Citrullinated protein, Dysbiosis 2 Abstract Background : Porphyromonas gingivalis (Pg) infection causes periodontal disease and is one of the causative bacteria of rheumatoid arthritis (RA) exacerbation. Gut microbiota dysbiosis has shown strong associations with systemic diseases, including RA, diabetes mellitus, and inflammatory bowel disease, and inoculation of periodontopathogenic bacteria (i.e. Pg) can alter gut microbiota composition. Therefore, this study investigated dysbiosis-mediated arthritis exacerbation by Pg oral inoculation in an experimental arthritis model mouse. Methods : Pg inoculation in the oral cavity twice a week for 6 weeks was performed to induce periodontitis in SKG mice. Concomitantly, a single intraperitoneal (i.p.) injection of laminarin (LA) was administered to induce experimental arthritis (Pg-LA mouse). Citrullinated protein (CP) and IL-6 levels in periodontal, intestinal, and joint tissues, and serum were measured by ELISA. -
Structure and Function of the Global Ocean Microbiome
Structure and function of the global ocean microbiome Shinichi Sunagawa, Luis Pedro Coelho, Samuel Chaffron, Jens Roat Kultima, Karine Labadie, Guillem Salazar, Bardya Djahanschiri, Georg Zeller, Daniel R. Mende, Adriana Alberti, et al. To cite this version: Shinichi Sunagawa, Luis Pedro Coelho, Samuel Chaffron, Jens Roat Kultima, Karine Labadie, et al.. Structure and function of the global ocean microbiome. Science, American Association for the Advancement of Science, 2015, 348 (6237), pp.1261359. 10.1126/science.1261359. hal-01233742 HAL Id: hal-01233742 https://hal.archives-ouvertes.fr/hal-01233742 Submitted on 14 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Revised Manuscript: Confidential 29 January 2015 Colors used throughout the revision of pre -edited manuscript Edits by Science editor in blue Edits by the A uthors in green Title: Structure and Function of the Global Ocean Microbiome Authors: Shinichi S unagawa 1,†,* , Luis Pedro Coelho 1,† , Samuel Chaffron 2,3,4,† , Jens Roat Kultima 1, Karine Labadie 5, Guillem Salazar 6, Bardya Djahanschiri 1, Georg Zeller 1, Daniel R. Mende 1, Adriana Alberti 5, Francisco M. Cornejo -Castillo 6, Paul I. Costea 1, Corinne Cruaud 5, Fr ancesco d'Ovidio 7, Stefan Engelen 5, Isabel Ferrera 6, Josep M. -
How Your Body Decides If Bacteria Are Friends Or Foes § Would You
§How your body decides if bacteria are friends or foes § Would you: • Let you child eat food that dropped on the ground? • Let your child suck their thumbs? • Take antibiotics without knowing the true reason you are feeling sick? Humans and Microbes • Leeuwenhoek’s discovery of microorganisms in 17th century led people to suspect they might cause diseases • Robert Koch (1876) offered proof of what is now considered germ theory of disease; showed Bacillus anthracis causes anthrax • Today, we now know that most of the bacteria we associate with are not pathogens, and many are critical for our health. Bacteria Are Ubiquitous § We contact numerous microorganisms daily • Every surface on earth is covered! • Even clouds have microbes – Could play a role in seeding rain.. • Some have tremendous commercial value • Yogurts, wine, cheese, vinegar, pickles, etc. • Our bodies: • Breathe in, ingest, pick up on skin • Vast majority do not make us sick, or cause infections • Some colonize body surfaces; or slough off with dead epithelial cells • Most that are swallowed die in stomach or are eliminated in feces • Relatively few are pathogens that cause damage Microbes, Health, and Disease § Most microbes are harmless • Many are beneficial • Normal microbiota (normal flora) are organisms that routinely reside on body’s surfaces • Relationship is a balance, and some can cause disease under certain conditions-- opportunistic infections • Weaknesses in innate or adaptive defenses can leave individuals vulnerable to invasion – malnutrition, cancer, AIDS or -
The Influence of Microbiome Dysbiosis and Bacterial Biofilms On
International Journal of Molecular Sciences Review The Influence of Microbiome Dysbiosis and Bacterial Biofilms on Epidermal Barrier Function in Atopic Dermatitis—An Update Leszek Blicharz 1,*, Lidia Rudnicka 1, Joanna Czuwara 1, Anna Wa´skiel-Burnat 1, Mohamad Goldust 2 , Małgorzata Olszewska 1 and Zbigniew Samochocki 1 1 Department of Dermatology, Medical University of Warsaw, 02-008 Warsaw, Poland; [email protected] (L.R.); [email protected] (J.C.); [email protected] (A.W.-B.); [email protected] (M.O.); [email protected] (Z.S.) 2 Department of Dermatology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; [email protected] * Correspondence: [email protected] Abstract: Atopic dermatitis (AD) is a common inflammatory dermatosis affecting up to 30% of children and 10% of adults worldwide. AD is primarily driven by an epidermal barrier defect which triggers immune dysregulation within the skin. According to recent research such phenomena are closely related to the microbial dysbiosis of the skin. There is growing evidence that cutaneous microbiota and bacterial biofilms negatively affect skin barrier function, contributing to the onset and exacerbation of AD. This review summarizes the latest data on the mechanisms leading to microbiome dysbiosis and biofilm formation in AD, and the influence of these phenomena on skin barrier function. Citation: Blicharz, L.; Rudnicka, L.; Keywords: atopic dermatitis; biofilms; microbiome; staphylococci; skin barrier Czuwara, J.; Wa´skiel-Burnat,A.; Goldust, M.; Olszewska, M.; Samochocki, Z. The Influence of Microbiome Dysbiosis and Bacterial Biofilms on Epidermal Barrier 1. -
Analysis of Human Gut Microbiota Composition Associated to the Presence of Commensal and Pathogen Microorganisms in Côte D’Ivoire
microorganisms Article Analysis of Human Gut Microbiota Composition Associated to the Presence of Commensal and Pathogen Microorganisms in Côte d’Ivoire Veronica Di Cristanziano 1,*,† , Fedja Farowski 2,3,† , Federica Berrilli 4,† , Maristella Santoro 4, David Di Cave 4, Christophe Glé 5, Martin Daeumer 6, Alexander Thielen 6, Maike Wirtz 1, Rolf Kaiser 1, Kirsten Alexandra Eberhardt 7,8 , Maria J. G. T. Vehreschild 2,3,9 and Rossella D’Alfonso 5,10 1 Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany; [email protected] (M.W.); [email protected] (R.K.) 2 Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany; [email protected] (F.F.); [email protected] (M.J.G.T.V.) 3 Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany 4 Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; [email protected] (F.B.); [email protected] (M.S.); [email protected] (D.D.C.) 5 Centre Don Orione Pour Handicapés Physiques, Bonoua BP 21, Côte d’Ivoire; [email protected] (C.G.); [email protected] (R.D.) 6 Seq-IT GmbH & Co KG, 67655 Kaiserslautern, Germany; [email protected] (M.D.); [email protected] (A.T.) Citation: Di Cristanziano, V.; 7 Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I. Department of Farowski, F.; Berrilli, F.; Santoro, M.; Medicine, University Medical Center Hamburg-Eppendorf, 20359 Hamburg, Germany; [email protected] Di Cave, D.; Glé, C.; Daeumer, M.; 8 Institute for Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Thielen, A.; Wirtz, M.; Kaiser, R.; et al.