Jugendtraum Focus Week

Total Page:16

File Type:pdf, Size:1020Kb

Jugendtraum Focus Week Institute for the Physics and Mathematics of the Universe World Premier International Research Center Initiative 数物連携宇宙研究機構 世界トップレベル研究拠点プログラム The University of Tokyo 東京大学 Feature Jugendtraum Interview with George F. Smoot Focus Week: NEWS Condensed Matter Physics Meets High Energy Physics No. 9 March 2010 IPMU NEWS CONTENTS English Japanese 3 Director’s Corner Hitoshi Murayama 23 Director’s Corner 村山 斉 Science of the Universe 宇宙を科学する 4 Feature Kyoji Saito 24 Feature 斎藤 恭司 Jugendtraum of a mathematician 一数学者の青春の夢 10 Our Team Won Sang Cho 30 Our Team 趙 元相 Johanna Knapp ヨハンナ・クナップ Takahiro Nishimichi 西道 啓博 Masaomi Tanaka 田中 雅臣 Masahito Yamazaki 山﨑 雅人 12 IPMU Interview with George F. Smoot 32 IPMU Interview ジョージ・スムート教授に聞く 16 Workshop Report 36 Workshop Report Focus Week: Condensed Matter Physics Meets フォーカスウィーク:物性と素粒子の対話 High Energy Physics 18 News 38 News 22 Temperature anisotropies in cosmic 40 宇宙マイクロ波背景放射の温度揺らぎ microwave background radiation 杉山 直 Naoshi Sugiyama Kyoji Saito is IPMU Professor and a principal investigator. He is a world-leading mathematician in complex analytic geometry. His theories on primitive forms and innite dimensional Lie algebras appear in recent theoretical physics, in particular, in topological string theory as the Landau-Ginzburg theory. He graduated from the University of Tokyo in 1967 and received a Doctorate from Göttingen University in 1971. He became an associate professor at the University of Tokyo in 1976. In 1979 he moved to RIMS (Research Institute for Mathematical Sciences), Kyoto University. At RIMS he became a professor in 1987 and served as Director in 1996 - 1998. Since 2008 he has been IPMU Professor. 斎藤恭司:東京大学IPMUの特任教授で主任研究員を兼ねる。専門は数学で、複素解析幾 何学の世界的権威。その創始した原始形式の理論や無限次元リー環の理論は近年の理論 物理学、特にトポロジカル超弦理論にランダウ-ギンズブルク理論として現れる。1967年に 東京大学理学部数学科卒業、1971年にドイツのゲッティンゲン大学で博士の学位を取得。 1976年に東京大学助教授、1979年に京都大学数理解析研究所助教授、1987年に同教授、 2008年からIPMU特任教授。この間、1996年から1998年まで数理解析研究所長を務める。 Director’s Corner Director of IPMU Science of the Universe Hitoshi Murayama We had a pleasure of having a very distinguished there and he could observe them in the CMB. These visitor at IPMU as one of our members in February. tiny ripples gradually grew by attracting dark matter George Smoot is known as a man who saved the Big with gravity, eventually becoming big tsunamis to form Bang, and received the 2006 Nobel Prize in Physics. galaxies. Not only he saved the Big Bang, cosmology He stayed with us for a month, gave several talks for became science. us and our scientic neighbors, and was very active at We at IPMU wish to follow his footsteps. Studying our daily tea time leading discussions and inspiring our the Universe is no longer what Greek philosophers young members. He really liked IPMU, and wants to did; it is now a subject in science. And this pursuit is come back. You can read about his conservation with a big drama involving many people collaborating and our PI Naoshi Sugiyama in this volume. competing, making mistakes and working hard. We Back in the 80’s and early 90’s, cosmology was would like to understand the entire history of the said to be in“ crisis.” There was even a report in Time Universe by observations and experiments, and predict Magazine titled“ Bang! A Big Theory May Be Shot.” our future. We are lucky to be a part of this exciting The Universe now is lumpy, with stars, galaxies and scientic pursuit. clusters of galaxies. But we can also directly see the baby Universe because there is still light called CMB (cosmic microwave background) that came from the Big Bang. The problem was that the CMB looked exactly the same everywhere. How come that Director’s everywhere was the same in the baby Universe, but it Corner became so lumpy today? The observed structure did not agree with the Big Bang theory. George set out on a long journey to show that the baby Universe had seeds for structure. He used spy planes. He lost a balloon in a jungle. He convinced NASA to y his apparatus on a satellite called COBE. And he found them after two decades of search. The seeds were unimaginably small: like a millimeter- size ripple on a 100-meter deep ocean. But they were 3 F EATURE Principal Investigator Kyoji Saito Research Area:Mathematics Jugendtraum of a mathematician A number which appears when we count things §1 Kronecker’s Jugendtraum as one, two, three, ... is called a natural number. There is a phrase“ Kronecker’s Jugendtraum The collection of all natural numbers is denoted (dream of youth)” in mathematics. Leopold by N. When we want to prove a statement which Kronecker was a German mathematician who holds for all natural numbers, we use mathematical worked in the latter half of the 19th century. He induction as we learn in high school. It can be obtained his degree at the University of Berlin in proved by using induction that we can define 1845 when he was 22 years old, and after that, he addition and multiplication for elements of N (that successfully managed a bank and a farm left by his is, natural numbers) and obtain again an element of deceased uncle. When he was around 30, he came N as a result. But we cannot carry out subtraction back to mathematics with the study of algebraic in it. For example, 2-3 is not a natural number equations because he could not give up his love for anymore. Subtraction is defined for the system of mathematics. Kronecker’s Jugendtraum refers to a numbers ..., -3, -2, -1, 0, 1, 2, 3, .... We call such a series of conjectures in mathematics he had in those number an integer and denote by Z the collection days ̶ maybe more vague dreams of his, rather of integers. For Z, we have addition, subtraction, and than conjectures ̶ on subjects where the theories multiplication, but still cannot carry out division. For of algebraic equations and of elliptic functions example, -2/3 is not an integer. A number which intersect exquisitely. In the present note, I will explain is expressed as a ratio p/q of two integers (q≠0) is the dream itself and then how it is connected with called a rational number (in particular an integer my dream of the present time. is a rational number) and the collection of them is denoted by Q. Rational numbers form a system of §2 Natural numbers N, integers Z and numbers for which we have addition, subtraction, rational numbers Q multiplication, and division.*1 Such a system of Let us review systems of numbers for explaining numbers is called a field in mathematics. Kronecker’s dream. Some technical terms and We ask whether we can measure the universe by symbols used in mathematics will appear in the rational numbers. The answer is“ no” since they still sequel and I will give some comments on them, miss two type of numbers: (1) solutions of algebraic but please skip them untill §9 and §10 if you don’t equations, (2) limits of sequences. In the follwoing understand them. §3 and §4, we consider two extensions Q and Q 4 IPMU News No. 9 March 2010 of Q, and in §6, both extensions are unied in the §4 Real numbers R complex number eld C. Analysis was sarted in modern Europe by Newton (1642-1723) and Leibniz (1646-1716) and followed N Q N Z by Bernoulli and Euler. It introduced the concept of +, × √ Q approximations of unknown numbers or functions Z +, ×,- *2 R = Q by sequences of known numbers or functions. lim C Q +, ×,-,÷ n→∞ At nearly the same time in modern Japanes mathematics (called Wasan), started by Seki Takakazu §3 Algebraic numbers Q (1642(?)-1708) and developed by his student Takebe It was already noticed by ancient Greeks that Katahiro (1664-1739), approximations of certain one cannot“ measure the world” only by rational inverse trigonometric functions by a power series numbers. For example, the length of the hypotenuse and that of π by series by rational numbers were of a right-angled isosceles triangle with the short also studied. Takebe wrote“ I am not so pure as Seki, edges of length 1 is denoted by √2 (Fig. 1) and so could not capture objects at once algebraically. Greeks knew that it is not a rational number. If Instead, I have done long complicated calculations.” we express √2 by the symbol x, then it satisfies We see that Takebe moved beyond the algebraic the equation x2-2= 0. In general, a polynomial world, an area of expertise of his master Seki, and equality including an unknown number x such as understood numbers and functions which one n n-1 a0x + a1x + … + an-1 x + an =0 (a0≠0, a1, ..., an can reach only by analysis (or series). Nowadays, a are known numbers called coeffcients) is called an number which“ can be approximated as precisely algebraic equation. We call a number x an algebraic as required by rational numbers” is called a real number if it satisfies an algebraic equation with number and the whole of them is denoted by R.*3 A rational number coeffcients. The collection of number which has an infinite decimal representation algebraic numbers, including rational numbers, is (e.g. π =3.141592 ... ) is a real number and the inverse denoted by Q. It is a field since it admits addition, is also true. Thus, numbers, which we learn in school, subtraction, multiplication, and division. Moreover are real numbers. Japanese mathematicians of the we can prove that solutions of algebraic equations time had high ability to calculate such aproximations whose coeffcients are algebraic numbers are again by using abacuses, and competed with each other Feature algebraic numbers. Referring to this property, we in their skills.
Recommended publications
  • 3-Fermion Topological Quantum Computation [1]
    3-Fermion topological quantum computation [1] Sam Roberts1 and Dominic J. Williamson2 1Centre for Engineered Quantum Systems, School of Physics, The University of Sydney, Sydney, NSW 2006, Australia 2Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305, USA I. INTRODUCTION Topological quantum computation (TQC) is currently the most promising approach to scalable, fault-tolerant quantum computation. In recent years, the focus has been on TQC with Kitaev's toric code [2], due to it's high threshold to noise [3, 4], and amenability to planar architectures with nearest neighbour interactions. To encode and manipulate quantum information in the toric code, a variety of techniques drawn from condensed matter contexts have been utilised. In particular, some of the efficient approaches for TQC with the toric code rely on creating and manipulating gapped-boundaries, symmetry defects and anyons of the underlying topological phase of matter [5{ 10]. Despite great advances, the overheads for universal fault-tolerant quantum computation remain a formidable challenge. It is therefore important to analyse the potential of TQC in a broad range of topological phases of matter, and attempt to find new computational substrates that require fewer quantum resources to execute fault-tolerant quantum computation. In this work we present an approach to TQC for more general anyon theories based on the Walker{Wang mod- els [11]. This provides a rich class of spin-lattice models in three-dimensions whose boundaries can naturally be used to topologically encode quantum information. The two-dimensional boundary phases of Walker{Wang models accommodate a richer set of possibilities than stand-alone two-dimensional topological phases realized by commuting projector codes [12, 13].
    [Show full text]
  • Arxiv:1705.01740V1 [Cond-Mat.Str-El] 4 May 2017 2
    Physics of the Kitaev model: fractionalization, dynamical correlations, and material connections M. Hermanns1, I. Kimchi2, J. Knolle3 1Institute for Theoretical Physics, University of Cologne, 50937 Cologne, Germany 2Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA and 3T.C.M. group, Cavendish Laboratory, J. J. Thomson Avenue, Cambridge, CB3 0HE, United Kingdom Quantum spin liquids have fascinated condensed matter physicists for decades because of their unusual properties such as spin fractionalization and long-range entanglement. Unlike conventional symmetry breaking the topological order underlying quantum spin liquids is hard to detect exper- imentally. Even theoretical models are scarce for which the ground state is established to be a quantum spin liquid. The Kitaev honeycomb model and its generalizations to other tri-coordinated lattices are chief counterexamples | they are exactly solvable, harbor a variety of quantum spin liquid phases, and are also relevant for certain transition metal compounds including the polymorphs of (Na,Li)2IrO3 Iridates and RuCl3. In this review, we give an overview of the rich physics of the Kitaev model, including 2D and 3D fractionalization as well as dynamical correlations and behavior at finite temperatures. We discuss the different materials, and argue how the Kitaev model physics can be relevant even though most materials show magnetic ordering at low temperatures. arXiv:1705.01740v1 [cond-mat.str-el] 4 May 2017 2 CONTENTS I. Introduction 2 II. Kitaev quantum spin liquids 3 A. The Kitaev model 3 B. Classifying Kitaev quantum spin liquids by projective symmetries 4 C. Confinement and finite temperature 5 III. Symmetry and chemistry of the Kitaev exchange 6 IV.
    [Show full text]
  • Kitaev Materials
    Kitaev Materials Simon Trebst Institute for Theoretical Physics University of Cologne, 50937 Cologne, Germany Contents 1 Spin-orbit entangled Mott insulators 2 1.1 Bond-directional interactions . 4 1.2 Kitaev model . 6 2 Honeycomb Kitaev materials 9 2.1 Na2IrO3 ...................................... 9 2.2 ↵-Li2IrO3 ..................................... 10 2.3 ↵-RuCl3 ...................................... 11 3 Triangular Kitaev materials 15 3.1 Ba3IrxTi3 xO9 ................................... 15 − 3.2 Other materials . 17 4 Three-dimensional Kitaev materials 17 4.1 Conceptual overview . 18 4.2 β-Li2IrO3 and γ-Li2IrO3 ............................. 22 4.3 Other materials . 23 5 Outlook 24 arXiv:1701.07056v1 [cond-mat.str-el] 24 Jan 2017 Lecture Notes of the 48th IFF Spring School “Topological Matter – Topological Insulators, Skyrmions and Majoranas” (Forschungszentrum Julich,¨ 2017). All rights reserved. 2 Simon Trebst 1 Spin-orbit entangled Mott insulators Transition-metal oxides with partially filled 4d and 5d shells exhibit an intricate interplay of electronic, spin, and orbital degrees of freedom arising from a largely accidental balance of electronic correlations, spin-orbit entanglement, and crystal-field effects [1]. With different ma- terials exhibiting slight tilts towards one of the three effects, a remarkably broad variety of novel forms of quantum matter can be explored. On the theoretical side, topology is found to play a crucial role in these systems – an observation which, in the weakly correlated regime, has lead to the discovery of the topological band insulator [2, 3] and subsequently its metallic cousin, the Weyl semi-metal [4, 5]. Upon increasing electronic correlations, Mott insulators with unusual local moments such as spin-orbit entangled degrees of freedom can form and whose collective behavior gives rise to unconventional types of magnetism including the formation of quadrupo- lar correlations or the emergence of so-called spin liquid states.
    [Show full text]
  • Some Comments on Physical Mathematics
    Preprint typeset in JHEP style - HYPER VERSION Some Comments on Physical Mathematics Gregory W. Moore Abstract: These are some thoughts that accompany a talk delivered at the APS Savannah meeting, April 5, 2014. I have serious doubts about whether I deserve to be awarded the 2014 Heineman Prize. Nevertheless, I thank the APS and the selection committee for their recognition of the work I have been involved in, as well as the Heineman Foundation for its continued support of Mathematical Physics. Above all, I thank my many excellent collaborators and teachers for making possible my participation in some very rewarding scientific research. 1 I have been asked to give a talk in this prize session, and so I will use the occasion to say a few words about Mathematical Physics, and its relation to the sub-discipline of Physical Mathematics. I will also comment on how some of the work mentioned in the citation illuminates this emergent field. I will begin by framing the remarks in a much broader historical and philosophical context. I hasten to add that I am neither a historian nor a philosopher of science, as will become immediately obvious to any expert, but my impression is that if we look back to the modern era of science then major figures such as Galileo, Kepler, Leibniz, and New- ton were neither physicists nor mathematicans. Rather they were Natural Philosophers. Even around the turn of the 19th century the same could still be said of Bernoulli, Euler, Lagrange, and Hamilton. But a real divide between Mathematics and Physics began to open up in the 19th century.
    [Show full text]
  • Quantum Information Science Activities at NSF
    Quantum Information Science Activities at NSF Some History, Current Programs, and Future Directions Presentation for HEPAP 11/29/2018 Alex Cronin, Program Director National Science Foundation Physics Division QIS @ NSF goes back a long time Wootters & Zurek (1982) “A single quantum cannot be cloned”. Nature, 299, 802 acknowledged NSF Award 7826592 [PI: John A. Wheeler, UT Austin] C. Caves (1981) “Quantum Mechanical noise in an interferometer” PRD, 23,1693 acknowledged NSF Award 7922012 [PI: Kip Thorne, Caltech] “Information Mechanics (Computer and Information Science)” NSF Award 8618002; PI: Tommaso Toffoli, MIT; Start: 1987 led to one of the “basic building blocks for quantum computation” - Blatt, PRL, 102, 040501 (2009), “Realization of the Quantum Toffoli Gate with Trapped Ions” “Research on Randomized Algorithms, Complexity Theory, and Quantum Computers” NSF Award 9310214; PI: Umesh Vazirani, UC-Berkeley; Start: 1993 led to a quantum Fourier transform algorithm, later used by Shor QIS @ NSF goes back a long time Quantum Statistics of Nonclassical, Pulsed Light Fields Award: 9224779; PI: Michael Raymer, U. Oregon - Eugene; NSF Org:PHY Complexity Studies in Communications and Quantum Computations Award: 9627819; PI: Andrew Yao, Princeton; NSF Org:CCF Quantum Logic, Quantum Information and Quantum Computation Award: 9601997; PI: David MacCallum, Carleton College; NSF Org:SES Physics of Quantum Computing Award: 9802413; PI:Julio Gea-Banacloche, U Arkansas; NSF Org:PHY Quantum Foundations and Information Theory Using Consistent Histories Award: 9900755; PI: Robert Griffiths, Carnegie-Mellon U; NSF Org:PHY QIS @ NSF goes back a long time ITR: Institute for Quantum Information Award: 0086038; PI: John Preskill; Co-PI:John Doyle, Leonard Schulman, Axel Scherer, Alexei Kitaev, CalTech; NSF Org: CCF Start: 09/01/2000; Award Amount:$5,012,000.
    [Show full text]
  • Alexei Kitaev, Annals of Physics 321 2-111
    Annals of Physics 321 (2006) 2–111 www.elsevier.com/locate/aop Anyons in an exactly solved model and beyond Alexei Kitaev * California Institute of Technology, Pasadena, CA 91125, USA Received 21 October 2005; accepted 25 October 2005 Abstract A spin-1/2 system on a honeycomb lattice is studied.The interactions between nearest neighbors are of XX, YY or ZZ type, depending on the direction of the link; different types of interactions may differ in strength.The model is solved exactly by a reduction to free fermions in a static Z2 gauge field.A phase diagram in the parameter space is obtained.One of the phases has an energy gap and carries excitations that are Abelian anyons.The other phase is gapless, but acquires a gap in the presence of magnetic field.In the latter case excitations are non-Abelian anyons whose braiding rules coincide with those of conformal blocks for the Ising model.We also consider a general theory of free fermions with a gapped spectrum, which is characterized by a spectral Chern number m.The Abelian and non-Abelian phases of the original model correspond to m = 0 and m = ±1, respectively. The anyonic properties of excitation depend on m mod 16, whereas m itself governs edge thermal transport.The paper also provides mathematical background on anyons as well as an elementary theory of Chern number for quasidiagonal matrices. Ó 2005 Elsevier Inc. All rights reserved. 1. Comments to the contents: what is this paper about? Certainly, the main result of the paper is an exact solution of a particular two-dimen- sional quantum model.However, I was sitting on that result for too long, trying to perfect it, derive some properties of the model, and put them into a more general framework.Thus many ramifications have come along.Some of them stem from the desire to avoid the use of conformal field theory, which is more relevant to edge excitations rather than the bulk * Fax: +1 626 5682764.
    [Show full text]
  • Vortices and Other Topological Solitons in Dense Quark Matter
    Preprint number: XXXX-XXXX Vortices and Other Topological Solitons in Dense Quark Matter Minoru Eto1, Yuji Hirono2;3;4, Muneto Nitta5y, and Shigehiro Yasui6 z 1Department of Physics, Yamagata University, Kojirakawa 1-4-12, Yamagata, Yamagata 990-8560, Japan 2Department of Physics, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan 3Theoretical Research Division, Nishina Center, RIKEN, Wako 351-0198, Japan 4Department of Physics, Sophia University, Tokyo 102-8554, Japan 5Department of Physics, and Research and Education Center for Natural Sciences, Keio University, Hiyoshi 4-1-1, Yokohama, Kanagawa 223-8521, Japan 6KEK Theory Center, Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan ∗E-mail: [email protected] ............................................................................... Dense quantum chromodynamic matter accommodates various kind of topological solitons such as vortices, domain walls, monopoles, kinks, boojums and so on. In this review, we discuss various properties of topological solitons in dense quantum chro- modynamics (QCD) and their phenomenological implications. A particular emphasis is placed on the topological solitons in the color-flavor-locked (CFL) phase, which exhibits both superfluidity and superconductivity. The properties of topological solitons are dis- cussed in terms of effective field theories such as the Ginzburg-Landau theory, the chiral Lagrangian, or the Bogoliubov{de Gennes equation. The most fundamental string-like topological excitations in the CFL phase are the non-Abelian vortices, which are 1/3 quantized superfluid vortices and color magnetic flux tubes. These vortices are created at a phase transition by the Kibble-Zurek mechanism or when the CFL phase is realized in compact stars, which rotate rapidly.
    [Show full text]
  • Black Holes and Entanglement Entropy
    Black holes and entanglement entropy Thesis by Pouria Dadras In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Physics CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2021 Defended May 18, 2021 ii © 2021 Pouria Dadras ORCID: 0000-0002-5077-3533 All rights reserved iii ACKNOWLEDGEMENTS First and foremost, I am truly indebted to my advisor, Alexei Kitaev, for many reasons: providing an atmosphere in which my only concern was doing research, teaching me how to deal with a hard problem, how to breaking it into small parts and solving each, many helpful suggestions and discussions tht we had in the past five years that I was his students, sharing some of his ideas and notes with me, ··· . I am also grateful to the other members of the Committee, Sean Carroll, Anton Kapustin, and David Simmons-Duffin for joining my talk, and also John Preskill for joining my Candidacy exam and having discussions. I am also grateful to my parents in Iran who generously supported me during the time that I have been in the United states. I am also Thankful to my friends, Saeed, Peyman, Omid, Fariborz, Ehsan, Aryan, Pooya, Parham, Sharareh, Pegah, Christina, Pengfei, Yingfei, Josephine, and others. iv ABSTRACT We study the deformation of the thermofield-double ¹TFDº under evolution by a double-traced operator by computing its entanglement entropy. After saturation, the entanglement change leads to the temperature change. In Jackiw-Teitelboim gravity, the new temperature can be computed independently from two- point function by considering the Schwarzian modes. We will also derive the entanglement entropy from the Casimir associated with the SL(2,R) symmetry.
    [Show full text]
  • Operator Growth Bounds in a Cartoon Matrix Model
    Operator growth bounds in a cartoon matrix model Andrew Lucas1, ∗ and Andrew Osborne1, y 1Department of Physics and Center for Theory of Quantum Matter, University of Colorado, Boulder CO 80309, USA (Dated: July 15, 2020) We study operator growth in a model of N(N − 1)=2 interacting Majorana fermions, which live on the edges of a complete graph of N vertices. Terms in the Hamiltonian are proportional to the product of q fermions which live on the edges of cycles of length q. This model is a cartoon \matrix model": the interaction graph mimics that of a single-trace matrix model, which can be holographically dual to quantum gravity. We prove (non-perturbatively in 1=N, and without averaging over any ensemble) that the scrambling time of this model is at least of order log N, consistent with the fast scrambling conjecture. We comment on apparent similarities and differences between operator growth in our \matrix model" and in the melonic models. CONTENTS 1. Introduction 1 2. Summary of results 2 3. Mathematical preliminaries 3 3.1. Sets and graphs 3 3.2. Majorana fermions and operator size4 3.3. The cartoon matrix model 5 3.4. Time evolution as a quantum walk7 3.5. Bound on the Lyapunov exponent8 4. Operator growth in the Majorana matrix model9 4.1. Bounding operator growth rates 9 4.2. Comparison to the Sachdev-Ye-Kitaev model 15 Acknowledgements 16 References 16 1. INTRODUCTION Our best hint to the unification of gravity with quantum mechanics arises from the holographic principle [1,2]. Some quantum mechanical systems in D spacetime dimensions, with a large N number of degrees of freedom \per site" (e.g.
    [Show full text]
  • Arxiv:2007.07270V1 [Hep-Th]
    The Cosmological Constant: A Categorical View Fen Zuo∗ Abstract Some theoretic results related to the cosmological constant, obtained in the 80’s and 90’s of last century, are reviewed. These results exhibit some interesting underlying pattern when viewed from a category- theoretic perspective. In doing this, we illustrate how Baez and Dolan’s Periodic Table of k-tuply monoidal n-categories can serve as a basic framework of a quantum spacetime structure. Explicitly, we show how Einstein gravity (with the cosmological constant turned on) emerges when we de-categorify certain 2-tuply monoidal 2-categories properly, as Crane proposed a long time ago. In particular, we find that some recent work on Vertex Operator Algebras and 4-manifolds fits nicely into this framework. arXiv:2007.07270v1 [hep-th] 13 Jul 2020 ∗ Email: [email protected] 1 Contents I. Introduction 3 A. The notation 4 II. 3D 4 A. Euclidean case 4 B. Lorentzian case 7 III. 2D 8 A. Euclidean case 8 B. Lorentzian case 9 IV. 4D 10 A. Euclidean case 11 1. Barrett-Crane Model 11 2. Anyon-Condensation Picture 12 3. Gravity From Condensation? 15 4. Cosmological Constant 17 B. Lorentzian case 18 1. Identifying “Time” 18 2. Emergence of 4D Lorentz Symmetry 20 3. Cosmological Constant 20 V. Categorification 21 A. Motivation 21 B. General framework 24 1. Vertex Operator Algebras 24 2. Theory X and 4D topological invariants 24 3. VOA[M4] and 2-Tannaka-Krein duality 27 4. Gravity and Cosmological Constant 28 VI. Discussion 30 Note added: 31 2 Acknowledgments 32 References 32 I.
    [Show full text]
  • Topological Phases, Entanglement and Boson Condensation
    Topological Phases, Entanglement and Boson Condensation Huan He A Dissertation Presented to the Faculty of Princeton University in Candidacy for the Degree of Doctor of Philosophy Recommended for Acceptance by the Department of Physics Adviser: Bogdan Andrei Bernevig June 2019 c Copyright by Huan He, 2019. All rights reserved. Abstract This dissertation investigates the boson condensation of topological phases and the entanglement entropies of exactly solvable models. First, the bosons in a \parent" (2+1)D topological phase can be condensed to obtain a \child" topological phase. We prove that the boson condensation formalism necessarily has a pair of modular matrix conditions: the modular matrices of the parent and the child topological phases are connected by an integer matrix. These two modular matrix conditions serve as a numerical tool to search for all possible boson condensation transitions from the parent topological phase, and predict the child topological phases. As applications of the modular matrix conditions, (1) we recover the Kitaev's 16-fold way, which classifies 16 different chiral superconductors in (2+1)D; (2) we prove that in any layers of topological theories SO(3)k with odd k, there do not exist condensable bosons. Second, an Abelian boson is always condensable. The condensation formalism in this scenario can be easily implemented by introducing higher form gauge symmetry. As an application in (2+1)D, the higher form gauge symmetry formalism recovers the same results of previous studies: bosons and only bosons can be condensed in an Abelian topological phase, and the deconfined particles braid trivially with the condensed bosons while the confined ones braid nontrivially.
    [Show full text]
  • Memories of a Theoretical Physicist
    Memories of a Theoretical Physicist Joseph Polchinski Kavli Institute for Theoretical Physics University of California Santa Barbara, CA 93106-4030 USA Foreword: While I was dealing with a brain injury and finding it difficult to work, two friends (Derek Westen, a friend of the KITP, and Steve Shenker, with whom I was recently collaborating), suggested that a new direction might be good. Steve in particular regarded me as a good writer and suggested that I try that. I quickly took to Steve's suggestion. Having only two bodies of knowledge, myself and physics, I decided to write an autobiography about my development as a theoretical physicist. This is not written for any particular audience, but just to give myself a goal. It will probably have too much physics for a nontechnical reader, and too little for a physicist, but perhaps there with be different things for each. Parts may be tedious. But it is somewhat unique, I think, a blow-by-blow history of where I started and where I got to. Probably the target audience is theoretical physicists, especially young ones, who may enjoy comparing my struggles with their own.1 Some dis- claimers: This is based on my own memories, jogged by the arXiv and IN- SPIRE. There will surely be errors and omissions. And note the title: this is about my memories, which will be different for other people. Also, it would not be possible for me to mention all the authors whose work might intersect mine, so this should not be treated as a reference work.
    [Show full text]